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Abstract—In this paper, we propose a new scheme to analyze
the spectral structure of speech signals for fundamental fre-
quency estimation. First, we propose apitch measureto detect
the harmonic characteristics of voiced sounds on the spectrum
of a speech signal. This measure utilizes the properties that there
are distinct impulses located at the positions of fundamental
frequency and its harmonics, and the energy of voiced sound is
dominated by the energy of these distinct harmonic impulses. The
spectrum can be obtained by the fast Fourier transform (FFT);
however, it may be destroyed when the speech is interfered with
by additive noise. To enhance the robustness of the proposed
scheme in noisy environments, we apply the joint time-frequency
analysis (JTFA) technique to obtain the adaptive representation
of the spectrum of speech signals. The adaptive representation
can accurately extract important harmonic structure of noisy
speech signals at the expense of high computation cost. To solve
this problem, we further propose a fast adaptive representation
(FAR) algorithm, which reduces the computation complexity of
the original algorithm by 50%. The performance of the proposed
fundamental-frequency estimation scheme is evaluated on a large
database with or without additive noise. The performance is
compared to that of other approaches on the same database. The
experimental results show that the proposed scheme performs
well on clean speech and is robust in noisy environments.

Index Terms—Adaptive representation, harmonic structure,
partial FFT, pitch contour, pitch measure, spectrum analysis.

I. INTRODUCTION

T HE estimation of fundamental frequency is an essential
component in a variety of speech processing systems such

as the speech analysis-synthesis system and speech coding
system [1], [2]. The contour of fundamental-frequency (i.e.,
pitch contour) also plays an important role in language commu-
nication [3]–[6]. There are some difficulties in the estimation
of fundamental frequency, although it can be observed by eye
inspection. First, the voiced speech is not a perfectly periodic
waveform because of the variation of fundamental frequency
and the movement of vocal tract. Second, it is difficult to esti-
mate the fundamental frequency of low-level voiced speech at
its beginning and ending. Third, the performance of estimation
will degrade when the speech signal is corrupted by noise.
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Several algorithms for the estimation of fundamental fre-
quency, which may utilize the properties of speech signals
in either time-domain or frequency-domain, or in both, have
been proposed in [7]. Time-domain estimators operate directly
on the speech waveform to estimate the pitch period. The
measurements used include peak and valley measurement,
zero-crossing and energy measurement, and auto correlation
measurement. The class of frequency-domain estimators uses
the property that if the signal is periodic in the time domain,
then its spectrum will consist of a series of impulses at the
fundamental frequency and its harmonics. The measurement
for detecting the impulses is made on the spectrum of the
signal. The class of hybrid estimators incorporates features of
both the time-domain and frequency-domain approaches for
pitch detection [8], [9]. The performance of these algorithms is
good on clean speech, but degrades rapidly in noisy conditions.

In this paper, we propose a new scheme to analyze the spec-
tral structure of speech signals for fundamental-frequency es-
timation. First, we propose a new measure, calledpitch mea-
sure, to detect the harmonic characteristic of voiced sound on
the spectrum of speech signals. It is proved that this measure will
not be trapped by the pitch-doubling or pitch-halving problems.
The spectrum for analysis can be obtained by the fast Fourier
transform (FFT); however, it may be destroyed when the speech
signal is interfered with by additive noise. This will degrade
the performance of our scheme based on the FFT-spectrum. To
enhance the robustness of the proposed scheme in noisy envi-
ronments, we apply the joint time-frequency analysis (JTFA)
[10], [11] technique to find the adaptive representation of the
spectrum of a speech signal. Adaptive representation [12], [13]
flexibly decomposes any signal into a linear expansion of wave-
forms which are selected from a redundant dictionary of func-
tions. It selects the best matching elementary function in some
optimal sense to approximate the signal we want. The inspection
of the JTFA of a Gaussian-type function reveals that it is local-
ized in time and frequency domains simultaneously such that the
problem of cross-term interference [11] is reduced. Hence, we
adopt the Gaussian-type functions as the dictionary to charac-
terize the speech signal’s time-varying nature in adaptive repre-
sentation. Since only important factors are used to represent the
speech signal, the adaptive representation can accurately extract
important harmonic structure from noisy speech signals. How-
ever, this is achieved at the expense of high computation cost. To
attack this problem, we further propose a fast adaptive represen-
tation (FAR) algorithm, which performs partial FFT and reduces
the computation complexity of the original algorithm by 50%.
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The performance of the proposed fundamental-frequency esti-
mation scheme is evaluated on a large database with or without
additive noise. It is compared to that of other approaches on the
same database. The comparison results show that the proposed
scheme performs well on clean speech and is robust in noisy en-
vironments.

The organization of this paper is as follows. In Section II,
we propose the pitch measure and study its properties on the
speech spectrum. A pitch-tracking algorithm is also proposed
in this section to identify continuous pitch contours and make
voiced/unvoiced decisions. In Section III, we propose the FAR
algorithm to obtain the spectrum of speech signals. The pitch
measure is then applied to the FAR-spectrum to form a robust
fundamental-frequency estimation scheme. In Section IV,
six meaningful objective error measurements to evaluate
the performance of a fundamental-frequency estimator are
defined, based on which the performance of the proposed and
compared schemes is evaluated. Finally, conclusions are made
in Section V.

II. DETECTION OFHARMONIC SPECTRAL STRUCTURE

A. Spectral Analysis

The production of voiced speech can be described by a
linear system mathematically [14], [15]. We use to
denote the Fourier transform of the impulse response of
the vocal tract model . Because the excitation source

for voiced speech is essentially a quasi-periodic
train of pulses, its Fourier transform can be described as

, by the Poisson
sum formula, where is the period of the pulse, or is the
fundamental frequency, and the delta function is the unit
impulse function. The voiced speech signal is modeled in
the time domain as the convolution of and . That is,

, where is the convolution operator. Using
the convolution property of Fourier transform, we have

(1)
where is the Fourier transform of .

Equation (1) gives an important insight into the spectral struc-
ture of voiced sounds; it is a linear combination of the impulses
located at harmonics of fundamental frequency. If the harmonic
spectral structure can be identified, the corresponding funda-
mental frequency can also be obtained. The point to do this is
to detect the distinct impulses at fundamental frequency and its
harmonics. To detect a distinct impulse, we apply two windows,
inner window and outer window, on an impulse, where the cen-
ters of both windows are located at the center of the impulse.
A distinct impulse as well as the two windows are illustrated in
Fig. 1. The widths of the two windows in our study are deter-
mined experimentally, as described in Section II-C. Based on
these two windows, we define three basic indexes on an indi-
vidual impulse:

1) inner energy, , the area
under the curve of spectrum bounded by the inner
window;

Fig. 1. Obvious impulse with inner and outer windows.

2) outer energy, , the
area under the curve of spectrum bounded by the outer
window;

3) total energy: , the total area under the
curve of spectrum.

If there is a distinct impulse located at frequency, the values
of and will be very large.

Based on the above three indexes, we define three measures
to identify the harmonic spectral structure of speech signals in
the following.

• Energy Measure: The energy measure of a fundamental-
frequency candidate, , is defined as

(2)

subject to the constraint

for each (3)

where is the number of the harmonics of funda-
mental frequency , and is a preset threshold. If a
distinct impulse is located at some harmonic , the
value will be large. The constraint
in (3) means that only the harmonics with distinct im-
pulses are considered in the calculation of the energy mea-
sure. In other words, (2) measures the total energy con-
centrated on the harmonics with distinct impulses of the
fundamental-frequency candidate. The value of is
set as 0.85 in this study as described in Section II-C. If

is a true fundamental frequency, the value of
will be quite large since the voiced-sound energy is dom-
inated by the energies of distinct harmonic impulses. One
good property of the energy measure is that it exists no
pitch-halving problem; i.e., we always have
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. However, the energy measure could lead to the
confusion between and , i.e., the pitch-doubling
problem. In other words, it could happen that

. The proof of these properties can be found in
Appendix A.

• Impulse Measure: The impulse measure of a fundamental-
frequency candidate is defined as

(4)

Equation (4) measures if there always exist distinct im-
pulses on the harmonic positions of the fundamental-fre-
quency candidate . If is a true fundamental
frequency, the value will be close to 1 since a
distinct impulse is always located on each harmonic. This
situation does not exist on the frequencies other than
the fundamental frequency and its harmonics in normal
speech signals. In other words, a large impulse-mea-
sure value can indicate the fundamental frequency
or its multiples . Hence, the impulse measure ex-
ists no pitch-doubling problem; i.e., we always have

. However, might not be
the maximum over , . Hence, there
could exist confusion between and in the impulse
measure (i.e., the pitch-halving problem); it might happen
that . The proof for these properties
is given in Appendix B.

The energy measure and the impulse measure
, respectively, capture the two major characteristics

of the harmonic spectral structure of voiced speech; there are
distinct impulses at the harmonics of fundamental frequency,
and the total energy is dominated by these distinct harmonic
impulses. Since both of these two measures have large values
at the true fundamental frequency simultaneously, we take the
product of these two measures to form the final form of our
measure for detecting the true fundamental frequency. This
measure, called pitch measure, is defined as follows.

• Pitch Measure: The pitch measure at the fundamental fre-
quency candidate, , is defined as

(5)

The equation to estimate the fundamental frequency is

(6)

It can be shown that the pitch measure does not have the pitch-
doubling and pitch-halving problems (see Appendix C); in other
words, we always have and

for the true fundamental frequency .
One example to illustrate the behavior of the above measures

for fundamental frequency estimation on a speech segment is
shown in Fig. 2. The fundamental frequency of the speech seg-
ment shown in Fig. 2(a) is Hz. We observe that

in Fig. 2(b),
and in Fig. 2(c).
Hence, we have
in Fig. 2(d), and Hz is determined to be a true fun-
damental frequency.

B. Continuous Pitch-Tracking Algorithm With
Voiced/Unvoiced Decision

Applying the pitch measure in (5) and (6) on each frame of
a speech signal, we can obtain the estimated fundamental fre-
quency for each frame; whether it is voiced or unvoiced. A
pitch-tracking algorithm is then utilized to obtain the contin-
uous pitch contours and make the voiced/unvoiced decision. The
algorithm utilizes the property that the pitch curve of voiced
sound is continuous in local region. The steps of the proposed
pitch-tracking algorithm are as follows.

Step 1) Pitch Detection: Apply the pitch measure in (5) and
(6) to find the fundamental frequency of each frame
of the input speech signal.

Step 2) Pitch Contour Search: For every two adjacent
frames, check if the difference of their fundamental
frequencies estimated in Step 1 is less than 12% of
either one of these two frequencies, and check if the
impulse-measure values of them are both greater
than the threshold . If every two adjacent
frames pass this checking, they form a portion of
one pitch contour with the pitch of each frame
being the reciprocal of the fundamental frequency
estimated in Step 1. This step will produce a set of
piecewise-continuous pitch contours.

Step 3) Continuity Detection: Check if the length of each
pitch contour formed in Step 2 is greater than eight
frames. If yes, it is recognized to be a continuous
pitch contour; otherwise it is discarded.

Step 4) Pitch Doubling/Halving Checking: Track each con-
tinuous pitch contour recognized in Step 3 by ex-
tending it forward from its beginning and backward
from its ending along the frames axis to see if there
are pitch doubling or halving errors. If yes, the ex-
tended frame with error is added to the current con-
tinuous pitch contour, and its fundamental frequency
is corrected by multiplying (for pitch doubling) or
dividing (for pitch halving) the one estimated in
Step 1 by two.

Step 5) V/UV Decision: If a frame is on a continuous pitch
contour finally formed in Step 4, it is considered to
be voiced; otherwise it is unvoiced.

In the above algorithm, the first checking in Step 2 is to make
sure the piecewise continuity of a pitch contour, where the dif-
ference “12%” is set by experience. The second checking for
impulse-measure values is to make sure that the two adjacent
frames are both voiced sound, where the thresholdis set as
0.8 in our study, as described in Section II-C. The pitch contour
with short length in frames may not be a voiced contour as de-
tected in Step 3, where the minimum length of eight frames is
set by trial and error. Although the fundamental frequencies of
voiced frames can always be estimated by the pitch measure,
there still exists the possibility of pitch doubling or halving er-
rors, especially at the transition of voiced and unvoiced frames.
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Fig. 2. Illustrations of the proposed measures on one speech frame. (a) Spectrum of the speech signal, where the fundamental frequency! is labeled by the
dotted line. (b) Energy measureR (!) on (a). (c) Impulse measureR (!) on (a). (d) Pitch measureR (!) on (a). The frequencies,! =2; ! ; and2! are
labeled by dashed, dotted, and dash-dotted lines, respectively, in (b), (c), and (d).

Hence, the checking and correction of such errors are done in
Step 4 to reinforce the smoothness of the obtained pitch con-
tours.

C. Determination of Window Widths and Threshold Values

In applying the pitch measure and pitch-tracking algorithm,
the widths of inner and outer windows ( and ), as well

as the thresholds in (3) and in Step 2 of the pitch-tracking
algorithm need to be determined in advance. The widths
should be chosen such that the energies of all distinct impulses
on speech spectrum are included in the numerator of (2) while
computing the energy measure at true fundamental frequency.
The width should be greater than to the extend that the
impulse measure approaches one while computing the impulse
measure at true fundamental frequency. To achieve these goals,
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Fig. 3. Flowchart of using the proposed pitch measure for estimating the
fundamental frequency based on FFT-spectrum or FAR-spectrum.

we observe the 2048-point FFT-spectrum of a 16- kHz-sam-
pled voiced speech signal from the prepared database. The ini-
tial search value for is set as three points [equivalent to

k Hz] by visual inspection, since
the widths three points are smaller than the widths of
main lobes of most distinct impulses on the spectrum. Starting
from points and setting , we can calculate
an average energy-measure value [denoted by ] by
averaging the energy measures at true fundamental frequen-
cies of all voiced frames for each points. It
is observed that the average energy-measure value increases as

increasing, and then saturates when is about 13 points.
Hence, the search region for is from 3 to 13 points. To re-
duce the search complexity, we set the ratio as ac-
cording to visual inspection, since the width satisfying this
ratio can cover most side lobes of a distinct impulse and exclude
the side lobes of its neighboring impulses. In the search re-
gion (3, 13) and with the ratio , we search for
the and values such that the average impulse-measure
value of the same prepared voiced frames is above 0.9. In this
way, we obtained points Hz, and
points Hz.

With these and values, the thresholds and
are determined according to the average energy-measure value

, and the variance of energy measure of
the prepared voiced frames. They are

and

where and are the parameters allowing us to adjust the
values of and to obtain a good result. It is better to have

, so we set . When all the parameters, ,
, , and are determined, they are fixed and used in all

the experiments in the rest of this paper.

D. Experiments

We shall now apply the pitch measure to estimate the fun-
damental frequency on the speech spectrum obtained by FFT,
called FFT-spectrum. The flowchart of the proposed estimation
scheme based on FFT-spectrum is shown in Fig. 3. In the exper-
iments, the speech signal, sampled at 16 kHz, is blocked into

frames of samples using a rectangular window,
with adjacent frames being separated by samples.
Then we use 2048-point FFT to obtain the spectrum of each
frame. The -sample frame are zero-padded to 2048 sam-
ples. Since the sampling rate of speech signals is 16 kHz and
the 2048-point FFT is used, the resolution of the estimated fun-
damental frequency is only 4 Hz. To achieve a better resolution
in fundamental frequency, the auto correlation of the periods
around the estimated period (the reciprocal of the estimated fun-
damental frequency) is calculated and the period with the max-
imum auto correlation value is adopted as pitch period and the
corresponding fundamental frequency is calculated as the final
estimated result. The performance of the proposed scheme on
clean speech of a female is shown in Fig. 4(a), which shows
the clean speech waveform and the estimated pitch contour. The
proposed scheme is also evaluated on noisy speech. A Gaussian
noise was added to the clean speech at SNR value of 4 dB.
The estimated pitch contour as well as the corresponding noisy
speech waveform are shown in Fig. 4(b). We observe that the
performance degrades greatly when the speech is interfered with
by additive noise. To enhance the robustness of the proposed
scheme in noisy condition, we shall propose a FAR algorithm
to obtain the speech spectrum for robust fundamental frequency
estimation in the following section.

III. A DAPTIVE REPRESENTATION OFSPEECHSPECTRUM

In this section, we shall give the details of adaptive represen-
tation, propose a fast algorithm to realize it, and then integrate
this algorithm with the pitch-measure-based scheme developed
in Section II to form a robust fundamental-frequency estimator.

A. Adaptive Representation

The adaptive representationis to find the most important
factors that characterize the signals in which we are interested
[12], [13]. Adaptive representation flexibly decomposes a
signal, , into a linear expansion of waveforms selected from
a redundant dictionary of elementary functions,

(7)

where is a proper coefficient. Adaptive representation
allows us to select a set of appropriate elementary functions to
best match the structure of a target function for both time and
frequency localization. Because of capturing only important
factors of speech signals, adaptive representation can provide
useful information in noisy environments.

The Gaussian-type function, which is defined as

(8)

is a natural selection to form the set of elementary functions
for adaptive representation according to the lower bound of the
uncertainty principle [11] and the fact that any function can be
decomposed into a linear combination of Gaussian-type func-
tions [12], [13]. To see this, we take the Wigner–Ville distri-
bution (WVD) [16] of a Gaussian-type function. The WVD is
a tool to study the time-frequency characteristic of a signal; it
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Fig. 4. Performance of the proposed pitch-measure-based fundamental frequency estimation scheme based on the FFT-spectrum of a female’s speech. (a) Clean
speech signal and the estimated pitch contour. (b) Speech signal with adding noise at SNR= 4 dB, and the estimated pitch contour.

calculates the time-dependent power spectrum of a signal. The
WVD of a Gaussian-type function is defined by

WVD

(9)

This equation indicates that the Gaussian-type function
is localized in both time and frequency domains with the
time-frequency center located at .

Based on the above analysis, the dictionary we choose in
our scheme is the family of Gaussian-type functions defined by

, where is defined in (8). However, in the
three parameters, of , we fix the value of
for all , since the length of each speech frame is fixed, and
set the parameter located at the center of a speech frame.
Then the frequency is the only parameter to be determined
in choosing the best [or denoted as ] from .
Since the dictionary is redundant, there is no unique solu-
tion for (7). We need an iterative procedure to select from

successively to best match the structure of the speech signal



LIU AND LIN: FUNDAMENTAL FREQUENCY ESTIMATION BASED ON JTFA 615

. This is done by successive approximations of with or-
thogonal projections on elements of; that is, the coefficients
in (7) are determined by

(10)

which reflects the similarity between and , where
is the residual after theth iteration of approximating

signal in the direction of . The coefficient reflects
the signal’s local behavior over .

Let us start with and , which is the original
speech signal. The signal can be decomposed into

(11)

in the sense of

(12)

and

(13)

for . Repeat this process to sub-decompose the residual
, for , by projecting it on an elementary function
from , which has the best match with . Finally, we

can obtain a set of elementary functions, , selected from
, which most resemble the structure of .
According to the above equation, to find the best-matching

Gaussian-type function at theth iteration, we must take Fourier
transform of and search for the fre-
quency such that the determined Gaussian-type function has
the maximum similarity with theth residual of a speech signal.
To gain the best accuracy at lower computation cost, we choose
the eight most important Gaussian-type functions to expand a
frame of a speech signal. This needs eight times of Fourier trans-
form, where the number “8” is determined by experience.

As was done in the experiments of Section II, we use 2048-
point FFT to implement the adaptive representation to obtain the
spectrum of a speech signal. At theth iteration, the th residual
of a -sample frame is zero-padded to 2048 samples. The
estimated fundamental frequency for each frame is also finely
tuned by the auto correlation method as done in Section II. In
the following, we aim at reducing the computation complexity
of adaptive representation.

B. Fast Adaptive Representation (FAR) Algorithm

High computation complexity is the major shortcoming of the
adaptive representation scheme, especially for the requirement
of high frequency resolution. For example, if we take 2048-
point FFT, we need times of com-
plex multiplications to obtain the adaptive representation in each
search iteration,, for each frame, if the butterfly computation
is used. Reducing the computation complexity for real-time ap-
plications becomes an important issue. In this section, we pro-
pose a fast algorithm to realize the adaptive representation with

Fig. 5. Illustration of the proposed FAR algorithm; selection of~k at
N -level from the three candidates:2~k � 1; 2~k , and2~k + 1 at
N -level.

lower computation complexity. The basic concept of the fast al-
gorithm is that, for each search iteration, we start the search
from the frequency of the best-matching Gaussian-type func-
tion at lower frequency resolution on the full frequency range,
and then increase the search resolution on more focused search
region step by step to reach the final desired resolution. In other
words, for each (e.g., theth) search iteration in the FAR algo-
rithm, we start from using smaller point-number FFT to find the
raw candidate frequency region, in which the frequency of the
Gaussian-type function that can best describe is located.
Then, in the next step, we focus our search only on this raw can-
didate frequency region using larger point-number FFT to ob-
tain a finer candidate frequency region. Continuing such steps,
we can finally find the best-matching Gaussian-type function

, whose frequency lies within the desired resolution
for the th search iteration. This kind of “divide-and-conquer”
approach reduces the computation complexity obviously.

The proposed FAR algorithm is summarized as follows (see
Fig. 5) and the details are given in Appendix D.

At the initial step: We set

(14)

at -level, where , and
.
At the th step: We set

(15)

at -level, where , and
.

To implement the procedure proposed above, we define an
operation called “partial FFT,” which computes only some
FFT values we want, in contrast to the traditional FFT, which
computes all the FFT values. The computation flow graph for
computing 8-point (traditional) FFT values is shown in Fig. 6
[17], where . Assume and
are the two values we want. Then, the solid lines and solid
circles in the figure show the partial FFT for computing
and . The partial-FFT computation flow in Fig. 6 reveals
that nodes and as well as nodes
and form a flow of butterfly. The number of complex
multiplications to obtain the FFT values of node and is
1, if the simplified butterfly computation is used. The number
of complex multiplications to obtain the values of nodeand

is . By induction, the number of complex multipli-
cations to obtain the FFT values of indexand at -level
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Fig. 6. Computation flow graph of traditional FFT and partial FFT.

is .
In our algorithm, we perform the search steps from 512-level
to 2048-level (i.e., ) to find the frequency

for the best-matching Gaussian-type function .
The total number of complex multiplications in our case is

, which is much less than , the total number
of complex multiplications for 2048-point FFT. That is, by the
proposed FAR algorithm, we reduce the number of complex
multiplications of the original algorithm by about 50% in each
search iteration,, for each speech frame.

C. Fundamental Frequency Estimation Based on Adaptive
Representation

By the FAR algorithm, we can obtain the adaptive represen-
tation of a speech frame as in (7). We then take the WVD of (7)
and ignore the cross terms to obtain the speech spectrum, called
FAR-spectrum, as

WVD

(16)

The reason for ignoring the cross-terms is that the term of double
indefinite integral of cross-term over time and frequency is zero.
It implies that the cross-term contains zero energy. More de-
tailed information can be found in [11, ch. 8].

We can now use the proposed pitch measure in (5) and
(6) to analyze the FAR-spectrum to estimate the fundamental
frequency of speech signals. The flowchart of this scheme is
shown in Fig. 3. The performance of the scheme based on
FAR-spectrum for the clean speech of a female is shown in
Fig. 7(a). The corresponding wave of the clean speech is shown
in Fig. 4(a). The performance of this FAR-spectrum-based
estimation scheme is also evaluated on noisy speech at SNR
value of 4 dB shown in Fig. 4(b). The corresponding estimation
results are shown in Fig. 7(b). Comparing the estimation results
in Fig. 7 and Fig. 4, we observe that both of the two proposed
schemes have good performance on clean speech. However, the
performance of the FAR-spectrum-based scheme is better than
that of the FFT-spectrum-based scheme in noisy condition.

IV. EXPERIMENTAL RESULTS AND COMPARISONS

In this section, we evaluate the performance of the pro-
posed schemes on a large database according to six error
measurements, and compare it to the performance of the sim-
plified inverse filter tracking algorithm (SIFT) [9], cepstrum
method [18]–[20], and a commercial fundamental-frequency
estimation software, ESPS.

A. Testing Database

The prepared database for performance evaluation consists
of 50 files of speech utterances spoken by 25 males and 25 fe-
males, where the sampling rate of the speech signals is 16 kHz.
Every speaker provides one file to the database. These 50 files
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Fig. 7. Performance of the proposed pitch-measure-based fundamental-frequency estimation scheme based on the FAR-spectrum of a female’s speech.
(a) Estimated pitch contour on the clean speech signal shown in Fig. 4(a). (b) Estimated pitch contour on the speech signal with adding noise at SNR= 4 dB
shown in Fig. 4(b).

are selected from the continuous speech database recorded by
“Chunghwa Telecommunication Laboratories” in Taiwan. Each
speech file is composed of the sentences from an article. The
contents of the articles of all the files are different. Each speaker
uttered one of the articles in continuous speech type to form a
file. As a total, the whole database consists of 50 articles, about
500 sentences, 5000 Chinese characters, with length of 1500 s
(240 000 frames).

We also provide a reference of pitch contour for each file
in the database. It is obvious that a standard and perfectly la-
beled database does not exist. A labeled reference database of
the pitch contours was generated by visual inspection of the
original waveforms by authors. We recognized all the periods
of the waveforms displayed on the monitor. This was done by
labeling the positions of the beginning and ending of all periods
on screen using the action of mouse clicking. At the beginning
of a voiced sound, there are some valleys with maximum nega-
tive amplitude within the region of one pitch period. Since these
valleys can be identified obviously and easily, we labeled these
valleys to find the pitch of the waveform. Then we traced along
the waveform to find the next valley one by one. It should be
noted that the distance between any pair of two adjacent labeled
valleys is indeed the pitch period of the speech signal in local
region. After recognizing all the pitch periods on the waveform,
we determined whether it is voiced or unvoiced sound and cal-
culated the fundamental frequency if it is voiced for each frame.
If a frame is at the middle of a voiced sound, it is full of periodic
pulses and it is viewed as a voiced frame, and the corresponding
pitch period is the average distance of all pairs of two adjacent
labeled valleys within the frame. If a frame is at the beginning
or ending of a voiced frame, it is viewed as a voiced frame if the
length of periodic pulses is over 50% of the frame; otherwise
it is viewed as an unvoiced one. The determination of pitch pe-
riods for the frames at the beginning or ending of a voiced sound
is the same as that for the middle-frame of a voiced sound, i.e.,
taking the average pitch value. All the labeled positions were
recorded and then the pitch-contour references were obtained.

B. Error Measurements

The performance measurements we use in the evaluation
include voiced-to-unvoiced (V–UV) and unvoiced-to-voiced
(UV–V) error rates, and the error of the estimated fundamental
frequency. The first two measurements are used to indicate
the accuracy in classifying voiced and unvoiced frames,
respectively. The last measurement is to check the deviation
of the estimated fundamental frequency from the reference. A
V–UV error results from that a voiced frame in the reference
is detected as an unvoiced one by the estimation algorithm,
and an UV–V error results from that an unvoiced frame in the
reference is detected as a voiced frame. These two measure-
ments are defined as the ratio of the frame numbers of V–UV
or UV–V errors to the total frame numbers in the database.

The weighted gross pitch error [21] is used to measure the dif-
ference between the estimated fundamental frequency and the
reference. This measurement is defined as follows:

GPE (17)

where
number of voiced frames in the reference;
short-time energy of theth frame;
maximum energy of the frames;

and reference and estimated fundamental frequencies
for the th frame, respectively;
is used for normalization.

The GPE measurement is applied to the voiced frames indi-
cated by the reference database. A good fundamental-frequency
estimation algorithm should have lower GPE. If we make an
insight into the GPE measurement, we can see that the GPE is
proportional to the frame energy and the term .
While computing the GPE for one given frame, the value

has been determined since is fixed for
the given frame. The exact GPE value contributed by one given
frame depends on the accuracy of the estimated fundamental
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frequency. The frame with higher estimation accuracy con-
tributes less to the overall GPE. This means that the estimation
accuracy of a frame with larger energy is more important than
that with smaller energy. If a voiced frame in the reference is
classified as an unvoiced one by the estimation algorithm, then
the value of is contributed to the overall
GPE. That is, the maximum GPE value contributed by one
frame is when a V–UV error occurs. Thus,
the GPE measurement indicates not only the difference between
the estimated fundamental frequency and the reference, but
also the V–UV error.

In addition to the above three performance measurements,
Rabiner [7] suggested three other measurements, gross error
count (GEC), fine pitch error—average value (FPEAV), fine
pitch error—standard deviation (FPESD). These three mea-
surements are also adopted to evaluate the performance of
various fundamental-frequency estimation algorithms in this
paper. A voiced frame results in a gross pitch period error if

ms, where represents the frame
index. Gross error count is defined as the ratio of the frame
numbers with gross pitch period error to the total frame num-
bers. A fine pitch error occurs when ms. The average
value of fine pitch errors is defined as ,
where is the number of fine pitch errors. The standard
deviation of fine pitch errors is defined as

C. Performance Evaluation and Discussion

Using the proposed algorithms, i.e., the pitch-measure-based
estimation scheme based on FFT-spectrum or FAR-spectrum,
we can obtain the estimated pitch contour of each file in the data-
base. The performance of the proposed schemes is also evalu-
ated in adding white noisy conditions with different SNR values
4 dB, 2 dB, and 0 dB. The evaluation results for male and female
speakers are given in Tables I and II, respectively. Both tables
include the estimation results of the proposed schemes based
on FAR-spectrum and FFT-spectrum. The widths of inner and
outer windows used in energy measure and impulse measure as
well as the values of and are the same for all speakers.
These results are also compared against those of SIFT [9], cep-
strum method [18]–[20], and ESPS on the same database. In
SIFT, a spectrally flattened time waveform is first obtained and
the auto correlation measurement is made on the waveform to
estimate the pitch period. In the cepstrum method, the detec-
tion of peaks on cepstrum is used to detect the pitch period.
The ESPS is the Entropic Signal Processing System (or Soft-
ware) designed by Entropic Research Laboratory. We used one
function of this software, called Get-f0, which performs funda-
mental-frequency estimation using the normalized cross corre-
lation function, dynamic programming, and a robust algorithm
for pitch tracking (RAPT) [22]. The same database and refer-
ences are used to evaluate the performance of SIFT, cepstrum
method, and ESPS in clean and noisy conditions. The corre-
sponding evaluation results are also shown in Tables I and II.

TABLE I
PERFORMANCE OF THEPROPOSEDFUNDAMENTAL -FREQUENCYESTIMATION

SCHEMES AND SIFT, CEPSTRUMMETHOD, AND ESPSIN DIFFERENT

NOISE CONDITIONS FORMALE SPEAKERS

TABLE II
PERFORMANCE OF THEPROPOSEDFUNDAMENTAL -FREQUENCYESTIMATION

SCHEMES AND SIFT, CEPSTRUMMETHOD, AND ESPSIN DIFFERENT

NOISE CONDITIONS FORFEMALE SPEAKERS
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TABLE III
COMPUTATION TIME COST OF THECOMPARED ALGORITHMS

FOR EACH SPEECHFRAME

Discussion on the results listed in Tables I and II is made
here. The results on the GPE measurement showed that the
FAR-spectrum-based scheme performed better than other
compared algorithms on clean speech. That is, the fundamental
frequencies of most important voiced frames with high energy
were successfully estimated by this scheme. The cepstrum
method failed at some tail portion of voiced sound for both
male and female speakers. In noisy conditions, the results on
the GPE measurement showed that the FAR-spectrum-based
scheme was obviously superior to all the other algorithms. The
results also indicated that the performance of the proposed
FFT-spectrum-based scheme degraded in noisy conditions, es-
pecially for female speakers, although it had good performance
on clean speech.

The results on the GEC measurement showed that the
FAR-spectrum-based scheme performed better than the other
algorithms. The FFT-spectrum-based scheme performed well
for male speakers, however, it failed for female speakers. The
measurements of V–UV and UV–V errors provided several
interesting results. These categories cannot be examined sepa-
rately because they are often intimately related. For example, a
V–UV detector which is biased toward the category voiced will
generally have a low V–UV error rate, but in compensation
will have a high UV–V error rate [7]. The results on V–UV
error and UV–V error showed that our two proposed schemes
and SIFT are examples of this case. On the other hand, ESPS
and cepstrum method are examples opposite to this case. A
simple threshold on one or more measurements to classify a
frame as voiced or unvoiced is used for the compared algo-
rithms. In our study, a continuous pitch-tracking algorithm was
adopted to make voicing decision. The property of continuity
on pitch contours and the impulse measure were utilized for
V/UV decision. In our thinking, it is important to detect the
fundamental frequency of one frame if it is voiced, so we
adjusted the threshold in the pitch-tracking algorithm to
achieve a low V–UV error rate. It should be noted that the better
performance of the proposed FAR-spectrum-based scheme in
noisy conditions is gained at the expense of higher computation
complexity. The computation time cost of all the compared
algorithms for each speech frame is listed in Table III.

V. CONCLUSIONS

In this paper, we first proposed a pitch measure to detect the
harmonic spectral structure of speech signals, based on which a
new fundamental-frequency estimation scheme was developed.
This scheme can analyze the spectrum of a speech signal and
produce the corresponding pitch contours. Although the spec-
trum of a speech signal can be obtained by the traditional FFT, it

is easily contaminated by additive noise. To enhance the robust-
ness of the proposed estimation scheme, we developed a FAR
algorithm to obtain the spectrum of a speech signal. This fast
algorithm was based on the techniques of adaptive represen-
tation, divide-and-conquer, and partial FFT. The obtained ro-
bust spectrum, called FAR-spectrum, was then analyzed by the
pitch-measure-based estimation scheme to obtain the pitch con-
tours. Experimental results have demonstrated the robustness
and accuracy of the proposed fundamental-frequency estima-
tion scheme based on the FAR-spectrum, especially in compar-
ison with SIFT, cepstrum method, and a commercial software,
ESPS. The superiority of the proposed scheme is gained at the
expense of higher computation cost. Although the proposed fast
algorithm has reduced the computation complexity of the orig-
inal algorithm by 50%, it still takes longer than the compared
counterparts. The goal of our future work is to further reduce
this gap of computation cost.

APPENDIX A
PROOF FOR THEPROPERTIES OFENERGY MEASURE

The energy measure at , i.e., is

(18)

subject to (3). The value of the second term in the last equa-
tion is very small such that it can be neglected, because there
is no distinct impulse located on for odd . There-
fore, and we might determine by mis-
take the fundamental frequency to be , instead of , ac-
cording to the energy measure alone. It should be noted that
there is no confusion between and , since

subject to (3). The value of
the second term in the equation cannot be neglected, so we have

. Hence, the energy measure does not have
the pitch-halving problem.

APPENDIX B
PROOF FOR THEPROPERTIES OFIMPULSE MEASURE

Subtracting from , we obtain

(19)
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The condition for satisfying the inequality
is

Since it always appears that

we might determine by mistake the fundamental-frequency to
be , instead of , according to the impulse measure alone.
It should be noted that the confusion betweenand (i.e.,
the pitch-doubling problem) doesn’t exist in the impulse mea-
sure. This can be observed from subtracting from

(20)

The condition

always holds, because there is no distinct impulse lo-
cated on for odd . Therefore, we always have

.

APPENDIX C
PROOF FOR THEPROPERTIES OFPITCH MEASURE

We assume that the true fundamental frequency is. Then
the most possible frequencies that are easily confused with the
fundamental frequency are and . We now compare

to and . The pitch measure at ,
, and are

(21)

respectively. Due to the facts that
, and

, we have and
. Hence the pitch measure at the true fundamental

frequency, , has the maximum value, and will not cause
confusion at and . In other words, the pitch measure
does not have the pitch-doubling and pitch-halving problems.

APPENDIX D
DETAILS OF FAR ALGORITHM

We now describe the proposed FAR algorithm in de-
tails. In the following, we assume that we are looking for
the Gaussian-type function , which best describes the
(residual) speech signal , at the th search iteration for
adaptive representation. Suppose we want to take-point FFT
of the -sample frames of the speech signal to achieve the
desired resolution of the estimated fundamental frequency. At
the initial step of the FAR algorithm, we take -point FFT
of the speech signal on the full frequency range, whereis a
preset integer determining the number of steps for searching the
best-matching Gaussian-type function . The -sample
frames are zero-padded to samples such that the
spectrum can be obtained by -point FFT. Then at the
following steps, we take -point FFT, for , and

, of on the frequency region se-
lected by the previous th step. The -sample frames
are zero-padded to samples as done at the initial step.
For convenience of explanation, we divide the frequency axis
into different levels of resolution, where the -level
is defined as ,
where , and .
The index represents the th step to search the fre-
quency whose corresponding Gaussian-type function,

, best describes , where means the
initial step. We can see that . At the initial
step (i.e., ), we take -point FFT of the speech
signal, and find the index , called the chosen index at

-level, such that , where
, and . At the next

step, we set the search region centered at index
and bounded by at

-level, where , as illustrated in Fig. 5. Then
we select the index , called the chosen index at -level,
from , whose corresponding
FFT’s value (the spectrum magnitude after FFT) is maximum.
This is equivalent to taking -point FFT and selecting the fre-
quency with the maximum FFT value among three candidates,

, , and .
Similarly, at the third step, we can obtain the chosen index at

-level, , from the three candidates, , ,
and at -level, where . We carry
on this iterative step-by-step procedure until the estimated
fundamental frequency lies within the desired resolution at

-level after steps. The chosen index at -level,
, is what we look for finally. We pick

the Gaussian-type function with the frequency corresponding
to (i.e., ) as the th elementary function at the
th search iteration for adaptive representation.
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