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Whittaker function approach to determine the impurity energy levels
of coated quantum dots

Ming-Chieh Lin and Der-San Chuua)

Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan 30050, Republic of China
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The electronic structure of a hydrogenic impurity atom located at the center of a multilayer coated
quantum dot~CQD! is investigated. The electronic eigenstates of the CQD system are expressed in
terms of the geometry and the material parameters by solving the Schro¨dinger equations
analytically. Image potential effects are ignored and the effective mass approximation is employed.
The ground state energy is found to be strongly influenced by the shell thickness and confined
potential. In contrast to previous work, our eigenfunctions are expressed in terms of the Whittaker
functions in any region, no matter where the energy levels are, i.e., whether they are higher or lower
than the potential barriers. Our approach is simpler and has general significance, e.g., the bound
state eigenenergies of anyn-layered quantum dot can be easily determined by directly solving just
‘‘one’’(2 n22)-rank secular determinant equation instead of solving 2n equations. One can also
easily and quickly determine whether a system has bound states by using the Whittaker function
approach. ©2001 American Institute of Physics.@DOI: 10.1063/1.1397282#
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I. INTRODUCTION

In recent years, due to the advancement of mod
crystal-growth techniques, it has been possible to fabric
various quasilow-dimensional structures of semiconduc
such as quasitwo-dimensional quantum wells~QWs!,
quasione-dimensional quantum well wires~QWWs! and
quasizero-dimensional quantum dots~QDs!. These structures
are obtained when the spatial dimensions of the conventi
structures are reduced to those comparable to or less tha
de Broglie wavelength of the carriers. For QDs, the ultim
goal is an artificial atom whose properties can be contro
well through the material parameters and geometry.1 Re-
cently, the electronic structures of the quantum dot, es
cially the donor states, acceptor states, and excitons, h
received much attention. As a result of their possible ap
cations in microelectronic devices, the quantum structu
have been the subject of extensive theoretical and exp
mental research.

Much theoretical work has been devoted to the study
the properties of electronic states in various confining s
tems. Bastard2 reported the first calculation for binding ene
gies of hydrogenic impurities in QWs. In his calculation, t
binding energy of a hydrogenic impurity was found to va
with the position of the impurity and with the thickness
the well. Brown and Spector3 and Weberet al.4 reported cal-
culations of binding energies and density of impurity sta
in GaAs2~Ga,Al!As QWWs as a function of the radius o
the structure. Zhu, Xiong and Gu5 considered the
hydrogenic donor states in a spherical quantum dot
GaAs2Al xGa12xAs. They reported that the binding energ
for the ground state of a donor at the center of a quantum
is strongly dependent on the dimensionality and bar
height. In previous work, the impurity states in quantum d

a!Corresponding author; electronic mail: dschuu@cc.nctu.edu.tw
2880021-8979/2001/90(6)/2886/6/$18.00
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and quantum wires for the infinite potential confinement,6 the
Whittaker functions and Coulomb wave functions for t
impurity eigenfunctions of the quantum dot were obtain
for different energy ranges. The calculated result showed
the ground state energy of the impurity approaches the
rect limit of the three-dimensional hydrogen atom as the
dius of the quantum dot becomes very large.

Recently, it has proven possible to fabricate multilay
quantum dots which are composed of different semicond
tor materials in each layer. In analogy to quantum well str
tures, they have been named quantum dot quantum well7–9

or, simply, a coated quantum dots~CQDs!. An extended the-
oretical approach for calculating the 1s– 1s electronic tran-
sition in spherical layered semiconductor quantum dots w
presented by Schoosset al.10 Their calculations were carried
out for the quantum dot quantum well CdS/HgS/CdS a
compared to recently available experiment results. In th
approach, a linear combination of the spherical Bessel
Neumann functions for the electron eigenfunctions of
CQD was assumed in regions where the energy level is lo
than the potential barrier (E,V), and a linear combination
of the two Hankel functions was proposed in regions wh
the energy level is higher than the potential barrier~E.V!.

In the present study, we investigate the electronic str
ture of a hydrogenic impurity atom located at the center o
quasizero-dimensional CQD. Our model is constructed a
dot made of one kind of semiconductor material surround
by a layer of another kind and then embedded into a differ
bulk material. It is obvious that the coated quantum dot w
be equivalent to the simple quantum dot if the confinem
potential in the shell is equal to that in the bulk~outside the
shell!. The geometrical shape of the coated quantum do
chosen as spherical, because it is easier to solve. In the C
system, we solve the Schro¨dinger equations analytically, an
obtain the electronic eigenstates as functions of the geom
and the material parameters theoretically. Image potentia
6 © 2001 American Institute of Physics

ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

1 May 2014 07:05:22



-
t.
d
n
th

ns
n
e
ith

a
W
ho
n
s
n

,
d

in
a
a
rr
t

ec
ys

nd
r

al

ve
cal

f t

2887J. Appl. Phys., Vol. 90, No. 6, 15 September 2001 M.-C. Lin and D.-S. Chuu

 [This a
fects in our system are ignored11 and the effective mass ap
proximation is employed although it is not always perfec12

In our treatment, the eigenfunctions are always expresse
terms of Whittaker functions only, no matter where the e
ergy levels are, i.e., whether they are higher or lower than
potential barriers. After employing the boundary conditio
the eigenenergies are obtained by solving ‘‘one’’ four-ra
secular determinant equation, although imaginary numb
might appear during the calculation. When we deal w
bound states, the imaginary part of the energyE approaches
zero automatically. The numerical result of the ground st
energy is presented in the present work for illustration.
must emphasize here that our treatment is simpler than t
of previous works in which it was assumed that a differe
form of eigenfunction exists in different energy region
Conventionally, we must choose one of two wave functio
corresponding toE,V andE.V in each layer, i.e., 2n equa-
tions for an-layered quantum dot.3–5,10,13On the other hand
by using the Whittaker function approach, one can stu
n-layered quantum dots by directly solving only ‘‘one’’(2n
22)-rank secular determinant equation instead of 2n equa-
tions.

II. FORMULATION

In this work, the system of a coated quantum dot with
hydrogenic impurity located at the center of the CQD is
vestigated. We deal with the bound state of the coated qu
tum dot which is like the quantum dot but with an addition
layer embedded into a bulk material and each layer co
sponds to one kind of material. The potential inside the do
assumed to be zero (V150), and inside the shell (a<r
<b) it is V2, while outside the shell (r .b) it is V3. One
should refer to Fig. 1 for a schematic view of the cross s
tion of the coated quantum dot. The Hamiltonian of the s
tem we considered can be written as

H52
\2

2m
,22

Ze2

er
1V~r !, ~1!

FIG. 1. Schematic of the cross section and the confinement potential o
coated quantum dot.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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wherem is the effective mass,e is the dielectric constant,Z is
the atomic number and

V~r !5H V1 for r<a,

V2 for a<r<b,

V3 for r>b.

~2!

The Schro¨dinger equation can be expressed as

S 2
\2

2m
,22

Ze2

er
1V~r ! DC~r ,u,w!5EC~r ,u,w!. ~3!

In spherical coordinates, the Schro¨dinger equation can be
expressed as

2
\2

2m F ]2

]r 2
1

2

r

]

]r
1

1

r 2 sin u

]

]u S sin u
]

]u D
1

1

r 2 sin2 u

]2

]w2GC~r ,u,w!

2
Ze2

er
C~r ,u,w!1V~r !C~r ,u,w!5EC~r ,u,w!, ~4!

whereV(r ) is defined in Eq.~2!. We can solve Eq.~4! by
separating the variables. LetC(r ,u,w)5R(r )Q(u)F(w),
where Q(u) is the associated Legendre polynomial a
F(w)5eimw; m is an integer. The differential equation fo
the radial functionR(r ) can be written as

2
\2

2m S d2

dr2
1

2

r

d

dr
1

L~L11!

r 2 D R~r !2
Ze2

er
R~r !

1V~r !R~r !5ER~r !, ~5!

whereL is 0 or a positive integer andV(r ) is defined in Eq.
~2!.

A. Inside the dot „rËa…

We useR1(r )to denote the wave function of the radi
part in this region. Define

a1
252

8m1~E2V1!

\2
; l15

2m1Ze2

\2e1a1

; ~6!

and letj5a1r , then Eq.~5! can be expressed as

d2R1~j!

dj2
1

2

j

dR1~j!

dj
1F2

1

4
1

l1

j
1

1
4 2~L1 1

2!
2

j2 GR1~j!

50. ~7!

To eliminate the termdR1(j)/dj, we letR1(j)5j21x1(j).
Equation~7! then becomes

d2x1~j!

dj2
1F2

1

4
1

l1

j
1

1
4 2~ L1 1

2!2

j2 Gx1~j!50, ~8!

which is the Whittaker equation. The solutions of the abo
differential equation can be found in many mathemati
handbooks. The following two solutions satisfy Eq.~8!

Fl1 ,L~j!5e2 ~j/2!jL11F~L112l1,2L12,j!, ~9!

he
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 [This a
where

F~a,b,c!511
a

b
c1

a~a11!

b~b11!

c2

2!
1•••5 (

k50

`
~a!k

~b!k

ck

k!
.

The other solution is

Gl1 ,L~j!5e2 ~j/2!jL11U~L112l1,2L12,j!, ~10!

where

U~a,b,c!5
~21!2L12

~2L11!!G~a2b11! S (
k50

`
~a!k

~b!k

ck

k!

3@ lnc1c~a1k!2c~b1k!2c~k11!#

1
G~b21!G~b!G~a2b11!

G~a!~21!2L12

3 (
r 50

b22
~a2b11!r

~22b!r

cr 22L21

r ! D ;

G(x) is the gamma function andc(a)5 d ln G(a)/da is the
digamma function. The lnj in Eq. ~10! will cause the wave
function to diverge atr;0. Therefore we must drop
Gl1 ,L(j), so that the wave function of the radial part in th
core can be represented as

R1~a1r !5C11e
2 ~a1r /2!~a1r !LF~L112l1,2L12,a1r !,

~11!

whereC11 is the normalization constant.

B. Inside the shell „aÏrÏb …

We useR2(r ) to denote the wave function of the radi
part in this region. Define

a2
252

8m2~E2V2!

\2
; l25

2m2Ze2

\2e2a2

. ~12!

Likewise, we can write the wave function as

R2~a2r !5C21e
2 ~a2r /2!~a2r !LF~L112l2,2L12,a2r !

1C22e
2 ~a2r /2!~a2r !LU~L112l2,2L12,a2r !,

~13!

whereC21andC22 are normalization constants.

C. Outside the shell „rÐb …

We useR3(r ) to denote the wave function of the radi
part in this region. Define

a3
252

8m3~E2V3!

\2
; l35

2m3Ze2

\2e3a3

. ~14!

Likewise, we can write the wave function as

R3~a3r !5C31e
2 ~a3r /2!~a3r !LF~L112l3,2L12,a3r !

1C32e
2 ~a3r /2!~a3r !LU~L112l3,2L12,a3r !,

~15!

rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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whereC31 andC32 are normalization constants, but the fir
term has to be dropped because it contains thee2 (a3r /2)F

term which approachese
a3r

2 sincer→` is divergent, so we
must putC3150.

D. At the boundary „rÄa,rÄb …

Since the wave function and its derivative should
continuous at the boundary~s!, the boundary conditions yield
the following equations:

5
R1~a1a!5R2~a2a!,

R1
8~a1a!

m1
5

R2
8~a2a!

m2
,

R2~a2b!5R3~a3b!,

R2
8~a2b!

m2
5

R3
8~a3b!

m3
.

~16!

The above equations become

S 2R11 R21 R22 0

2
R11

8

m1

R21
8

m2

R22
8

m2

0

0 R21 R22 2R32

0
R21

8

m2

R22
8

m2
2

R32
8

m3

D S C11

C21

C22

C32

D 50. ~17!

For a nontrivial solution to exist, the determinant of the c
efficients must vanish, which implies

H Fa3m2

a2m3
S 2

1

2
1

U3b
8

U3b
D 1

1

2
GU2b2U2b

8 J
3H F2a

8 2Fa1m2

a2m1
S 2

1

2
1

F1a
8

F1a
D 1

1

2
GF2aJ

5H Fa1m2

a2m1
S 2

1

2
1

F1a
8

F1a
D 1

1

2
GU2a2U2a

8 J
3H F2b

8 2Fa3m2

a2m3
S 2

1

2
1

U3b
8

U3b
D 1

1

2
GF2bJ , ~18!

where

F1a5F~L112l1,2L12,a1a!;

U2a5U~L112l2,2L12,a2a!;

F2a5F~L112l2,2L12,a2a!;

U2b5U~L112l2,2L12,a2b!;

F2b5F~L112l2,2L12,a2b!;

U3b5U~L112l3,2L12,a3b!;

Eq. ~18! is used to yield the eigenenergyE.

III. RESULTS AND DISCUSSION

We have calculated the ground state energy of an e
tron confined in a coated quantum dot with a hydroge
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:
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impurity located at the center. The confinement potentia
zero (V150) inside the core,V2 in the shell, andV3 outside
the shell. In this work, the length and the energy are
pressed in terms of the effective Bohr radiusa0*
5e\2/mZe2 and the effective Rydberg Ry5Ze2/2ea0* . In
order to realize how the geometry and confined poten
affect the eigenenergy, we assume the dielectric constant
responding to each layer is approximately equal to one
other, and so is the effective mass, i.e.,e1;e2;e3 and m1

;m2;m3. When the confinement potentialV2 in the shell is
equal toV3 outside the shell (V25V35V), our system is
reduced to the case of the quantum dot again. For the ca
the quantum dot, as the dot radius approaches`, the impu-
rity located at the center of the coated quantum dot beha
like a free hydrogenic atom and the ground state energy
proaches21 Ry. When the dot radius decreases, the gro
state energy of the electron gradually increases. As the
radius is reduced more and more, the confinement ef
pushes the ground state energy of the electron to bec
larger and larger. Finally, the electron cannot be bound ins
the dot and thus becomes a free hydrogenic atom again.
makes the ground state energy of the electron approachV

FIG. 2. Ground state energy of the electron bound inside the coated q
tum dot with an impurity located at the center forV5(10,20,30) Ry and
b510 a0* ~the effective Bohr radius!.

FIG. 3. Ground state energy of the electron bound inside the coated q
tum dot with an impurity located at the center equal to zero at different
radii when the potential barrier is different. The ground state energy eq
zero at larger dot radius (a* ) if the potential barrier is higher.
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21) Ry. Figure 2 shows our calculated ground state ene
of the electron inside the coated quantum dot with an im
rity for V5(10,20, and 30! Ry andb510a0* . From Fig. 2,
one can see that the ground state energy approaches the
rect limits. Furthermore, steeper curves are obtained
higher confinement potential. The ground state energy
equal to zero at different dot radii when the potential barr
is different. Figure 3 shows that the ground state energ
equal to zero at larger dot radius (a* ) if the potential barrier
is higher. We can compare these results with our previ
work.6 In the previous work, the ground state energy beca
negative when the dot radius was larger than 1.833a0* for an
infinite potential barrier. In this work, the ground state e
ergy equals zero at dot radius of 1.833 01a0* when the po-
tential barrierV is equal to 10 000 Ry. ForV510 Ry, a*
51.609 55a0* .

Now, let us consider the case ofV2ÞV3. Figure 4 pre-
sents our calculated ground state energy versusV2 of the
electron inside the coated quantum dot with an impurity
cated at the center forV3510 Ry, a51a0* and b
5(1.1,1.2)a0* , i.e., the shell thickness is equal to 0.1 and 0
a0* ,respectively. One can see from Fig.4 that the grou

n-

n-
t
ls

FIG. 4. Ground state energy vsV2 of the electron inside the coated quantu
dot with an impurity located at the center forV3510 Ry, a51a0* and b
5(1.1,1.2)a0* , i.e., the shell thickness is equal to 0.1 and 0.2a0* , respec-
tively.

FIG. 5. Ground state energy vsV3 of the electron inside the coated quantu
dot with an impurity located at the center forV2510 Ry, a51 a0* and b
5(1.1,1.2,1.3,1.4,1.5)a0* , i.e., the shell thickness is equal to 0.1,0.2,0.3,0
and 0.5a0* , respectively.
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state energy increases when the shell potentialV2 increases
(V2>V3). When the shell potential decreases (V2<V3), the
ground state energy also decreases. Furthermore, ste
curves are obtained for thicker shells. Figure 5 presents
calculated ground state energy versusV3 of the electron in-
side the coated quantum dot with an impurity located at
center for V2510 Ry, a51 a0* and b5(1.1,1.2,1.3,
1.4,1.5)a0* , i.e., the shell thickness is equal to 0.1,0.2,0.3,
and 0.5a0* ,respectively. One can see from Fig. 5 that t
ground state energy increases when the bulk potential
creases forV3>V2. When the bulk potential decreases, t
ground state energy also decreases forV3<V2. Furthermore,
larger slope curves are obtained for thinner shells. Figure
and 5 also show that the ground state energy is stron
influenced by the shell thickness. In the case ofV3<V2, the
eigenvalues are found to become complex numbers when
bulk potentialV3 is lowered enough. This implies that the
are no bound states in this situation. Thus, we can easily
quickly determine whether a system has bound states by
Whittaker function approach.

The energy differenceDE due to Coulomb interaction is
defined as the ground state energy of an electron alone in
the coated quantum dot minus the ground state energy o
electron inside the coated quantum dot with an impurity. A

FIG. 6. Energy differenceDE with V25V35V5(10,20,30) Ry andb
510 a0* .

FIG. 7. Energy differenceDE for V3510 Ry,a51a0* andb52a0* , i.e., the
shell thickness is equal to 1a0* .
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the ground state energy of an electron alone inside the co
quantum dot can be easily obtained by putting the param
l equal to zero. Figure 6 shows the energy differenceDE
with V25V35V5(10,20, and 30! Ry andb510a0* . From
Fig. 6, one can see that the energy differenceDE approaches
the correct limits as the dot radius approaches` or zero. In
this case, the impurity located at the center of the coa
quantum dot behaves like a free hydrogenic atom and
energy differenceDE approaches 1 Ry, the binding energy
a free hydrogenic atom. Furthermore, one can see largerDE
for steeper curves with higher confinement potential. T
peak occurs at smaller dot radius for higher potential ba
ers.

Still, for the case ofV2ÞV3, Fig. 7 presents our calcu
latedDE for V3510 Ry,a51a0* andb52 a0* , i.e., the shell
thickness is equal to 1a0* . Figure 8 presents a similar situa
tion for b5(1.1,1.2)a0* , i.e., the shell thickness is equal t
0.1 and 0.2a0* , respectively. One can see from Figs. 7 and
that the energy differenceDE increases when the shell po
tential V2 increases (V2>V3). When the shell potential de
creases (V2<V3), the energy differenceDE also decreases
Furthermore, one can see steeper curves can be obtaine
thicker shells. Figure 9 presents the energy differenceDE vs
V3 for V2510 Ry, a51 a0* and b

FIG. 8. Energy differenceDE for b5(1.1,1.2)a0* , i.e., the shell thickness is
equal to 0.1 and 0.2a0* , respectively.

FIG. 9. Energy differenceDE vs V3 of the impurity located at the center o
the coated quantum dot for V2510 Ry, a51a0* and b
5(1.1,1.2,1.3,1.4,1.5)a0* , i.e., the shell thickness is equal to 0.1,0.2,0.3,0
and 0.5a0* , respectively.
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 [This a
5(1.1,1.2,1.3,1.4,1.5)a0* , i.e., the shell thickness is equal
0.1,0.2,0.3,0.4 and 0.5a0* , respectively. One can see fro
Fig. 9 that the energy differenceDE increases when the bul
potential V3 increases (V3>V2). When the bulk potentia
decreases (V3<V2), the energy differenceDE also de-
creases. One can also see steeper curves for thinner s
So, the energy differenceDE is strongly influenced by the
shell thickness.

IV. CONCLUSION

In this study, we have investigated the electronic str
tures in a quasilow dimensional multilayer quantum syste
the coated quantum dot. In the CQD system, we can s
the Schro¨dinger equations for a hydrogenic impurity analy
cally, and obtain the electronic eigenstates as functions o
geometry and the material parameters theoretically via
Whittaker function approach. All the eigenfunctions can
expressed in terms of Whittaker functions, and it does
matter whether the energy levels are higher or lower than
potential barriers although there are imaginary numbers
the latter case. For numerical calculations, we have only
culated the ground state energy for illustration purposes.
shown that the ground state energy of the coated quan
dot is strongly influenced by the shell thickness and confi
potential. In the case ofV3<V2, the eigenvalues becom
complex numbers when the bulk potentialV3 is lowered
enough. This implies that there are no bound states in
situation. We can easily and quickly determine whethe
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub

140.113.38.11 On: Thu, 0
lls.
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system has bound states by the Whittaker function appro
We must emphasize again here that the Whittaker func
method is a simpler approach with which to deal w
multilayer quantum dots and it has general significance. O
can study electronic structures ofn-layered quantum dots by
directly solving just ‘‘one’’(2n22)-rank secular determinan
equation instead of by solving 2n equations.
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