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Whittaker function approach to determine the impurity energy levels
of coated quantum dots

Ming-Chieh Lin and Der-San Chuu®
Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan 30050, Republic of China

(Received 20 March 2001; accepted for publication 26 June)2001

The electronic structure of a hydrogenic impurity atom located at the center of a multilayer coated
quantum do{CQD) is investigated. The electronic eigenstates of the CQD system are expressed in
terms of the geometry and the material parameters by solving the dbichen equations
analytically. Image potential effects are ignored and the effective mass approximation is employed.
The ground state energy is found to be strongly influenced by the shell thickness and confined
potential. In contrast to previous work, our eigenfunctions are expressed in terms of the Whittaker
functions in any region, no matter where the energy levels are, i.e., whether they are higher or lower
than the potential barriers. Our approach is simpler and has general significance, e.g., the bound
state eigenenergies of amylayered quantum dot can be easily determined by directly solving just
“one”(2 n—2)-rank secular determinant equation instead of solvihgg@uations. One can also
easily and quickly determine whether a system has bound states by using the Whittaker function
approach. ©2001 American Institute of Physic§DOI: 10.1063/1.1397282

I. INTRODUCTION and quantum wires for the infinite potential confinenféifie
Whittaker functions and Coulomb wave functions for the

In recent years, due to the advancement of moderfy,, ity eigenfunctions of the quantum dot were obtained

crystal-growth techniques, it has been possible to fabricatg,, yitferent energy ranges. The calculated result showed that
various quasilow-dimensional structures of semlconductorﬁje ground state energy of the impurity approaches the cor-

such as quasitwo-dimensional quantum wellQWS),  roct jimit of the three-dimensional hydrogen atom as the ra-
quasione-dimensional quantum well wirdQWWSs) and  4ius of the quantum dot becomes very large.

quasizero-dimensional quantum do@Ds). These structures Recently, it has proven possible to fabricate multilayer

are obtained when the spatial dimensions of the convention%’uamum dots which are composed of different semiconduc-
structures are reduced to those comparable to or less than the 1 5terials in each layer. In analogy to quantum well struc-
de Broglie wavelength of the carriers. For QDs, the uItimate[urES, they have been named quantum dot quantum #&lls,
goal is an artificial atom whose properties can be controlleq)r, simply, a coated quantum da8QDS. An extended the-
well through the material parameters and geome®e-  (rotical approach for calculating thes21s electronic tran-
cently, the electronic structures of the quantum dot, eSPestion in spherical layered semiconductor quantum dots was

cially the donor states, acceptor states, and excitons, ha_‘ﬁﬁesented by Schooss al1° Their calculations were carried

received much attention. As a result of their possible appliy ;¢ for the quantum dot quantum well CdS/HgS/CdS and

cations in microelectronic devices, the quantum structureégomnared to recently available experiment results. In their
have been the subject of extensive theoretical and experky,roach, a linear combination of the spherical Bessel and

mental research. Neumann functions for the electron eigenfunctions of the

Much theoretical work has been devoted to the study 0f-qp was assumed in regions where the energy level is lower
the properties of electronic states in various confining sysg,4n the potential barrief<V), and a linear combination

tgms. Bastar%jrep.or'ted th.elfirs't caIcuIation'for binding eNer- of the two Hankel functions was proposed in regions where
g!es_of hydrogenic impurities in QWS. _In his calculation, the 4 energy level is higher than the potential barfEr V).
binding energy of a hydrogenic impurity was found to vary |, the present study, we investigate the electronic struc-
with the position of the IthgJurlty and with ‘tlhe thickness of y,re of a hydrogenic impurity atom located at the center of a
the well. Brown and Spectoand Webeet al." reported cal- - ,asi7er0-dimensional CQD. Our model is constructed as a
culations of binding energies and density of impurity stateyot made of one kind of semiconductor material surrounded
in GaAs—(Ga,A)As QWWs as a func{t;on of the radius of . o jayer of another kind and then embedded into a different
the ~structure. Zhu, Xiong and Guconsidered the i material. It is obvious that the coated quantum dot will
hydrogenic donor states in a spherical quantum dot ofe equivalent to the simple quantum dot if the confinement
GaAs-Al,Ga -,As. They reported that the binding energy senial in the shell is equal to that in the bubutside the

for the ground state of a donor at the center of a quantum dQde|) The geometrical shape of the coated quantum dot is
is strongly dependent on the dimensionality and barriegpggen as spherical, because it is easier to solve. In the CQD
height. In previous work, the impurity states in quantum dOtSSystem, we solve the Schtinger equations analytically, and
obtain the electronic eigenstates as functions of the geometry
dCorresponding author; electronic mail: dschuu@cc.nctu.edu.tw and the material parameters theoretically. Image potential ef-

0021-8979/2001/90(6)/2886/6/$18.00 2886 © 2001 American Institute of Physics



J. Appl. Phys., Vol. 90, No. 6, 15 September 2001 M.-C. Lin and D.-S. Chuu 2887

V wherep is the effective masg; is the dielectric constarz,is
Vv, the atomic number and
V2 | V, forr=a,
V1 ; V(r)=4 V, forasr=b, 2

V3 forr=b.

The Schrdinger equation can be expressed as

he_, Z¢
: — 5 Ve — V() |W(r,0,0)=EV(r,0,0). (3
the dot b . . - .
In spherical coordinates, the ScHioger equation can be
expressed as
the shell
72 a2+2 (9+ 1 a( , Ba)
2| gr2 1 Ir r2sing b %50
the bulk
FIG. 1. Schematic of the cross section and the confinement potential of the + 1 ‘9_2 V(r,6,)
coated quantum dot. r2 siré 0 (9<P2 0 ¢
z
fects in our system are ignorécand the effective mass ap- — 5 V(o) +V(INY(r,0,¢)=E¥(r.0,¢), (4

proximation is employed although it is not always perféct. ) ) _
In our treatment, the eigenfunctions are always expressed ifhereV(r) is defined in Eq(2). We can solve Eq(4) by
terms of Whittaker functions only, no matter where the en-Separating the variables. Le¥(r,6,¢)=R(r)0(0)P(¢),
ergy levels are, i.e., whether they are higher or lower than thé/here ®i(m9) is the associated Legendre polynomial and
potential barriers. After employing the boundary conditions,®(¢)=€"¢; m is an integer. The differential equation for
the eigenenergies are obtained by solving “one” four-rankthe radial functiorR(r) can be written as
se_cular determlna.nt equation, although imaginary numb_ers R2(d2 2.d  L(L+1) 72
might appear during the calculation. When we deal with— — —+ =+ ———|R(")— —R(r)
bound states, the imaginary part of the eneggpproaches 2/ \dr? T dr r er
zero automatically. The numerical result of the ground state
) . . . + =

energy is presented in the present work for illustration. We VIOR(H=ERD), ®
must emphasize here that our treatment is simpler than thoseherelL is 0 or a positive integer and(r) is defined in Eq.
of previous works in which it was assumed that a different(2).
form of _elgenfunctlon exists in different energy regions. » | side the dot (r<a)
Conventionally, we must choose one of two wave functions
corresponding t&E<V andE>V in each layer, i.e., 2equa- We useRy(r)to denote the wave function of the radial
tions for an-layered quantum dot.>1%30n the other hand, part in this region. Define
by using the Whittaker function approach, one can stud

ayeret § g Bus(E-Vy)  2mZ¢

n-layered quantum dots by directly solving only “one”(2 ai: , = ’ (6)
—2)-rank secular determinant equation instead bfgua- h? hlejaq
tions. and leté= ayr, then Eq.(5) can be expressed as
Il. FORMULATION d2R1(§) 2 dRy(¢) 1 N N1 N %_(L‘F %)2 Ry (¢)
& T AT e T T 5 1
In this work, the system of a coated quantum dot with a dé? ¢ d¢ 4 ¢ &
hydrogenic impurity located at the center of the CQD is in- —0 )

vestigated. We deal with the bound state of the coated quan-

tum dot which is like the quantum dot but with an additional To eliminate the terntR,(&)/d¢, we letRy(&)=& 1x,1(€).

layer embedded into a bulk material and each layer correEquation(7) then becomes

sponds to one kind of material. The potential inside the dot is

assumed to be zeroV(=0), and inside the shellar d?x1(€) 1 N %—(LJF %)2

<b) it is V,, while outside the shellr(=b) it is Vs. One a2 | 4 & 2

should refer to Fig. 1 for a schematic view of the cross sec-

tion of the coated quantum dot. The Hamiltonian of the SysWhiCh is the Whittaker equation. The solutions of the above

tem we considered can be written as differential equation can be found in many mathematical
handbooks. The following two solutions satisfy E§)

x1(§)=0, (8

hZ
H=—5V2—?+V(f), 1) Fo(§)=e LTI 41-N 20 4+28), 9)
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where
a a(a+t1)c? = (a), cX
Fabo)=1+ pet progiort = 2 ), k-
The other solution is
Gy, L(H)=e” TTU(L+1-N,2L+28), (10
where
1 2L+2 a Ck
Ulab,c)= (-1 (a)g c
(2L+1)'T(a—b+1) | &5 (b) K!

X[Inc+ ¢(a+k)—h(b+k)—p(k+1)]
, Db-1T (BT (@=b+1)
F(a)(—1)2L+2

I'(x) is the gamma function ang(a)= d In I'(a)/da is the
digamma function. The 1§ in Eqg. (10) will cause the wave
function to diverge atr~0. Therefore we must drop

?(a—b+1), ¢ 21

(2—b),

r=0 r!

le,,_(g), so that the wave function of the radial part in the

core can be represented as

Ri(ayr)=Cpe” (1@ (ar)"F(L+1—Ny,2L+2,04r),
(11)

whereC; is the normalization constant.

B. Inside the shell (a<r=<b)

We useR,(r) to denote the wave function of the radial

part in this region. Define

2_ 8/*L2(E_V2) .

2,u,22€2

D) .
h €ErXp

12

Likewise, we can write the wave function as
Ro(ayr)=Cye (22 (a,r)'F(L+1—N,,2L +2,a,r)
+Che (@2 () U(L+1—Ny,2L +2,a,r),
(13

whereC,;andC,, are normalization constants.

C. Outside the shell (r=b)

We useR5(r) to denote the wave function of the radial
part in this region. Define

2_ 8/*”3(E_V3) .

2,u3262

> .
ﬁ €33

(14

Likewise, we can write the wave function as
Ra(asl)=Cge™ (3" (agr)"F(L+1—N3,2L+2,a4r)
+Cae™ (@) U(L+1—N3,2L+2,a3r),
(15

M.-C. Lin and D.-S. Chuu

whereCj; andCjy, are normalization constants, but the first

term has to be dropped because it containseh&3"/2F
agr

term which approachesz sincer —« is divergent, so we

must putCs,=0.

D. At the boundary (r=a,r=>b)

Since the wave function and its derivative should be
continuous at the boundds), the boundary conditions yield
the following equations:

[ Ri(a;a)=Ry(aa),
Ri(@12) Ry(asa)

M1 - Mo
Ro(azb) =R3(asb),
Ry(azb)  Ry(asb)

w2 ma
The above equations become

(16)

17

0
M2 M2

For a nontrivial solution to exist, the determinant of the co-
efficients must vanish, which implies

e 1 vn) H-ua)
|| e 3 2]
Azl 5 Bl B
o2 0o e,
where

Fia=F(L+1-\;,2L+2,a;0);
Uya=U(L+1—X\,,2L+2,a,a);
Foa=F(L+1—X\52L+2,a5a);
Uzp=U(L+1—Np2L+2,a,b);
Fap=F(L+1-Xp2L+2,a;,b);
Ugp=U(L+1—N3,2L+2,a3b);

Eq. (18) is used to yield the eigenenerg@y

lll. RESULTS AND DISCUSSION

We have calculated the ground state energy of an elec-
tron confined in a coated quantum dot with a hydrogenic
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€.Q.D.(i) for b=10 (Bohr radius) V =V =V C.Q.D.(i) for a=1 (Bohr radius) V =10 (Ry)
2.4
284
2.04
—~ 24 _
g £ 1.6
5 2 -+ <+ V=10 (Ry) 5 12
2 16 — — -V=20 (Ry) e
=4
o ——V=30 (Ry) i 0.8+
L 124 )
5 (% 0.4 7 ——b=1.1 (Bohr radius)
¢ 8 T 4o / — — -b=1.2 (Bohr radius)
c 5 Y] Vs
3 44 < /
2 @ -0.44
] 4
01 -0.8 T T T T T T
0 ) 4 6 8 10 -10 -5 0 5 10 15 20

Dot Radius a (Bohr radius) Shell Potential V, (Ry)

FIG. 2. Ground state energy of the electron bound inside the coated quaf-/G. 4. Ground state energy ¥5 of the electron inside the coated quantum

tum dot with an impurity located at the center fge=(10,20,30) Ry and  dot with an impurity located at the center fol;=10 Ry, a=1ag andb
b=10a% (the effective Bohr radiys =(1.1,1.2p} , i.e., the shell thickness is equal to 0.1 andag.? respec-
tively.

impurity located at the center. The confinement potential is )
zero (V,=0) inside the corey, in the shell, and/, outside —1) Ry. Figure 2 shows our calculated ground state energy

the shell. In this work, the length and the energy are exOf the electron inside the coated quantum dot with an impu-
pressed in terms of the effective Bohr radiu; Mty for V=(10,20, and 3pRy andb=10a; . From Fig. 2,
— eh?/uZe? and the effective Rydberg RyZe?/2eal . In one can see that the ground state energy approaches the cor-

order to realize how the geometry and confined potentiaf€ct limits. Furthermore, steeper curves are obtained for
affect the eigenenergy, we assume the dielectric constant cdfigher confinement potential. The ground state energy is

responding to each layer is approximately equal to one arfdual to zero at different dot radii when the potential barrier
other, and so is the effective mass, i€~ e,~ €5 and is different. Figure 3 shows that the ground state energy is

~ o~ ps. When the confinement potentid} in the shell is gqugl to zero at larger dot radiua¥() if the potgntial barrier.
equal toV outside the shell\(,=V;=V), our system is IS h|g6her. We can compare these results with our previous
reduced to the case of the quantum dot again. For the case §PTK-" In the previous work, the ground state energy became
the quantum dot, as the dot radius approachethe impu-  negative when the dot radius was larger than 1ag3®r an

rity located at the center of the coated quantum dot behave8finite potential barrier. In this work, the ground state en-
like a free hydrogenic atom and the ground state energy a9y €quals zero at dot radius of 1.83&@1when the po-
proaches—1 Ry. When the dot radius decreases, the groundential barrierV is equal to 10 000 Ry. Fov=10 Ry, a*
state energy of the electron gradually increases. As the dot 1.609 5%y . ) )

radius is reduced more and more, the confinement effect NOW, let us consider the case W+ V3. Figure 4 pre-
pushes the ground state energy of the electron to beconfeNts our calculated ground state energy velgusf the
larger and larger. Finally, the electron cannot be bound insid€!€ctron inside the coated quantum dot with an impurity lo-
the dot and thus becomes a free hydrogenic atom again. Thigted at the center foV;=10 Ry, a=1aj and b

makes the ground state energy of the electron approdch (=(1.1,1.2)a'3 , i.e., the shell thickness is.equal to 0.1 and 0.2
ag ,respectively. One can see from Fig.4 that the ground

C.Q.D.(i) for V=V =V
C.Q.D.(j) for a=1 (Bohr radius) V,=10 (Ry)

1.8
204 e
. = ewiime T
g 1.64 E:/ P i —
ksl > 1.5
s 2
: [
£ 1.44 5 —--=-b=1.1 (Bohr radius)
& 2 1.0+ —-=—-b=1.2 (Bohr radius)
o . @ ---- b=13(Bohr rad!us)
. ° — — -b=1.4 (Bohr radius)
3 0.54 ——b=1.5 (Bohr radius)
o

-

o
1
~

o
=}

0 1 2 3 4 5
Log [V (Ry) ]

FIG. 3. Ground state energy of the electron bound inside the coated quafr/G. 5. Ground state energy ¥ of the electron inside the coated quantum
tum dot with an impurity located at the center equal to zero at different dodot with an impurity located at the center fdp=10 Ry,a=1 a5 andb
radii when the potential barrier is different. The ground state energy equalss(1.1,1.2,1.3,1.4,1.8}; , i.e., the shell thickness is equal to 0.1,0.2,0.3,0.4
zero at larger dot radiusat) if the potential barrier is higher. and 0.5 , respectively.

10 15 20
Bulk Potential V, (Ry)

(=]
[&)]
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€.Q.D. with V,=V =V C.Q.D. for a=1 (Bohr radius) V=10 (Ry)
74
64
*1b .+« V=10 (Ry) <
= ap. — — -V=20(Ry) &
c . —— V=30 (Ry) Y -
w 34p 3.24 7 ——b=1.1 (Bohr radius)
< . 7’ — — =b=1.2 (Bohr radius)
24k 30 .7
3 4
1 2.8 T T T T T T
-10 -5 0 5 10 15 20
0 1} LJ L] L L) L} i
0 2 4 8 8 10 Shell Potential V, (Ry)
Dot Radius a (Bohr radius) FIG. 8. Energy differencAE for b=(1.1,1.2p% , i.e., the shell thickness is

) ) equal to 0.1 and 0% , respectively.
FIG. 6. Energy differenceAE with V,=V;=V=(10,20,30) Ry andb

=10af .

the ground state energy of an electron alone inside the coated
state energy increases when the shell poteMjaincreases ~guantum dot can b_e easily obtained by putting t_he parameter
(V,=V;). When the shell potential decreasdg€Vs), the A equal to zero. Figure 6 shows the energy differende
ground state energy also decreases. Furthermore, steepfh V2=V3=V=(10,20, and 3pRy andb=10a5 . From
curves are obtained for thicker shells. Figure 5 presents oUfid- 6, one can see that the energy differeaéeapproaches

calculated ground state energy verstsof the electron in-  the correct limits as the dot radius approachesr zero. In

side the coated quantum dot with an impurity located at thdhis case, the impurity located at the center of the coated
center for V,=10 Ry, a=1 a} and b=(1.1,1.2,1.3, quantum dot behaves like a free hydrogenic atom and the

1.4,1.5g% , i.e., the shell thickness is equal to 0.1,0.2,0.3,0.4n€rgy differenc& E approaches 1 Ry, the binding energy of
and 0.5a} ,respectively. One can see from Fig. 5 that the? fre€ hydrogenic atom. Furthermore, one can see larger

ground state energy increases when the bulk potential ifOr Steeper curves with higher confinement potential. The
creases foN;=V,. When the bulk potential decreases, thePeak occurs at smaller dot radius for higher potential barri-

ground state energy also decreasesMgeV,. Furthermore, €S- .

larger slope curves are obtained for thinner shells. Figures 4 Still, for the case oV, # V3, Fig. 7 presents our calcu-
and 5 also show that the ground state energy is strongl{pt€dAE forVz=10Ry,a=1ag andb=2ag , i.e., the shell
influenced by the shell thickness. In the cas&/g&V,, the  thickness is equal todg . Figure 8 presents a similar situa-
eigenvalues are found to become complex numbers when tHioN for b=(1.1,1.2p3 , i.e., the shell thickness is equal to
bulk potentialV; is lowered enough. This implies that there 0-1 and 0.25 , respectively. One can see from Figs. 7 and 8
are no bound states in this situation. Thus, we can easily arff#at the energy differencAE increases when the shell po-

quickly determine whether a system has bound states by tHgntial V; increases \{;=V3). When the shell potential de-
Whittaker function approach. creases \,<Vj3), the energy differencAE also decreases.

The energy differencAE due to Coulomb interaction is Furthermore, one can see steeper curves can be obtained for
defined as the ground state energy of an electron alone insid@icker shells. Figure 9 presents the energy differehEevs

the coated quantum dot minus the ground state energy of afe ~ for ~ V,=10 Ry, a=1 ag and b
electron inside the coated quantum dot with an impurity. And

C.Q.D. for a=1(Bohr radius) V=10 (Ry)

C.Q.D. for a=1, b=2 (Bohr radius) V=10 (Ry)

:
3.84 erlimi i
_ g 364 47 —--—-=b=1.1 (Bohr radius)
DZ L Y b=1.2 (Bohr radius)
= < 3 4_'.-_1',-’ ------ b=1.3 (Bohr radius)
> o] . S b= i
3 2 , /' . - = -G.E. no impurity g b=1.4 (Bohr radius)
o 4 . - - - - G.E. with impuri s —b=1.5 (Bohr radius)
7, = purity 3.2
6-/' ° ' AE T T T T T T T T
—8-‘ 6 8 10 12 14 16 18 20 22
T T T T T T Bulk Potential V, (Ry)
-10 -5 0 5 10 15 20
Shell Potential V, (Ry) FIG. 9. Energy differencAE vs V; of the impurity located at the center of
the coated quantum dot forV,=10 Ry, a=1a§ and b
FIG. 7. Energy differencAE for V=10 Ry,a=la§ andb=2af , i.e., the =(1.1,1.2,1.3,1.4,1.58} , i.e., the shell thickness is equal to 0.1,0.2,0.3,0.4

shell thickness is equal toaj . and 0.5 , respectively.
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=(1.1,1.2,1.3,1.4,1.5} , i.e., the shell thickness is equal to system has bound states by the Whittaker function approach.
0.1,0.2,0.3,0.4 and (ej, respectively. One can see from We must emphasize again here that the Whittaker function
Fig. 9 that the energy differenceE increases when the bulk method is a simpler approach with which to deal with
potential V5 increases {;=V,). When the bulk potential multilayer quantum dots and it has general significance. One
decreases \(;=<V,), the energy differenceAE also de- can study electronic structures miayered quantum dots by
creases. One can also see steeper curves for thinner shelirectly solving just “one”(2n— 2)-rank secular determinant
So, the energy differencAE is strongly influenced by the equation instead of by solving”2quations.
shell thickness.
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