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Abstract

Fuzzy binary linear programming (FBLP) problems are very essential in many fields such as assignment and as-
sembly line balancing problems in operational research, multiple projects, locations, and candidates selection cases in
management science, as well as representing and reasoning with prepositional knowledge in artificial intelligence. Al-
though FBLP problems play a significant role in human decision environment, not very much research has focused on
FBLP problems. This work first proposes a simple means of expressing a triangular fuzzy number as a linear function
with an absolute term. A method of linearizing absolute terms is also presented. The developed goal programming (GP)
model weighted by decision-makers’ (DMs) preference aims to optimize the expected objective function and minimize
the sum of possible membership functions’ deviations. After presented a novel way of linearizing product terms, the
solution algorithm is proposed to generate a crisp trade-off promising solution that is also an optimal solution in a
certain sense. Three examples, equipment purchasing choice, investment project selection, and assigning clients to
project leaders, illustrate that the proposed algorithm can effectively solve generalized FBLP problems. © 2001
Elsevier Science B.V. All rights reserved.

Keywords: Fuzzy mathematical programming; Binary linear programming

1. Introduction

Binary linear programming (BLP) problems play a prominent role in representing and reasoning with
prepositional knowledge in artificial intelligence [3,9,16,21], assignment and assembly line balancing
problems in operational research [5,6,17,30,31], as well as multiple materials, projects, locations, and
candidates selection decisions in management science [12,13,19,22]. The common difficulty in solving a BLP
problem is the uncertainty related to its decision environment and the lack of an objective measure to the
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related criterion and relationships that guide the evaluation environment. Employing the fuzzy set theory is
one of the most successful ways to solve this difficulty [4,7,29,33,34].

A decision-maker (DM) may feel more natural in specifying vague (possible) values than precise values
since she/he frequently knows only approximations of exact numbers. A BLP problem with fuzzy coeffi-
cients and constraints named as a fuzzy binary linear programming (FBLP) problem can be formulated as
follows:

FBLP problem:

Maximize ¢&;x; + Coxy + -+ + Cpx,y

. o ~ 1.1
subject to Za,-jxj < b, (L)
=1

where x; are zero—one variables, i =1,2,...,n, j=1,2,...,m, ¢; the fuzzy coefficients in the objective
function, x; express zero—one decision variables, a;; represent the fuzzy coefficient with respect to x; in the jth
constraint, and b; denote the fuzzy number in the right-hand side of the jth constraint, i = 1,2,...,n, and

j=12....m

The papers by Mohanty [4], Carlsson [7], Herrera et al. [10,11], Bitran [14], Liang et al. [15], Maeda [18],
Castro et al. [20], Teng et al. [23], Delgado et al. [25], Wang et al. [26], Abboud et al. [27], Dias [28], and
Chen [32] give an overview of FBLP techniques and a list of references. Survey by Kandal [1], Kaufmann
et al. [2] and Lai et al. [33,34] are also excellent texts for these techniques. However, most of the methods
proposed to solve FBLP problems either use a-cut techniques that require iterative processes or utilize
arithmetic operations that require tedious computation. Moreover, conventional methods can only solely
treat either fuzzy coefficients in the objective function or fuzzy numbers in the right-hand side of con-
straints.

This study proposes an algorithm that can simultaneously solve a BLP problem with fuzzy coefficients in
the objective function, fuzzy coefficients in the constraint matrix, and fuzzy numbers in the right-hand side
of constraints. The presented model also enables a DM to solve a FBLP problem in a more natural and
direct way as a DM can directly obtain the a crisp promising solution merely after finishing a linear
programming (LP) computation. Consequently, the proposed method is a worthwhile alternative to
existing methods from a practical point of view.

2. Interpreting a fuzzy value

At first, a clear and simple means of representing a triangular membership function without limiting the
symmetric triangle form is introduced.

Proposition 1. Let u(c;) be a triangle membership function of a fuzzy value c;, as depicted in Fig. 1, where
ciy (k=1,2,3) are, respectively, the possible lowest number, middle number, and highest number,
Six (k=1,2) are the slopes of line segments between c;; and c;;.1, and

Si = :u(ci,k-H) - .U(Cz:k) fork=1,2.

Cik+1 — Cik
u(c;) can then be expressed below:
Si2 = Sil

5 (lei = cinl + e — cin), (2.1)

w(ei) = plein) +sia(ei —cin) +

where | - | is the absolute value of *~
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w(e)
A

Fig. 1. A triangle membership function.

Proof. This proposition can be examined as follows:
(l) If ¢ < Ci2, then

Sip — 8,
wle) = plein) +si(ei —cin) + % (lei = cip| +¢i —cin) = ulcin) +sii(ci — cin)-

(11) If C,',z < C; g Ci,35 then

Si2 — Si1
2
= p(cin) +sia(ei —cin) + (8i2 = sip) (e — ¢in) = plcin) + si1(cin — cin) + sia(ci — ¢in).

plei) = plein) +si(ei —cin) + (lei = ¢in] + ¢ — cin)

This proposition is then proven. [

Example 1.
Maximize u(c)
subject to ¢ € F (F is a feasible set), ¢; =0,

where ¢ is a fuzzy value depicted in Fig. 2(a).

By using Proposition 1, u(c;) can be expressed as follows:
—0.125-0.125
f(\cl — 55|+ ¢ —55)

(2.2)
0.25
— =2 (ler = 55|+ ¢ = 55).

u(er) =0.125(c; — 47) +

= 0.125(c; — 47)
The following proposition is then presented to linearize the absolute term.

Proposition 2. Consider a problem expressed below:

PPI:

Maximize Z=—(|f(X)—g|+f(x) —g)

subject to X € F (F is a feasible set), g is a given non-negative constant.
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p(e,) p(cy) p(cs)

A A A
1 1 1

0.125=s, Spi=-0.125 0.2=s, Spo—-0.2 0.0833=s,, Sg=-0.08333
0 .0 _ 0 .
(@ 47 55 63 ¢ (b) 35 40 45 o () 38 50 62 o
p(c,) w(cs) p(ce)

A A A
1 1 1

0.1=s, Spa-0.1 0.1429=s,, $0,=-0.1429 010833=s, $2s-0.0833

(d) 18 28 38 ¢, (e) 28 35 2 o (f) 18 28 38 o

Fig. 2. (a) Membership function x(c;). (b) Membership function u(c,). (¢c) Membership function p(c3). (d) Membership function p(cs).
(e) Membership function p(cs). (f) Membership function pu(cg).

can be linearized as PP2 below:

PP2:

Maximize ZZ = -2(f(X)—g+d)
subject to f(X)—g+d=0, d=>0, X €F.

Proof. This proposition can be verified as follows:
(i) Case I: f(x)—g=0. At the optimal solution d will be forced as d =0, which results in

77 =-2(f(x)—g) =Z.
(ii) Case 2: f(x) — g < 0. At the optimal solution d will be forced as d = g — f(x), which results in
ZZ=0="Z7

This proposition is then finished. [

Based on Proposition 2, expression (2.2) in Example 1 can be linearized as follows:

Maximize u(c;) = 0.125(c; — 47) — 0.25(c; — 55+ d) = —0.125¢; — 0.25d + 7.875
subject to ¢} +d =55, ¢ € F (F is a feasible set), ¢, d = 0.

By running on the LINDO [24], the obtained solution set is (d; = 0,¢; = 55, and p(c;) = 1).

3. Fuzzy coefficients in the objective function

Encountered changeable future, a DM typically has difficulty in evaluating an R&D project, financial
investment, delivery route or transportation construction. This section discusses how to solve a BLP

problem with fuzzy coefficients in the objective function.
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Example 2 (Taken from [11]). A computer science department wishes to purchase equipment for some
computer rooms. Each room will have different equipment to create a diverse variety of workstations. Six
different types of proposals are received and a study is performed based on students that will use the
equipment. The cost of each classroom is given in millions of pesetas and each number of students is given
as a percentage of total students, where the percentages are uncertain as displayed in Table 1.

The goal is to purchase equipment for the classrooms to maximize their use by the number of students. It
is only possible to buy equipment for three classrooms since only 32 million pesetas are available. In ad-
dition, it is necessary to have at least one of type 4, B, or C, and another of type C, E, or F. Thus, this
problem’s constraints are precise but the objective is imprecise. The problem is formulated as

Maximize ¢;x; + Caxy + Cz3x3 + Caxy + C5xs5 + CoXe (3.1)
subject to  14x; 4+ 11xy + 17x3 + 7x4 + 13x5 + 10x¢ < 32, (3.2)
Xi+x+x3=1, x3+x5+x =1, (3.3)
X1,X2,X3,X4,Xs5, and x¢ are zero—one variables, (3.4)

where the fuzzy numbers ¢y, ¢, ¢3, ¢4, ¢s and &g are depicted in Figs. 2(a), (b), (c), (d), (e) and (f), respec-
tively.
Using Proposition 1 to express the membership functions of ¢, é,, ¢3, ¢4, s, and &g as

uler) =0.125(c; — 47) — (0.25/2)(|ey — 53| + ¢1 — 53),
() = 0.2(cy — 35) — (0.4/2)(Jca — 40| 4 ¢» — 40),
u(es) = 0.0833(c5 — 38) — (0.1667/2)(|es — 50| + ¢35 — 50),
ules) =0.1(ca — 18) — (0.2/2)(Jcs — 28| + ¢4 — 28),
ples) =0.1429(cs — 28) — (0.2857/2)(|es — 35| + ¢5 — 35),
ules) = 0.0833(cs — 31) — (0.1667/2)(|cs — 43| + c5 — 43),

respectively.
Following Proposition 2, we then have

u(er) = —0.125¢; — 0.25d, + 7.875, ¢ +d, = 55, (3.5)
p(c2) = =0.2c; = 0.4d, +9, ¢ +dy > 40, (3.6)
pi(c3) = —0.0833¢5 — 0.1667ds + 5.1696, ¢35+ ds > 50, (3.7)
,U(C4) = —0.104 — 02d4 + 387 Cq + d4 = 28, (38)
p(cs) = —0.14286¢5 — 0.2857ds + 6, cs +ds > 35, (3.9)
1(ce) = —0.0833¢s — 0.1667ds + 4.58344,  cq + dg > 43. (3.10)
Table 1
The cost and possible number of students for each type of class
Type of class Cost Percentage of students
A 14 55 (8% tolerance)
B 1 40 (5% tolerance)
C 17 50 (12% tolerance)
D 7 28 (10% tolerance)
E 13 35 (7% tolerance)
F 10 43 (12% tolerance)
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Since the faculty and students in Example 1 have desired to maximize the objective function (3.1), the
goal can be considered to maximize cix; + cxy + ¢3x3 + caxq + csx5 + cexe and p(cy) + p(er) + u(es) +
u(cq) + u(es) + p(ce) concurrently. Accordingly, the optimization problems (3.1)—(3.4) can be reformulated
as follows:

Maximize c¢jx; + coxy + €3x3 + c4x4 + €5X5 + CeXs, (3.11)
Maximize pu(c1) + u(c2) + u(es) + ulea) + ples) + ulcs), (3.12)
subject to  (3.2)—(3.10).

Since the problem was encountered in incorporating (3.11) and (3.12), the following definition and
proposition are considered.

Definition 1. Let C(X) be an objective function. X = (x;,xa, ..., x,) expresses an n-vector objective function
and (X, u, iy, ..., u,) denotes a system of membership functions of fuzzy values. Since an optimization
problem in a fuzzy environment is a system of membership functions together with an objective function,
the optimization problem of considering both an objective function and a system of membership functions
simultaneously becomes a trade-off problem.

Proposition 3. An optimal solution for the model
PP3:

Maximize < Zn: CiXj, i: .U(Cf))
i=1

=1
subject to ¢; € F (F is a feasible set), ¢; >0,

is the solution that maximizes the following model:

PP4:

Maximize

n n

cxi =y (w6 +w )

i=1 i=1
subject to  p;(¢;) =8 + 9, =1, ¢; € F (F is a feasible set), ¢; >0,

where w” = |1/s,| and w; = |1/sg;| are the inverse of slopes as depicted in Fig. 3.
u(c)
A
1
sLi SRi
0 | -
Cia Co G G

Fig. 3. Membership function u(c;).
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Proof. Due to the complexity in solving problems with multiple and non-commensurable goals a single
solution capable of optimizing all the goals generally does not exist, the concurrent optimization of the
objective function and membership functions is naturally considered as a trade-off problem. Since the range
of each membership function is from 0 to 1 and the unit change in c;x; results in proportionally change in
left-hand side or right-hand side line segment of u(c;) guided by |1/sy;| or |1/sg;|, then a solution for the
model is

{Maximize ( zn: CiXi, Z M(Q)) }

i=1 i=1

=

is any point which
Maximize (Z cixi — Y (wio) +wio; )) :
=1 P

Take ¢;x; in (3.11) as an instance. Since the range of membership function u(c;) is from 0 to 1 and the range
of ¢;x; is between 47 and 63,

1 1
+ |- | = —
e 0.125’
and
S|
e T e e S T X

as depicted in Fig. 2(a). By utilizing adequate weights to regulate the behavior between ¢;x; and u(c;), this
proposition is completed. [

Consequently, the models (3.11) and (3.12) can be reformulated as the following goal programming (GP)
model:
Model (1):

6

6
Maximize » (ca) — > _(w/8) +w;d;)
i=1

i=1 i

(3.13)
subject to  (3.2)-(3.10), w(c;) =3 +d; =1, i=1,2,...,6,
where the weights w;” and w; are equal to |1/s1;| and |1/sr;|, respectively, as indicated in Figs. 2(a)—(e).
The first term in (3.13) is the expected objective value the DM naturally aims to maximize while the

second term is the sum the possible fuzzy value deviations the DM desires to minimize.
Proposition 4 is presented to linearize the product term c;x; in (3.13).

Proposition 4. Consider the following program:
PP3:

Maximize cx

subject to x € 0-1 variable, ¢ >0
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is equivalent to

PP4:

Maximize y = cx
subject to  y<c+ M(1 —x), (3.14)
v < M, (3.15)

where x is an zero—one variable, M a big value, and y,c = 0.

This proposition can be examined as follows:

(1) if at optimal solution x = 1, then (3.14) and (3.15) result in y = ¢;

(11) if at optimal solution x = 0, then (3.14) and (3.15) result in y = 0.
This proposition is proven.

Therefore, Model (1) can be linearized accordingly:

Maximize yi 432+ 3+ + s + 5 — 85, — 85, — 585 — 58, — 1267 — 12565 — 106,

— 105, — 707 — 75, — 1257 — 125, (3.16)
subject to  (3.2)—(3.10) (3.17)
wle) =6 +6, =1, i=1,2,....,6, (3.18)
n<e +M(1—x), i <Mx;, m<e+M(1—x3), y»< Mx, (3.19)
n<e+M(l—x3), 3 <Mxs, m<cg+M(1—x4), s < Mxy, (3.20)
ys<es +M(1—xs), ys <Mxs, ys<ce+M(1 —xg), ys<Mxg, (3.21)

where M is a big number and x;,x;, x3, x4, x5, and x¢ are zero—one variables.
Solving Example 2 by the LINDO [24], the found solution set is (x; = 1,x, =0,x3 = 0,x4 = 1,x5 =0,
and xs = 1), which is the same as found in Herrera et al. [11].

4. Fuzzy coefficients in the objective function and the constraint matrix as well as fuzzy values in the
constraints’ right-hand side

This section addresses how to concurrently solve a BLP problem with fuzzy coefficients in the objective
function and the constraint matrix as well as fuzzy values in the constraints’ right-hand side. Consider the
following example:

Example 3 (Modified from [16]). The board of directors of a large manufacturing firm is considering the
investment project illustrated in the following table. The board wishes to maximize the total expected return
and investment around the available annual budget. Five projects are being considered for execution over
the next three years while the expected return for each project naturally is uncertain. The return, available
funds and required yearly investments (in millions of dollars) are displayed in Table 2.

In Table 2, r, =(18.5,20,23), r, =(38,40,41.5), r; =(19,20,21.5), r,=(13.8,15,16.3), rs = (28.2,30,34.5),
bl = b2 = b3 = (22,25,27), apy = (657 87 10), ayy = (9, 10, 11), aszy = (25, 3,4), agy = (1572,25), and as3 =
(9,10, 11) are depicted in Figs. 4(a), (b), (c), (d), (), (f), (g), (h), (), (), (k), (1), and (m), respectively, where
(18.5,20,23) represents a fuzzy number which the possible smallest amount is 18.5 million, the possible
center amount is 20 million, and the possible largest amount is 23 million.
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Table 2
Available investment information
Investments for Returns

Project Year 1 Year 2 Year 3
1 6 2 (7,8,9) (18.5,20,23)
2 5 8 (9,10,11) (38,40,41.5)
3 3 10 (2.5,3,3.5) (19,20,21.5)
4 7 5 (1.5,2,2.5) (13.8,15,16.3)
5 9 7 (9,10,11) (28.2,30,34.5)
Available funds (22,25,27) (22,25,27) (22,25,27)

The decision problem can be formalized as

Maximize flxl + szz + 773)63 + f4)C4 + I75X5

subject to 6.X1 + SXZ + 3)C3 + 7X4 + 9)(5 §l;1,
2)61 + 8)62 + IOX3 + 5)64 + 7X5 252,

A13x1 + Axsxy + Ax3X3 + dazxg + dszxs S bs,

X1,%2,X3,X4,%5 € 01 variables,

where the binary variable x; represent the ith project, i = 1,...,5.

N N N N
B Bk
AW N =
z Lz o

Referring to Propositions 1 and 2, the membership functions depicted in Figs. 4(a)-(m) can be repre-

sented by

u ”1)
u 7’2)
u(rs)

7’4)

=

(

(

(

(

(rs

(b1)
(b2)

(b3)

(

(

(

(

(

= =
I

bs

as

=

=

6123)

ass

=

=

=

)
[22%] )
)

=

This decision problem can then be expressed as

1

Maximize Z (rix;),

i=1

1
Maximize Z u(r),
—1

1

—0.3333r; — d; + 7.66605,
—0.6667r, — 1.1667d, + 27.6668,
—0.6667r; — 1.6667d; + 14.334,

—0.7692r4 — 1.6026d, + 12.5385,
—0.2222r5 — 0.7778ds + 7.6667,

—0.49997b; — 0.8333ds + 13.4992,
—0.49997b, — 0.8333d; + 13.4992,
—0.49997b; — 0.8333ds + 13.4992,
—aj;3 — 2dy + 9,

—ay; — 2dyp + 11,
—2az; —4dy +7,
—2a43 — 4dp + 5,
asy) = —asy — 2di3 + 11,

aiz+dy = 8,

ri +d; = 20,

ry +dy = 40,
rs +dy = 20,
rs +dy =15,
rs +ds = 30,

koAb
o o 9 o »n

—_ = =
(e

N —
- D 2 DD Do

4.13
4.14
4.15
4.16
4.17

o~ o~ o~ o~ o~ o~ o~

(4.18)

(4.19)
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u(r) () W) wr,)
A A Ar A
1 1 1 1
0.6667=s, $p,=-0.3333 0.5=s,, $ps=-0.6667 1=s,, s=-0.6667 0.8333=s,, $ri=-0.76923
0 .0 .0 L0 R
(@) 185 20 21 (b) 38 40 415 1, () 19 20 215 1, (4) 138 15 163 1,
J(rs) u(by) u(b,) u(b,)
A A A A
1 1 1 1
0.5556=s, 5 $ps=-0.2222 0.3333=s,, $p=-0.5 3333=s, $=-0.5 0.3333=s,, $xs=-0.5
0 .0 L0 .0 R
(e) 185 20 23 Is f) 22 25 27 b, (9) 22 25 27 T;z (h) 22 25 27 'b,
n(a;;) W@y) w(as;) n(a)
A A A A
1 1 1 1
0L6667=sy, Sr13--0.5 1=553 Sroy=-1 2=s3 was-- 1 2=814 Spar=-2
0 ~ 0 _ 0 .0 o
@ 65 8 10 a; () 9 10 11 2, (K) 25 3 4 ay, () 15 2 25  a,
n(as;)
A
1
I=s.3 Sras=1
0 »
(m) 9 10 11 as,

Fig. 4. (a) Membership function u(r;). (b) Membership function pu(r,). (¢) Membership function u(r3). (d) Membership function u(rs).
(e) Membership function u(rs). (f) Membership function u(b;). (g) Membership function u(b;). (h) Membership function u(bs).
(i) Membership function u(a;3). (j) Membership function p(as;). (k) Membership function u(as;). (1) Membership function u(ass).

(m) Membership function u(as3).

Maximize

Maximize

J
J=1
I

i=1

u(b;

),

:u(aif)a

subject to 6X1 + 5X2 + 3X3 + 7X4 + 9X5 § b],
2X1 + 8X2 + 10X3 + SX4 + 7X5 §b2,
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ai3xy + axxs + azxs + asxs + as3xs < bs, (4.24)

X1,X2,X3,X4,%5 are 0—1 variables, (4.25)

where / = 5,J = 3, the binary variable x; represents the ith project.
Based on Definition 1 and Proposition 3, we have

Model (2):

! /

J
Maximize Y (rixi) = Y (Wi 87 +w;67) > 4 (wh 00, +wh00)
=

i=1 i=1

1
- 21: Bis (w305 + wyd53) (4.26)
subject to  (4.6)—(4.18) and (4.23)—(4.26), (4.27)
W) =6 +6; =1, i=1,2,....1, (4.28)
p(by) =6/, +0,,=1, j=12,....J, (4.29)
way) =065 +d6,=1, i=1,2,...,1, (4.30)
1=5 J=3, (4.31)

where the weights wi and w; are equal to inverses of slopes |1/s1;| and |1/sg,|, respectively, as shown in
Figs. 4(a)—(h). The weights w} and w; equal the slopes |1/s.;3| and |1/sgs3|, respectively, as displayed in
Figs. 4(1)—(m).

The first term in (4.27) is the total expected objective value that the DM would like to maximize. The
second, third, and fourth terms in (4.27) are variances of possibilities of the coefficients in the expected
objective function, the right-hand side values, and the decision variables’ coefficients in the constraint
matrix, respectively. /; and f,; are trade-off weights adjusting among the expected goal, the possible right-
hand side values and the possible coefficients of decision variables in the Jth constraint.

After employing Proposition 4 to linearize the product terms r;x; in (4.27) and a;x; in (4.25), Example 3 is
reformulated as

Maximize i + 2 + 3 + s +ys — 1.58] — 36, — 256, — 1.56; — 157 — 1.58; — 1.26; — 1.35,
188 — 4585 — 30487 — 205; — 370t — 2aby — 310t — 2abs — Pradh — Pradrs
— Ba3035 — B3dys — 0.5B33053 — 0.53305; — 0.5B430,5 — 0543055 — 53053 — Bs3ds;
subject to  6x; + Sxp + 3x3 + Txg + x5 < by, 2x; + 8xy + 10x3 + Sxg + x5 < by,
Vi3 + 03 + 33 + ya3 + 53 < b, (4.23)-(4.26), (4.28)—(4.31),
n<r+MA —x), i <Mxi, m<rn+M(l—x), »»<Mx,
< +M( —x3), y3<Mxs, u<ra+M(1—x4), ya<Mxy,
Vs <rs+M(1—xs), ys<Mxs, yiz<ai+M(1—x)), yiz<Mxy,
v <an+M(1 —x2), v <My, y3<az+M(1—x3), y3<Mxs,
yiz<ag +M(1 —xy4), Yz <Mxy, ys3<asy +M(1 —xs), ys3 < Mxs,

where M is a big value, x; the 0-1 variables, y,,7;,a;3 >0and i =1,2,...,5.

Assume that all Z; and f; (j=1,2,3;i=1,2,...,5) are equal to 1. After computing on the LINDO
[24], the obtained solution set is (xl,xZ,X3,X4,X5,b1,bz,b37a13,a23,a33,a43,as3) = (17 1, 1,0, 1,25,27,25,
8,10,3,2,10).
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5. Solution algorithm

Proposition 4 in PP3 is proposed for linearize the product term cx in the maximization problem. For the
minimization problem, Proposition 5 is introduced as follows:

Proposition 5. Consider the following program:
PP5:

Minimize c¢x

subject to x € 01 variable, ¢ > 0,

is equivalent to
PPO6:
Minimize y
subject to y
y

where M is a big value.

Proof.
(1) if at optimal solution x = 1, then (5.1) and (5.2) force y = ¢;
(ii) if at optimal solution x = 0, then (5.1) and (5.2) force y = 0.
This proposition is finished.

Thus, the solution algorithm for the general FBLP problems in (1.1) entails the following steps:

Step 1. Utilizing Proposition 1 to express each membership function as follows:

Sin — Si1
2

Step 2. Employing Proposition 2 to linearize the absolute terms accordingly:

plei) = plein) +si(ei —cin) + (lei = cip| +¢i —cin).

ule) = plein) +si(ei —cin) + (si2 —sip)(er —cip +di),  ple)) —cin+di =0,

where 5,5 < 5;1.

Step 3. Using Definition 1 and Proposition 3 formulate the problem as Model (1) or (2).

Step 4. Proposition 4 is used to linearize the product terms in a maximization problem, while Proposition
5 is used to linearize the product terms in a minimization problem.

Step 5. The linear mixed zero—one program is solved by the LP package.

6. Numerical example

The assignment problem arises in a variety of decision making situations: Typical assignment problems
involve assigning jobs to machines, agents to tasks, sales personnel to sales territories, contracts to bidders,
and so on. Now consider the following problem:
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Table 3

Completion time for each project leader working with each client
Project leader Client 1 Client 2 Client 3
Terry (8.5,10,11) (14,15,16) (7,9,11)
Carle (8,9,10) (16,18,19) (4,5,5.5)
McClymonds (5,6,7) (13,14,15) (2.5,3,3.5)

Example 4 (Slightly modified from [8]). A marketing research company has just received requests for
market research studies from three new clients. The company faces the task of assigning a project leader to
each client. The management realizes that the time required to complete each study largely depend on the
experience and ability of the assigned project leader. With three project leaders and three clients, nine
assignment alternatives are possible. Table 3 summarizes the alternatives and the estimated project com-
pletion times in days. The (8.5, 10, 11) represents a triangle fuzzy number with a most optimistic completion
time of 8.5 days, a most possible completion time of 10 days, and a most pessimistic completion time of 11
days.

Let C11 — (85, 10, 11), Cip = (14, 15, 16), C13 = (7,9, 11), Cy — (8,9, 10), Cyp — (16, 18, 19), Cr3 = (4,5,55),
¢y = (5,6,7), ¢c3p = (13,14, 15), and ¢33 = (2.5, 3, 3.5). Initially, this assignment problem can be written as
follows:

Minimize 11Xy + CioX12 + Ci3X13 4 Ca1Xa1 + CooXon + Co3Xo3 + €31X31 + C30X32 + C33X33
subject to  xj; +x12 +x13 <1, X +xp +x3< 1, x5+ x5 +x33<
Xii X0 +x3 =1, xp+xn+xp=1, x3+x3+x3=1,
where x;;, i =1,2,3, j=1,2,3 are zero—one variables.

Following the solution algorithm, we have:
Step 1. Utilizing Proposition 1 to express each membership function as follows:

H(C11) = 06667(011 — 85) — 08333(|C“ — 10‘ +ci — 10),

(cn)
(c12)
(c13)
(ca1)
() = 0.5(cpp — 16) — 0.75(|czn — 18] 4 ¢2p — 18),
(c23)
(ca1)
(c32)
(c33)

(en) = —crt — 1.6667dyy + 11, ey — 10+ dy > 0,

(c12) = —ci2 —2d1n+ 16, cin—15+d;r =0,
wleis) = =0.5¢;3 —di3 + 6.5, ¢c3—9+d; =0,

(ca1) = —¢21 = 2d1 +10, ¢ =9 +dy =0,

(en) =—cn —1.5dn+19, cpn—18+dy =0,
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p(eas) = —2¢23 = 3dpy + 11, ¢33 = 5S+dy3 =0,
plest) = —c31 —2d5 +7, ¢ —6+dy =0,
ulen) = —cp —2dyn + 15, ¢y — 14+ dy =0,
iles3) = —2¢33 —4dss +7, ¢33 —3+dy3 = 0.

Step 3. Using Definition 1 and Proposition 3 formulate the problem below:

303

S et e

Minimize E E CijXij — E (w,:/.éij—f—wl:/(iij)
=1 =1 1 =1

3 3

1

subject to  xy; +xp2 +x13 <1, X X F a3 <L, Xy F a3 Fxa3 <, (6.1)
xiFxo +xy =1, xp+xntxn=1, x3+xs+x3=1, (6.2)
wlen) =65, +6;, =1, plen) = —ciy — 1.6667dy; + 11, ¢y — 10 +dyy = 0, (6.3)
wlen) =0, +6, =1, plenn) = —cip —2din + 16, cip — 15+djp =0, (6.4)
u(ers) — 51+3 +0;5=1, ulciz) =—0.5¢c;3 —diz+6.5, c13—9+d;3 =0, (6.5)
wlea) — 05 + 65 =1, plea) = —ca — 2day + 10, ¢y —9 +dy =0, (6.6)
ulen) — 5;2 +0y, =1, ulcn) =—cn—1.5dn +19, ¢ —18+dyp >0, (6.7)
pea) — 033 + 65 =1, p(cas) = —2¢23 —3dps + 11, 3 — 5+ doy =0, (6.8)
wlest) =03 + 65, =1, ples) = —c3 —2ds1 +7, ¢y —6+dy =0, (6.9)
u(en) — 5;2 +0, =1, ulen) =—cn—2dn+15, ¢ —14+d» =0, (6.10)
pless) — 033 + 05, =1, pless) = —2¢33 —4dss +7, ¢33 —3+ds3 =0, (6.11)
wh =15 w,=1, w,=1 w,r=1 w,=2, w;=2, (6.12)
wy =1, wy; =1, w, =2, wy =1, wi; =1, wy =0.5, (6.13)
wy =1, wy; =1, w, =1, w, =1, wi; =0.5, wj; =0.5, (6.14)
xy, 1=1,2,3, j=1,2,3 are zero—one variables. (6.15)

Step 4. Since the management desires to minimize the objective function, Proposition 5 is used to lin-
earize the product terms c;x;;. Then, we have

3 3

Minimize 3>y - i (o5 +wy0,)

i=1 j=1 i=l j=1 (616)
Subject to (61)—(615), Yij = Cij —I—M(x,/ — 1), Yij = 07 i= 1,2,3, _] = 1,2,37

where M is a large number.

Step 5. Employing the package LINDO [24] to solve model (6.16).

The obtained solution tells that Terry is assigned to client 2 (x;, = 1), Carle to client 3 (xp;3 = 1), and
McClymonds to client 1 (x3; = 1).

Notably, a distinguished feature of this assignment problem is that it does not have any technology
constraint matrix in its attempt to minimize the objective function. Examples 2-4 have successfully dem-
onstrated the proposed algorithm can solve generalized FBLP problems in (1.1).
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7. Concluding remarks

BLP problems normally are unable to have precise coefficients in the objective function and the con-
straint matrix as well as the right-hand side limits of constrains. Some examples include: “We want a return

99 ¢

around or larger than b, dollars”, “we would like to invest substantially less than or near b, dollars”, “the
production rate is estimated to be almost b3 (pcs/minute)”’, “the profit rate will be approximately by
($/month) for the first three months”, and “the estimated completion time is around b5 days for the second
project”. Therefore, the major difficulty in solving FBLP problems is how to treat vague numbers.

This work has proposed a clear and simple way to express a widespread triangular fuzzy number fol-
lowed by an absolute term linearizing technique. Then a trade-off GP model was built to optimize the
objective function and minimize the sum of possible membership function deviations. As the proposed
algorithm can concurrently treat a BLP problem with fuzzy coefficients in the objective function, fuzzy
coefficients in the constraint matrix, and fuzzy numbers in the constraints’ right-hand sides. Hence, the
proposed method is a worthwhile alternative to existing methods from a practical point of view.
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