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Fundamental Frequency Estimation Based
on the Joint Time-Frequency Analysis of
Harmonic Spectral Structure
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Abstract—In this paper, we propose a new scheme to analyze Several algorithms for the estimation of fundamental fre-
the spectral structure of speech signals for fundamental fre- quency, which may utilize the properties of speech signals
quency estimation. First, we propose apitch measureto detect 1 aither time-domain or frequency-domain, or in both, have

the harmonic characteristics of voiced sounds on the spectrum b din 71, Ti d . timat te directl
of a speech signal. This measure utilizes the properties that there een proposed in [7]. Time-domain estimators operate directly

are distinct impulses located at the positions of fundamental On the speech waveform to estimate the pitch period. The
frequency and its harmonics, and the energy of voiced sound is measurements used include peak and valley measurement,

dominated by the energy of these distinct harmonic impulses. The zero-crossing and energy measurement, and auto correlation
spectrum can be obtained by the fast Fourier transform (FFT); \easurement. The class of frequency-domain estimators uses

however, it may be destroyed when the speech is interfered with . . . L . .
by additive noise. To enhance the robustness of the proposedthe property that if the signal is periodic in the time domain,

scheme in noisy environments, we apply the joint time-frequency then its spectrum will consist of a series of impulses at the
analysis (JTFA) technique to obtain the adaptive representation fundamental frequency and its harmonics. The measurement
of the spectrum of speech signals. The adaptive representationfor detecting the impulses is made on the spectrum of the
can accurately extract important harmonic structure of noisy  gjgna| The class of hybrid estimators incorporates features of

speech signals at the expense of high computation cost. To solv . . .
this problem, we further propose a fast adaptive representation eOOth the time-domain and frequency-domain approaches for

(FAR) algorithm, which reduces the computation complexity of Pitch detection [8], [9]. The performance of these algorithms is
the original algorithm by 50%. The performance of the proposed good on clean speech, but degrades rapidly in noisy conditions.
fundamental-frequency estimation scheme is evaluated on a large  |n this paper, we propose a new scheme to analyze the spec-
database with or without additive noise. The performance iS yq gtrycture of speech signals for fundamental-frequency es-
compared to that of other approaches on the same database. The . . . .

experimental results show that the proposed scheme performs timation. First, we proposg a new megsyre, cai_iedh mea-

well on clean speech and is robust in noisy environments. sure to detect the harmonic characteristic of voiced sound on
the spectrum of speech signals. Itis proved that this measure will
not be trapped by the pitch-doubling or pitch-halving problems.
The spectrum for analysis can be obtained by the fast Fourier
transform (FFT); however, it may be destroyed when the speech

. INTRODUCTION signal is interfered with by additive noise. This will degrade

HE estimation of fundamental frequency is an essentihe performance of our scheme based on the FFT-spectrum. To
T component in a variety of speech processing systems séhance the robustness of the proposed scheme in noisy envi-
as the speech analysis-synthesis system and speech cotBRgents, we apply the joint time-frequency analysis (JTFA)
system [1], [2]. The contour of fundamental-frequency (i_e[;o , [11] technique to find the adaptive representgtion of the
pitch contour) also plays an important role in language commgPectrum of a speech signal. Adaptive representation [12], [13]
nication [3]-[6]. There are some difficulties in the estimatioffeXibly dgcomposes any signal into a linear ex.pa.msion of wave-
of fundamental frequency, although it can be observed by efygms which are selected from'a redundant dlctlona}ry qf func-
inspection. First, the voiced speech is not a perfectly periodlens- It selects the best matching elementary function in some
waveform because of the variation of fundamental frequen@ptimal sense to approximate the signal we want. The inspection
and the movement of vocal tract. Second, it is difficult to estPf the JTFA of a Gaussian-type function reveals that it is local-
mate the fundamental frequency of low-level voiced speechié‘?d in time and frequency domains simultaneously such that the
its beginning and ending. Third, the performance of estimati®¥oblem of cross-term interference [11] is reduced. Hence, we
will degrade when the speech signal is corrupted by noise. adopt the Gaussian-type functions as the dictionary to charac-
terize the speech signal’s time-varying nature in adaptive repre-
sentation. Since only important factors are used to represent the
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The performance of the proposed fundamental-frequency esti- > Inner window (width=54.6875 Hz)
mation scheme is evaluated on a large database with or without .4—m
additive noise. It is compared to that of other approaches on the
same database. The comparison results show that the proposed
scheme performs well on clean speech and is robust in noisy en-
vironments.

The organization of this paper is as follows. In Section II,
we propose the pitch measure and study its properties on the
speech spectrum. A pitch-tracking algorithm is also proposed
in this section to identify continuous pitch contours and make
voiced/unvoiced decisions. In Section I, we propose the FAR
algorithm to obtain the spectrum of speech signals. The pitch
measure is then applied to the FAR-spectrum to form a robust
fundamental-frequency estimation scheme. In Section 1V,
six meaningful objective error measurements to evaluate
the performance of a fundamental-frequency estimator are .
defined, based on which the performance of the proposed and

compared schemes is evaluated. Finally, conclusions are made k_’
in Section V. Outer window (width=78.125 Hz)

Fig. 1. Obvious impulse with inner and outer windows.

[I. DETECTION OFHARMONIC SPECTRAL STRUCTURE

A. Spectral Analysis 2) outer energyhou(w.) = j:ji";//; S(w)dw, the

The production of voiced speech can be described by a area under the curve of spectrum bounded by the outer
linear system mathematically [14], [15]. We u$¥(w) to window;
denote the Fourier transform of the impulse response of3) total energyE = [~ S(w)dw, the total area under the
the vocal tract modeb(n). Because the excitation source curve of spectrum.
e(n) for voiced speech is essentially a quasi-periodi¢there is a distinct impulse located at frequengy the values
train of pulses, its Fourier transform can be described abh;,(w.) andhg,.(w.) will be very large.
E(w) = 2n/P)> .. 8.(w — k(27/P)), by the Poisson  Based on the above three indexes, we define three measures
sum formula, where? is the period of the pulse, di/ P is the to identify the harmonic spectral structure of speech signals in
fundamental frequency, and the delta functdgtw) is the unit the following.

impulse function. The voiced SpeeCh Slgﬂat) is modeled in . Energy Measure: The energy measure of a fundamental-

the time domain as the convolution efn) andé(n). That is, frequency candidatey;, is defined as
s(n) = 6(n) x e(n), wherex is the convolution operator. Using
the convolution property of Fourier transform, we have Klewr)
- >~ hin(nwy)
S(w) = O(W)E(w) = 2 ) <k2—”> § <w - k2—7r> Rp(wy) = "=—— )
P r)e P E
Q) subject to the constraint
whereS(w) is the Fourier transform of(n). b
Equation (1) gives an important insight into the spectral struc- M >6; foreach n (3)
ture of voiced sounds; it is a linear combination of the impulses hout(nwy)

located at harmonics of fundamental frequency. If the harmonic
spectral structure can be identified, the corresponding funda-
mental frequency can also be obtained. The point to do this is
to detect the distinct impulses at fundamental frequency and its
harmonics. To detect a distinct impulse, we apply two windows,

inner window and outer window, on an impulse, where the cen-
ters of both windows are located at the center of the impulse.
A distinctimpulse as well as the two windows are illustrated in  centrated on the harmonics with distinct impulses of the
Fig. 1. The widths of the two windows in our study are deter- fundamental-frequency candidatg. The value off; is

mined experimentally, as described in Section I1I-C. Based on  g¢at 55 0.85 in this study as described in Section II-C. If
these two windows, we define three basic indexes on an indi- &y is a true fundamental frequency, the valueff (<)

vidual impulse: o will be quite large since the voiced-sound energy is dom-
1) inner energyh;,(w.) = f:j;”/; S(w) dw, the area inated by the energies of distinct harmonic impulses. One

under the curve of spectrum bounded by the inner good property of the energy measure is that it exists no
window; pitch-halving problem; i.e., we always hav&z(wy) >

where K (wy) is the number of the harmonics of funda-
mental frequencyvy, andé; is a preset threshold. If a
distinct impulse is located at some harmonio;, the
value hin(nw 7))/ hout (nw ;) Will be large. The constraint

in (3) means that only the harmonics with distinct im-
pulses are considered in the calculation of the energy mea-
sure. In other words, (2) measures the total energy con-
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Rp(2&y). However, the energy measure could lead to theg (@) > Rp(205), Re(®y) =~ Rg(&r/2) in Fig. 2(b),
confusion betweety; anda /2, i.e., the pitch-doubling and R;(w;) > Ri(w;/2), Ri(®&y) =~ Rr(2@y) in Fig. 2(c).
problem. In other words, it could happen tiiag (o) < Hence, we hav&®p(&y) > Rp(20y), Rp(wy) > Rp(Qs/2)
Rg(&;/2). The proof of these properties can be found im Fig. 2(d), ands; = 233.5 Hz is determined to be a true fun-

Appendix A. damental frequency.
* Impulse Measure: The impulse measure of a fundamental-
frequency candidate; is defined as B. Continuous Pitch-Tracking Algorithm With
K(wp) Voiced/Unvoiced Decision
Z hin(nw;) Applying the pitch measure in (5) and (6) on each frame of
- a speech signal, we can obtain the estimated fundamental fre-
Ry(wy) = Kwn (4) quency for each frame; whether it is voiced or unvoiced. A
Z hrowt (nw/) pitch-tracking algorithm is then utilized to obtain the contin-
— uous pitch contours and make the voiced/unvoiced decision. The

_ _ - algorithm utilizes the property that the pitch curve of voiced
Equation (4) measures if there always exist distinct insound is continuous in local region. The steps of the proposed
pulses on the harmonic positions of the fundamental-frpitch-tracking algorithm are as follows.

quency candidatevy. If &y is a true fundamental step 1) Pitch Detection: Apply the pitch measure in (5) and

frequency, the valueg? (&) will be close to 1 since a (6) to find the fundamental frequency of each frame
distinct impulse is always located on each harmonic. This of the input speech signal.
situation does not exist on the frequencies other thanStep 2) Pitch Contour Search: For every two adjacent
the fundamental frequency and its harmonics in normal frames, check if the difference of their fundamental
speech signals. In other words, a large impulse-mea- frequencies estimated in Step 1 is less than 12% of
sure value can indicate the fundamental frequefgy either one of these two frequencies, and check if the
or its multiplesn& ;. Hence, the impulse measure ex- impulse-measure values of them are both greater
ists no pitch-doubling problem; i.e., we always have than the threshold,, = 0.8. If every two adjacent
Rp(®f) > Rp(®s/2). However,Rr(&f) might not be frames pass this checking, they form a portion of
the maximum ovelR; (&), Rr(20y), .. .. Hence, there one pitch contour with the pitch of each frame
could exist confusion betweely and24; in the impulse being the reciprocal of the fundamental frequency
measure (i.e., the pitch-halving problem); it might happen estimated in Step 1. This step will produce a set of
that Rr(2ws) > Ry(@y). The proof for these properties piecewise-continuous pitch contours.
is given in Appendix B. Step 3) Continuity Detection: Check if the length of each
The energy measurdz(w;) and the impulse measure pitch contour formed in Ste_p 2 is greater than eight
Ry(wy), respectively, capture the two major characteristics frames. If yes, it is recognized to be a continuous

of the harmonic spectral structure of voiced speech; there are pit_ch contour; othervv_ise itis digca.rded.
distinct impulses at the harmonics of fundamental frequency,Step 4) t.P'tCh Dogtb::ng/Htalvmg Chec'klng..Trg;:k egctr; con-
and the total energy is dominated by these distinct harmonic tmugus .E["fc co(rjw four ricobgm.ze' n 3% ky e)é'
impulses. Since both of these two measures have large values ending It forward from Its beginning and backwar

: from its ending along the frames axis to see if there
at the true fundamental frequency simultaneously, we take the are pitch doubling or halving errors. If ves. the ex-
product of these two measures to form the final form of our P g 9 LT Yes,

for detecting the t fund wal Thi tended frame with error is added to the current con-
measure for detecting the true fundamental frequency. This tinuous pitch contour, and its fundamental frequency
measure, called pitch measure, is defined as follows.

is corrected by multiplying (for pitch doubling) or

» Pitch Measure: The pitch measure at the fundamental fre- dividing (for pitch halving) the one estimated in
guency candidate,, is defined as Step 1 by two.

Step 5) V/UV Decision: If a frame is on a continuous pitch

Rp(wy) = Rp(wp)Ri(wy). ®) contour finally formed in Step 4, it is considered to

be voiced; otherwise it is unvoiced.

In the above algorithm, the first checking in Step 2 is to make
(6) sure the piecewise continuity of a pitch contour, where the dif-
ference “12%" is set by experience. The second checking for
) _impulse-measure values is to make sure that the two adjacent
It can be shown that the pitch measure does not have the pitgmes are both voiced sound, where the threshplis set as
doubling and pitch-halving problems (see Appendix C); in othey g in our study, as described in Section 1I-C. The pitch contour
words, we always hav&p(wy) > Rp(wy/2) andRp(&f) > with short length in frames may not be a voiced contour as de-
Rp(2wy) for the true fundamental frequency . tected in Step 3, where the minimum length of eight frames is
One example to illustrate the behavior of the above measuges by trial and error. Although the fundamental frequencies of
for fundamental frequency estimation on a speech segmentdgced frames can always be estimated by the pitch measure,
shown in Fig. 2. The fundamental frequency of the speech selgere still exists the possibility of pitch doubling or halving er-
ment shown in Fig. 2(a) i&; = 233.5 Hz. We observe that rors, especially at the transition of voiced and unvoiced frames.

The equation to estimate the fundamental frequency is

@y = argmax Rp(wy).
wy



612 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 9, NO. 6, SEPTEMBER 2001

Log Magnitude Spectrum

: 1 1 il | 1 1 L
s} 500 1000 1500 2000 2500 3000 3500 4000
Frequency in Hz

(a)

Energy Measure
o o o
* o [

o
[N

: f N Lo mﬁ N
100 150 200 250 300 350 400
Fundamental Frequency in Hz

(b)

o

T T T T T T
09 | DN 4
! /\ ' \\
2os | \ ‘ | \
o i J
o7kl |1 \ 1 4
=" \ \ '
@
% 0.6+ : \/\ :
a2 | H
E I
=05+ 1 1 -
1 t
! i
0.4 ! : i B
1 L i 1 . ] 1 L i 1
100 150 200 250 300 350 400 450
Fundamental Frequency in Hz
©
T T T T 17
H
|
! -
e [}
?
]
= oo
= \/
2 :
Z

L . A 0Ty N
100 150 200 250 300 350 400 450
Fundamental Frequency in Hz

@

Fig. 2. lllustrations of the proposed measures on one speech frame. (a) Spectrum of the speech signal, where the fundamental friedabesd by the
dotted line. (b) Energy measuféx(w) on (a). (c) Impulse measut@; (w) on (a). (d) Pitch measurB»(w) on (a). The frequencies;; /2, w,, and2w, are
labeled by dashed, dotted, and dash-dotted lines, respectively, in (b), (c), and (d).

Hence, the checking and correction of such errors are doneamthe threshold?; in (3) anddy- in Step 2 of the pitch-tracking

Step 4 to reinforce the smoothness of the obtained pitch caigorithm need to be determined in advance. The widths

tours. should be chosen such that the energies of all distinct impulses
on speech spectrum are included in the numerator of (2) while

C. Determination of Window Widths and Threshold Values computing the energy measure at true fundamental frequency.
The widthw,,; should be greater than,, to the extend that the

In applying the pitch measure and pitch-tracking algorithnimpulse measure approaches one while computing the impulse
the widths of inner and outer windows{, andw,.,;), as well measure at true fundamental frequency. To achieve these goals,
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Spectrum Analysis

frames of Ny, = 400 samples using a rectangular window,
FAR combined with adjacent frames being separatedMy-;, = 100 samples.
Frame of spesch "(# with WVD } Then we use 2048-point FFT to obtain the spectrum of each
frame. TheNg-sample frame are zero-padded to 2048 sam-
B FFT Analysis > ples. Since the sampling rate of speech signals is 16 kHz and
the 2048-point FFT is used, the resolution of the estimated fun-
damental frequency is only 4 Hz. To achieve a better resolution
L Fr— Tracking xtimated Fundamental in fundamental frequency, the auto correlation of the periods
analysis | 0| Smoothing | Frequency around the estimated period (the reciprocal of the estimated fun-
damental frequency) is calculated and the period with the max-
Fig. 3. Flowchart of using the proposed pitch measure for estimating th@um auto correlation value is adopted as pitch period and the
fundamental frequency based on FFT-spectrum or FAR-spectrum. corresponding fundamental frequency is calculated as the final
estimated result. The performance of the proposed scheme on
we observe the 2048-point FFT-spectrum of a 16- kHz-saglean speech of a female is shown in Fig. 4(a), which shows
pled voiced speech signal from the prepared database. The i@ clean speech waveform and the estimated pitch contour. The
tial search value fomy, is set as three points [equivalent tProposed scheme is also evaluated on noisy speech. A Gaussian
(3/2048) x 16 k = 23.4375 Hz] by visual inspection, since noise was added to the clean speech at SNR value of 4 dB.
the widthswi, < three points are smaller than the widths of he estimated pitch contour as well as the corresponding noisy
main lobes of most distinct impulses on the spectrum. Startifgeech waveform are shown in Fig. 4(b). We observe that the
from w;, = 3 points and setting; = 0, we can calculate performance degrades greatly when the speech is interfered with
an average energy-measure value [denoteB by, ., (wi, )] by by additive noise. To enhance the robustness of the proposed
averaging the energy measures at true fundamental frequé¢heme in noisy condition, we shall propose a FAR algorithm
cies of all voiced frames for eact,, = 3, 4, ... points. It to obtain the speech spectrum for robust fundamental frequency
is observed that the average energy-measure value increas@stgation in the following section.
wjy INcreasing, and then saturates whep is about 13 points.
Hence, the search region far,, is from 3 to 13 points. To re- [ll. ADAPTIVE REPRESENTATION OFSPEECHSPECTRUM

duce the search complexity, we set the ratjg/wou: 885/78C- |y this section, we shall give the details of adaptive represen-
cording to visual inspection, since the widt,,; satisfying this - (ation propose a fast algorithm to realize it, and then integrate
ratio can cover most side lobes of a distinctimpulse and excluglgg algorithm with the pitch-measure-based scheme developed

the side lobes of its neighboring impulses. Inthg search re- i, section 11 to form a robust fundamental-frequency estimator.
gion (3, 13) and with the ratiw;, /wout) = 5/7, we search for

thewi, andw,y; Values such that the average impulse-measuse Adaptive Representation
value of the same prepared voiced frames is above 0.9. In thi
way, we obtained;,, = 7 points= 54.6875 Hz, andw,,,; = 10
points= 78.125 Hz.

With thesew;, and w.,; values, the threshold®; and 6y
are determined according to the average energy-measure v
Er, avg(-), and the variance of energy meas#g .4, - ) of

FAR-Spectrum
>

FFT-Spectrum

SI'he adaptive representatiors to find the most important
factors that characterize the signals in which we are interested
[12], [13]. Adaptive representation flexibly decomposes a
sfgnal,s(t), into a linear expansion of waveforms selected from
alde o :

a redundant dictionary of elementary functiobs= {h,(t)}

the prepared voiced frames. They are s(t) = Z Byhy(t) @)
9] _ ER, a,'ng(win) — Qg; ER, '1;0,1’(win) ?
ER, avg(Wout) — a6, ER, var(Win) where B, is a proper coefficient. Adaptive representation
and allows us to select a set of appropriate elementary functions to
b, = ER, avg(Win) — a9, ER, var(Win) best match the structure of a target function for both time and
ER avg(Wout) — Goy ERr var(Win) frequency localization. Because of capturing only important

) _ factors of speech signals, adaptive representation can provide
whereas, andas, are the parameters allowing us to adjust thgsefy| information in noisy environments.

values oft; andfy to obtain a good result. Itis better to have The Gaussian-type function, which is defined as
0r > 0y, so we sety, < ag,,. When all the parametersy,,
wout, 07, andéy are determined, they are fixed and used inall ;.\ _ (%)1/4 { Qp 2} ~
t)=1{— ——=(t -1 Jwyt 8
the experiments in the rest of this paper. »(t) T P ( p) pepiieptt  (8)

is a natural selection to form the set of elementary functions
for adaptive representation according to the lower bound of the
We shall now apply the pitch measure to estimate the fuancertainty principle [11] and the fact that any function can be
damental frequency on the speech spectrum obtained by F&@composed into a linear combination of Gaussian-type func-
called FFT-spectrum. The flowchart of the proposed estimatitions [12], [13]. To see this, we take the Wigner—Ville distri-
scheme based on FFT-spectrum is shown in Fig. 3. In the expantion (WVD) [16] of a Gaussian-type function. The WVD is
iments, the speech signal, sampled at 16 kHz, is blocked irstdool to study the time-frequency characteristic of a signal; it

D. Experiments
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Fig. 4. Performance of the proposed pitch-measure-based fundamental frequency estimation scheme based on the FFT-spectrum of a femal€eapeech. (a
speech signal and the estimated pitch contour. (b) Speech signal with adding noiseatSNR and the estimated pitch contour.

calculates the time-dependent power spectrum of a signal. Th&ased on the above analysis, the dictionary we choose in

WVD of a Gaussian-type functioh,(¢) is defined by

(14535

=2exp {—[%(t—Tp)2 +

e T
t— L
2

(w—wp)2

) exp{—jwr}dr

) o

This equation indicates that the Gaussian-type fun
is localized in both time and frequency domains with
time-frequency center located @, w,).

WD, (f, w) = /

ade o)

Ap

our scheme is the family of Gaussian-type functions defined by

D = {h,(t)}, whereh,(t) is defined in (8). However, in the

three parameterge,, T,,, w, } of h,(t), we fix the value oty,

for all p, since the length of each speech frame is fixed, and

set the parametér, located at the center of a speech frame.

Then the frequency,, is the only parameter to be determined

in choosing the bedi,(¢) [or denoted as,(¢; w,)] from D.
cti@ince the dictionanyD is redundant, there is no unique solu-
thion for (7). We need an iterative procedure to selggt) from

D successively to best match the structure of the speech signal
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s(t). This is done by successive approximations(@j with or- ~ N,,.,-level 2N -1 26N 2k +1
thogonal projections on elements Bf that is, the coefficients
in (7) are determined by

N, -level PR | ]

By = (sps hp) = / sp(t)hy(t) dt (10) | |

t | ]

L

which reflects the similarity betwees),(t) and h,(¢), where Frequency

sp(t) is the residual after theth iteration of approximating rig. 5. 1llustration of the proposed FAR algorithm; selectionkdf=+1 at
signals(¢) in the direction ofh, (). The coefficient3, reflects = N....-levelfrom the three candidate3k "~ — 1, 2k™=, and2k™~ + 1 at

the signal’s local behavior oveér,(¢). Nom-level
Let us start withp = 0 andso(t) = s(t), which is the original

speech signal. The signaj(¢) can be decomposed into lower computation complexity. The basic concept of the fast al-

gorithm is that, for each search iteration, we start the search
sp(t) = Bphy(t) + sp41(t) (11) from the frequency of the best-matching Gaussian-type func-

tion at lower frequency resolution on the full frequency range,

in the sense of and then increase the search resolution on more focused search
region step by step to reach the final desired resolution. In other

B, = mj}x<3pv h(t; w)) words, for each (e.g., theth) search iteration in the FAR algo-

an 1/4 a ) . rithm, we start from using smaller point-number FFT to find the

= max (;) /Sp(t) eXP{—g(t—T) }eXP{—Jwt} dt  raw candidate frequency region, in which the frequency of the
¢ (12) Gaussian-type function that can best desceib@) is located.

and Then, in the next step, we focus our search only on this raw can-

) didate frequency region using larger point-number FFT to ob-

tain a finer candidate frequency region. Continuing such steps,

we{ can finally find the best-matching Gaussian-type function

for p = 0. Repeat this process to sub-decompose the residyal ,° . o . .
s,(1), for p > 1, by projecting it on an elementary function%f’ t; wp), whose frequency lies within the desired resolution

h,(t) from D, which has the best match with(¢). Finally, we for the pth search iteration. This kind of “divide-and-conquer”

can obtain a set of elementary functiofs,(¢)}, selected from approach reduces the computation comple_xny obviously.
D, which most resemble the structuresg). The proposed FAR algorithm is summarized as follows (see

. . . : . Fig. 5) and the details are given in Appendix D.
According to the above equation, to find the best-matching At the initial step: We set

Gaussian-type function at thwh iteration, we must take Fourier

transform ofs, (t) exp{—(«/2)(t —T')*} and search for the fre- PN = arg max(s,, h(t; w)) (14)

quencyw such that the determined Gaussian-type function has S

the mgximum similarity with theth residual of_aspeech Signal'atNo-Ievel, wheres = 2i(k/No), No = N/d, and0 < k <

To gain the best accuracy at lower computation cost, we chogse

the eight most important Gaussian-type functions to expan 3At the mth step: We set

frame of a speech signal. This needs eight times of Fourier trans- '

form, where the number “8” is determined by experience. N7 = arg max(s,, h(t; w)) (15)
As was done in the experiments of Section Il, we use 2048- ‘

point FFT to implement the adaptive representation to obtaintQme_|eve|’ whereN,, = (2")(N/d),1 < m < M, and

spectrum of a speech signal. At thié iteration, thepth residual . - {21;,\,%1 1 2 Nmet 2fiNmo1 4 1}.

of a Np-sample frame is zero-padded to 2048 samples. Ther, implement the procedure proposed above, we define an
estimated fundamental freguency for each frame is al_so f'”‘%l}ﬁeration called “partial FFT,” which computes only some
tuned by the auto correlation method as done in Section Il. BT \alues we want, in contrast to the traditional FFT, which
the following, we aim at reducing the computation complexityompytes all the FFT values. The computation flow graph for
of adaptive representation. computing 8-point (traditional) FFT values is shown in Fig. 6
[17], whereW} = exp{—j2r(I/N)}. AssumeC, and C,
are the two values we want. Then, the solid lines and solid
High computation complexity is the major shortcoming of theircles in the figure show the partial FFT for computinj
adaptive representation scheme, especially for the requiremand C>. The partial-FFT computation flow in Fig. 6 reveals
of high frequency resolution. For example, if we take 2048hat nodesd,, 4>, By, and Bs, as well as nodesgl,, Ag, By,
point FFT, we need048/2 x (log, (2048) — 1) times of com- and Bg, form a flow of butterfly. The number of complex
plex multiplications to obtain the adaptive representation in eantultiplications to obtain the FFT values of noé#g and B; is
search iteratiorny, for each frame, if the butterfly computationl, if the simplified butterfly computation is used. The number
is used. Reducing the computation complexity for real-time apf complex multiplications to obtain the values of nhadgand
plications becomes an important issue. In this section, we pi@; is 1 x 2 + 2. By induction, the number of complex multipli-
pose a fast algorithm to realize the adaptive representation wititions to obtain the FFT values of indeandk + 2 at N-level

wp = argmax(s,, h(t; w)) (13

B. Fast Adaptive Representation (FAR) Algorithm
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Fig. 6. Computation flow graph of traditional FFT and partial FFT.

is 2(lozs (N)=2) 4 $~(lo&a (M= 90 _ 3 gflog, (M)=2) _ g, We can now use the proposed pitch measure in (5) and
In our algorithm, we perform the search steps from 512-levéd) to analyze the FAR-spectrum to estimate the fundamental
to 2048-level (i.e.d = 4, M = 2) to find the frequency frequency of speech signals. The flowchart of this scheme is
w, for the best-matching Gaussian-type functip(t; w,). shown in Fig. 3. The performance of the scheme based on
The total number of complex multiplications in our case iBAR-spectrum for the clean speech of a female is shown in
512/2(log, (512) — 1) + 31=5(3 x 2loe2 (1024x2)=2 _ 9y —  Fig. 7(a). The corresponding wave of the clean speech is shown
17 x 2% — 4, which is much less that0 x 2%, the total number in Fig. 4(a). The performance of this FAR-spectrum-based
of complex multiplications for 2048-point FFT. That is, by theestimation scheme is also evaluated on noisy speech at SNR
proposed FAR algorithm, we reduce the number of complarlue of 4 dB shown in Fig. 4(b). The corresponding estimation
multiplications of the original algorithm by about 50% in eaclesults are shown in Fig. 7(b). Comparing the estimation results
search iterationp, for each speech frame. in Fig. 7 and Fig. 4, we observe that both of the two proposed
schemes have good performance on clean speech. However, the
C. Fundamental Frequency Estimation Based on Adaptive performance of the FAR-spectrum-based scheme is better than
Representation that of the FFT-spectrum-based scheme in noisy condition.

By the FAR algorithm, we can obtain the adaptive represen-
tation of a speech frame as in (7). We then take the WVD of (7)
and ignore the cross terms to obtain the speech spectrum, callelth this section, we evaluate the performance of the pro-

IV. EXPERIMENTAL RESULTS AND COMPARISONS

FAR-spectrum, as posed schemes on a large database according to six error
measurements, and compare it to the performance of the sim-
WVD;, (t, w) :22 | Bp|2 plified inverse filter tracking algorithm (SIFT) [9], cepstrum
P method [18]-[20], and a commercial fundamental-frequency

— )2 estimation software, ESPS.
-exp{—[ap(t—Tp)Q—i—%} } (16)

r A. Testing Database

The reason for ignoring the cross-terms is that the term of doubleThe prepared database for performance evaluation consists
indefinite integral of cross-term over time and frequency is zerof 50 files of speech utterances spoken by 25 males and 25 fe-
It implies that the cross-term contains zero energy. More dexales, where the sampling rate of the speech signals is 16 kHz.
tailed information can be found in [11, ch. 8]. Every speaker provides one file to the database. These 50 files
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Fig. 7. Performance of the proposed pitch-measure-based fundamental-frequency estimation scheme based on the FAR-spectrum of a female’s speech.
(a) Estimated pitch contour on the clean speech signal shown in Fig. 4(a). (b) Estimated pitch contour on the speech signal with adding neisd dBSNR
shown in Fig. 4(b).

are selected from the continuous speech database recorde® b¥rror Measurements
“Chunghwa Telecommunication Laboratories” in Taiwan. Each 1o performance measurements we use in the evaluation

speech file is composed of the sentences from an article. THg| de voiced-to-unvoiced (V=UV) and unvoiced-to-voiced
contents of the articles of all the files are different. Each speal@jv_v) error rates. and the error of the estimated fundamental
uttered one of the articles in continuous speech type to formaqency. The first two measurements are used to indicate
file. As a total, the whole database consists of 50 articles, ab accuracy in classifying voiced and unvoiced frames

500 sentences, 5000 Chinese characters, with length of 15Q0@&,ectively. The last measurement is to check the deviation
(240000 frames). _ _of the estimated fundamental frequency from the reference. A

~ We also provide a reference of pitch contour for each fiko_;y/ error results from that a voiced frame in the reference
in the database. It is obvious that a standard and perfectly l@-yetected as an unvoiced one by the estimation algorithm,
beled database does not exist. A labeled reference database of 2 vV error results from that an unvoiced frame in the
the pitch contours was generated by visual inspection of thgerence is detected as a voiced frame. These two measure-

original waveforms by authors. We recognized all the periogisents are defined as the ratio of the frame numbers of V—UV
of the waveforms displayed on the monitor. This was done Ry jy/_v errors to the total frame numbers in the database.
labeling the positions of the beginning and ending of all periods 1, weighted gross pitch error [21] is used to measure the dif-

on screen using the action of mouse clicking. At the beginniggrence hetween the estimated fundamental frequency and the
of a voiced sound, there are some valleys with maximum neggerence. This measurement is defined as follows:

tive amplitude within the region of one pitch period. Since these

valleys can be identified obviously and easily, we labeled these 1 & B 1/2 fe — fr

valleys to find the pitch of the waveform. Then we traced along GPE= K Z <me> ¢ a7
the waveform to find the next valley one by one. It should be k=1

noted that the distance between any pair of two adjacent labelatere

valleys is indeed the pitch period of the speech signal in local K number of voiced frames in the reference;
region. After recognizing all the pitch periods on the waveform, Ej, short-time energy of théth frame;

we determined whether it is voiced or unvoiced sound and cal-F,;,x maximum energy of the frames;

culated the fundamental frequency if it is voiced for each frame.fk and f;, reference and estimated fundamental frequencies
If a frame is at the middle of a voiced sound, it is full of periodic for the kth frame, respectively;

pulses and it is viewed as a voiced frame, and the correspondings,.... is used for normalization.

pitch period is the average distance of all pairs of two adjacefite GPE measurement is applied to the voiced frames indi-
labeled valleys within the frame. If a frame is at the beginnincated by the reference database. A good fundamental-frequency
or ending of a voiced frame, it is viewed as a voiced frame if thestimation algorithm should have lower GPE. If we make an
length of periodic pulses is over 50% of the frame; otherwisesight into the GPE measurement, we can see that the GPE is
it is viewed as an unvoiced one. The determination of pitch pproportional to the frame energy and the te(th. — &/ fx)|-

riods for the frames at the beginning or ending of a voiced souk¢hile computing the GPE for one given frame, the value
is the same as that for the middle-frame of a voiced sound, i.8/K (E}./Ewax)*/? has been determined siné is fixed for
taking the average pitch value. All the labeled positions wetke given frame. The exact GPE value contributed by one given
recorded and then the pitch-contour references were obtaindtcame depends on the accuracy of the estimated fundamental
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frequency. The frame with higher estimation accuracy con-

accuracy of a frame with larger energy is more important than

TABLE |

tributes less to the overall GPE. This means that the estimatidiRr ORMANCE OF THEPROPOSEDFUNDAMENTAL -FREQUENCY ESTIMATION
SCHEMES AND SIFT, GEPSTRUMMETHOD, AND ESPSIN DIFFERENT

NoOISE CONDITIONS FORMALE SPEAKERS

that with smaller energy. If a voiced frame in the reference is

classified as an unvoiced one by the estimation algorithm, the Nis¢ Error FAR- | FFI- ) SIFT ) Cepstrum | ESPS
the value ofl /K (Ex/Ema)"/? is contributed to the overall 2o Measmef)nems Spectrum | Spectrum method
GPE. That is, the maximum GPE value contributed by on clean \(,} z]if(@)) 2(7)2 223 ;Z; ;zz (3)21
frame is1/K(Ex/Emax)/? when a V=UV error occurs. Thus, UV_V(,,/:) s 5 36 ST >
the GPE measurement indicates not only the difference betwe GEC(%) 2.66 322 541 561 301
the estimated fundamental frequency and the reference, t FPEAV(ms) | 2.0de2 | 1.60c2 | 3492 | 633c2 | -183e2
also the V-UV error. FPESD(ms) | 1.72e-1 | 1.7de-1 | 1.73e-1 | 1.96e-1 | 1.7de-1
In addition to the above three performance measuremen 448 GPE(%) 1.30 141 2.48 9.88 3.57
Rabiner [7] suggested three other measurements, gross et V-UV(%) 3.82 4.09 8.08 30.16 14.53
count (GEC), fine pitch error—average value (FPEAV), fine UV-V(%) 1.55 2.89 234 0.73 0
pitch error—standard deviation (FPESD). These three me GEC(%) 4.54 5.31 8.44 3032 14.62
surements are also adopted to evaluate the performance FPEAV(ms) | 2.04e2 | 1282 | 3.36e2 | 648e2 | -2.31e-2
various fundamental-frequency estimation algorithms in thi FPESD(ms) | 186e-1 | 1891 | 1821 | 1921 | 1.36e-1
paper. A voiced frame results in a gross pitch period error i 248 | _GPECH | 212 235 | 466 | 1598 | 845
er = |[(1/fx) — (1/fi)| > 1 ms, wherek represents the frame VIVOD | o4 | S8 | BT | 927 | 238
index. Gross error count is defined as the ratio of the fram UG\I/EZ(//") ;;; 32 123'0(;)8 309'180 25033
numbers with gross pitch period error to the total frame num e A\ﬁ (;25) o302 | 10902 | 33202 | 60601 | 24102
bers. A f|_ne pl_tch error occurs Wheim < 1 ms. Thej\aﬁerage FPESD(ms) | 1.97e1 | 20001 | 186e1 | 183l | 123ed
value of fine pitch errors is defined @s= (1/Ngne) 1,577 ex, odB GPE(%) 458 529 ot | »75 | 2051
where Ngye IS the number of fine pitch errors. The standarc V-UV(%) 049 1056 | 2293 | 4890 | 4221
deviation of fine pitch errors is defined as UVV(%) | 134 2.02 151 0.16 0
GEC(%) 1031 1253 | 2318 | 4897 | 4227
| None FPEAV(ms) | 2.00e2 | 836e-3 | 3.08¢2 | 556e2 | -2.57e-2
o =\| % Z el -2, FPESD(ms) | 2.12e-1 | 2.13e-1 | 1.86e-1 | 1.78¢1 | 1.05e-1
fine =1
TABLE I

C. Performance Evaluation and Discussion

PERFORMANCE OF THEPROPOSEDFUNDAMENTAL -FREQUENCY ESTIMATION

SCHEMES AND SIFT, GEPSTRUMMETHOD, AND ESPSIN DIFFERENT
NOISE CONDITIONS FORFEMALE SPEAKERS

Using the proposed algorithms, i.e., the pitch-measure-based

estimation scheme based on FFT-spectrum or FAR-spectri=—

. . . - Noise Error FAR- FFT- SIFT Cepstrum | ESPS
we can obtain the estimated pitch contour of each flle_ inthedal o Ineasurements Spectrum | Spectrum ethod
base. The performance of the proposed schemes is also eV =T Gpres) o082 131 Lo 6o 07
ated in adding white noisy conditions with different SNR value V-UV(%) 733 3.90 12 6.44 335
4dB, 2 dB, and 0 dB. The evaluation results for male and feme UV-V(%) 563 370 560 367 1.94
speakers are given in Tables | and Il, respectively. Both tabl GEC(%) 3.03 4.69 4.42 6.76 444
include the estimation results of the proposed schemes ba: FPEAV(ms) | -3.97e-3 | -4.98-3 | 7.99e3 | 2.6%-2 | -2.37¢-2
on FAR-spectrum and FFT-spectrum. The widths of inner ar FPESD(ms) | 1.02e-1 | 1.0le-1 | l.lle-1 | 137e-1 | 1.05e-1
outer windows used in energy measure and impulse measur¢ 4dB GPE(%) 1.26 3.89 2.52 6.20 3.55
well as the values of; andéy are the same for all speakers. V-UV(%) 3.70 11.06 8.34 2235 1535
These results are also compared against those of SIFT [9], ¢ UV-V%) | 208 238 422 151 0
strum method [18]-[20], and ESPS on the same database. GECO®) | 419 | 1639 | 856 | 2249 | 1586
SIFT, a spectrally flattened time waveform is first obtained an FPEAV(ms) | 985c-4 | 1.4¢d | 140c2 | 3.60c2 | -2.1dc2
the auto correlation measurement is made on the waveform— — Ffpi?f/'o‘;s) 1'123;'1 1';)6:0'1 lfies'l ]'ltog;l 7%9;2
estimate the pitch period. In the cepstrum method, the dete : . ' : .
. . ! : VUV(%) | 530 1684 | 1347 | 3160 | 2587
tion of peal§s on cepstru_m is used to det(_act the pitch peric Vv ER) 158 54 339 094 0
The ESPS is the Entropic Signal Processing System (or Sc GEC(%) 567 26.79 5367 | 3168 2644
ware) designed by Entropic Research Laboratory. We used ¢ FPEAV(ms) | -1.0le4 | 2293 | 1582 | 39562 | 2.11e2
function of this software, called Get-fO, which performs funda FPESD(ms) | 1.34e-1 1.07e-1 | 1.20e-1 | 1.40e-1 | 7.11e-2
mental-frequency estimation using the normalized cross cori o GPE(%) 4.05 15.86 11.48 19.69 18.74
lation function, dynamic programming, and a robust algorithr V-UV(%) 8.96 2587 | 2559 | 4223 | 4219
for pitch tracking (RAPT) [22]. The same database and refe UV-V(%) 1.63 1.35 2.19 0.49 0
ences are used to evaluate the performance of SIFT, cepstr GEC(%) 9.30 41.95 2577 | 4226 | 42.62
method, and ESPS in clean and noisy conditions. The corl FPEAV(ms) | 1.09¢-3 | 433¢-3 | 1.57e-2 | 447e-2 | -2.24e-2

FPESD(ms) | 149e-1 | 1.10e-1 | 1.18¢-1 | 1.4le-1 | 6.36e-2

sponding evaluation results are also shown in Tables | and Il
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TABLE Il is easily contaminated by additive noise. To enhance the robust-
COMPUTATION TIME COST OF THE COMPARED ALGORITHMS ness of the proposed estimation scheme, we developed a FAR
FOR EACH SPEECHFRAME . . . .
algorithm to obtain the spectrum of a speech signal. This fast
FAR- FFT- SIFT Cepstrum ESPS algorithm was based on the techniques of adaptive represen-
Spectrum | Spectrum method tation, divide-and-conguer, and partial FFT. The obtained ro-

' CPU Inte! PIIT 500 | Intel PII 500 | Intel PITT 500 Intel PIIT 500 | HP715-100 bust spectrum, called FAR-spectrum, was then analyzed by the
TimeCost | S4dms | 124ms | 543ms 12ms 7ms pitch-measure-based estimation scheme to obtain the pitch con-
tours. Experimental results have demonstrated the robustness

Discussion on the results listed in Tables | and Il is maoaend accuracy of the proposed fundamental-frequency estima-

here. The results on the GPE measurement showed that HRB scheme based on the FAR-spectrum, espeCIaI!y N compar-
FAR-spectrum-based scheme performed better than Otgg,n with SIFT, cepstrum method, and a commercial software,

compared algorithms on clean speech. That is, the fundame S. The superiority of the proposed scheme is gained at the

frequencies of most important voiced frames with high ener rpense of higher computation cost Although thg proposed fast
were successfully estimated by this scheme. The cepstr orithm has reduced the computation complexity of the orig-
Wal algorithm by 50%, it still takes longer than the compared

method failed at some tail portion of voiced sound for bot ¢ ts. Th | of fut K is to furth d
male and female speakers. In noisy conditions, the results gynterparts. The goal of our future work is to further reduce
5 9ap of computation cost.

the GPE measurement showed that the FAR-spectrum-ba
scheme was obviously superior to all the other algorithms. The
results also indicated that the performance of the proposed APPENDIX A
FFT-spectrum-based scheme degraded in noisy conditions, es- PROOF FOR THEPROPERTIES OFENERGY MEASURE
pecially for female speakers, although it had good performancer;,o energy measure @ /2, i.e., Rp(&;/2) is
on clean speech.

The results on the GEC measurement showed that the -
FAR-spectrum-based scheme performed better than the otherRE (@r/2)
algorithms. The FFT-spectrum-based scheme performed well o -

. f wr
for male speakers, however, it failed for female speakers. The = Z hin <n—> + Z hin <n—> /E
. ; 2 . 2

measurements of V-UV and UV-V errors provided several n is even n is odd

interesting results. These categories cannot be examined sepa- . g
rately because they are often intimately related. For example,a ~ Re(@r) + Z hin <”?) /E (18)
V-UV detector which is biased toward the category voiced will 7 is odd

gtf:”m:]rally hiyeha IS/WVV_UV error ;ate_llhbut in fompe\r}saﬁ\?&bject to (3). The value of the second term in the last equa-
will have a high UV-V error rate [7]. The results on V-U tion is very small such that it can be neglected, because there
error and UV-V error showed that our two proposed schemlgsno distinct impulse located om(; /2) for odd n. There-

and SIFT are examples of this case. On the other hand, E%Br% Ri(io;/2) ~ Rp(@;) and we might determine by mis-
a_nd cepstrum method are examples opposite to this Cas'_etaﬁ\e’ the fundamental frequency to bg/2, instead ofo,, ac-
simple threshold on one or more measurements to Class'f\é(ﬂding to the energy measure alone. It should be noted that

frame as voiced or unvoiced is used for the compared algfe o is no confusion betweey and 26, since Re(G;) =

rithms. In our study, a continuous pitch-tracking algorithm wag 207)+3 hin(n ;) /E subject to (3). The value of
n is odd 'm :

adopted to make voicing decision. The property of continuity.~
P 9 ' property Me second term in the equation cannot be neglected, so we have

on pitch contours and the impulse measure were utilized f%r N N
- L o : > Rg(2& ). Hence, the energy measure does not have
V/UV decision. In our thinking, it is important to detect th p(@y) R(207) 9y

&he pitch-halving problem.
fundamental frequency of one frame if it is voiced, so we P gp

adjusted the thresholé- in the pitch-tracking algorithm to
achieve a low V-UV error rate. It should be noted that the better
performance of the proposed FAR-spectrum-based scheme in

noisy conditions is gained at the expense of higher computatiorsubtractinggl(%f) from R; (&), we obtain
complexity. The computation time cost of all the compared

APPENDIX B
PROOF FOR THEPROPERTIES OHMPULSE MEASURE

algorithms for each speech frame is listed in Table III. Ri(of) — Ry(207)
Z hin(n@f) + Z hin(n@f)
V. CONCLUSIONS _ _niseven nis odd
In this paper, we first proposed a pitch measure to detect the Z hour(noy) + Z how (ndy)

harmonic spectral structure of speech signals, based on which a T even e odd
new fundamental-frequency estimation scheme was developed. Z hin(ndy)
This scheme can analyze the spectrum of a speech signal and _ niseven (19)
produce the corresponding pitch contours. Although the spec- Z hout(mbf)'

trum of a speech signal can be obtained by the traditional FFT, it

n is even
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The condition for satisfying the inequalify; (i;) > Ry(2J) Rr(2&;), we haveRp(&y) > Rp(ep/2) and Rp(oy) >

is Rp(2w@;). Hence the pitch measure at the true fundamental
) ) frequency,&s, has the maximum value, and will not cause
Z hin(ncy) Z hin(niy) confusion atvy/2 and2&y. In other words, the pitch measure
nls odd > iseven . does not have the pitch-doubling and pitch-halving problems.
S how(ndy) D how(ndy)
n is odd n is even
Since it always appears that APPENDIX D
) A DETAILS OF FAR ALGORITHM
Z hin(TLWf) Z hin(TLUJf)
n is odd A, s even We now describe the proposed FAR algorithm in de-
Z Pout (ndf) Z Pout (ndf) tails. In thg following, we assume .that we are Iqoking for
n s odd nis even the Gaussian-type functioh,(¢), which best describes the

. : . residual) speech signal,(t), at thepth search iteration for
we rl“g*_“ determ|pe by m|s'Fake the fgndamental-frequency aptive representation. Suppose we want to fakeoint FFT
be2&,, instead ofu;, according to the impulse measure alone,

. i . of the Ngz-sample frames of the speech signal to achieve the
It ShO.UId be notgd that the confu5|or’1 bet.wélgrandc_uf/2 (ie., desired resolution of the estimated fundamental frequency. At
the pitch-doubling problem) doesn't exist in the impulse me

. - fhe initial step of the FAR algorithm, we také’/d)-point FFT
izur& ';’h|s can be observed from subtractiig@;/2) from of the speech signal on the full frequency range, wheig a
I\Wf

preset integer determining the number of steps for searching the
Ry(&p) — R(@/2) best-matching Gaussian-type functipg(t). The Ngr-sample
X frames are zero-padded t@V/d) samples such that the
Z B <M) spectrum can be obtained Wy/d)-point FFT. Then at the
2 following steps, we takék(N/d))-point FFT, fork = 2™, and
<nd;f> 1 <m < M =log, (d), of s,(¢) on the frequency region se-
2

__ niseven

Z hout

n is even

Z hin <7’L%) + Z hin

n is even n is odd

. > hout <n

n is even

lected by the previougn — 1)th step. TheVg-sample frames
are zero-padded & (N/d)) samples as done at the initial step.
Gy For convenience of explanation, we divide the frequency axis
<” 2 into different levels{L ., } of resolution, where thé/,,-level
_ (20) is defined asLy,, = {w = 27(k/N,,),0 < k < N,},
>+ S o <nﬂ> where0 < m < M = log,(d), andN,, = (2™)N/d.

n is add 2 The index m represents thenth step to search the fre-
guency w, whose corresponding Gaussian-type function,
hp(t; wp), best describes,(t), wherem = 0 means the

nwy initial step. We can see thdty,, C Loy, . At the initial
Z hin <T) step (i.e.,,» = 0), we take Ng-point FFT of the speech
_ signal, and find the indexX™°, called the chosen index at
Z Pout <M> No-level, such thats™ = argmaxy(s,, h(t; w)), where
2 w = 2n(k/No), 0 < k < Ny, andNy = N/d. At the next

I holds. b th . distinct_imoul Istep, we set the search region centered at irfdex 2h:No
always holds, because there is no distinct impulse IQ; ) nded by — 1, & 4+ 1] = [26% — 1, 24 + 1] at

cated onn(&;/2) for odd n. Therefore, we always haveNl-IeveI, whereN; = 2(N/d), as illustrated in Fig. 5. Then

Ri(wr) > RBi(@r/2). we select the index, called the chosen index af; -level,
from {2k — 1, 2kN 2k 4+ 1}, whose corresponding
FFT’s value (the spectrum magnitude after FFT) is maximum.
This is equivalent to taking/; -point FFT and selecting the fre-
We assume that the true fundamental frequendyyisThen quency with the maximum FFT value among three candidates,
the most possible frequencies that are easily confused with thg2kNe — 1)/Ny, 2x(2k™) /Ny, and 27 (2kN° + 1)/N;.
fundamental frequency arg;/2 and2&;. We now compare Similarly, at the third step, we can obtain the chosen index at
Rp(&p)to Rp(ws/2) andRp(20f). The pitch measure at;,  N»-level, k™2, from the three candidategt™ — 1, 2k™M,

>
RS

The condition

n is odd

nd)f
E hout <T>
n is even n is odd

APPENDIX C
PROOF FOR THEPROPERTIES OFPITCH MEASURE

@r/2, and2; are and 2k + 1 at N,-level, whereN, = 4(N/d). We carry
A A A on this iterative step-by-step procedure until the estimated
Rp(@f) =Rp(@p)Ri(@y) fundamental frequency lies within the desired resolution at

Rp(&;/2) =Rp(@r/2)Ri(ky/2) {V,y-levgl n{:flf’u?rM sAterps_. The chosen inde_x aNM-Ieve_:I,

Rp(205) = Re(205)R1(205) 1) KN = k2 (N9 = kN, is what we look for finally. We pick

the Gaussian-type function with the frequency corresponding
respectively. Due to the facts th#@g(@;) =~ Rg(®;/2), tok™ (i.e.2r(k™)/N) as thepth elementary function at the
Ri(@s) > Ri(ws/2), Rp(&r) > Rp(20f), andR;(0y) =~ pth search iteration for adaptive representation.
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