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1. INTRODUCTION

The symmetric three-stage Clos network C(n, m, r) has been widely used in them
design of telecommunication networks [1, 4]. C(n, m, r) consists of r (n_m)-
crossbars (switches) in the first (or input) stage, m (r_r)-crossbars in the second
(or central) stage, and r (m_n)-crossbars in the third (or output) stage. Every
crossbar in the first stage has an outlet connected to an inlet of every crossbar in
the second stage and every crossbar in the second stage has an outlet connected to
an inlet of every crossbar in the third stage. There are rn inlets in total in the first
stage, called inputs, and rn outlets in total in the third stage, called outputs. A
C(2, 3, 4) is illustrated in Fig. 1.

A Clos network C(n, m, r) in classical circuit switching is rearrangeable if it can
route every matching between inputs and outputs.

Since Melen and Turner [7] initiated the study on nonblocking properties in
multirate interconnection networks, it has become one of the most important
research topics in ATM networks with applications in computer networks, telecom-
munications, and Internets. In the multirate Clos network C(n, m, r), the switch is
more powerful. Each switch can realize an edge-weighted bipartite graph between
inlets and outlets with the property that the total weight of edges at each inlet and
outlet is at most one. Each edge still corresponds to a connection (call or request).

A connection in the multirate network is denoted by a triple (i, j, w), where i and
j are the input and output of the connection, respectively, while w is the weight of
the connection representing the bandwidth required by the connection. A route is
a path in the network joining an input switch (a switch in the first stage) to an out-
put switch (a switch in the third stage). A route r realizes a connection (i, j, w) if
the switch with input i and the switch with output j are connected by r with
capacity w. Each link in the network is assumed to have unit capacity (after nor-
malization). Thus the weight of any connection is in the interval [0, 1].

FIG. 1. Symmetric three-stage Clos network C(2, 3, 4).

1383MONOTONE ROUTING IN CLOS NETWORKS



A set of connections is compatible if the sum of weights of all connections from
any input and to any output are at most one. A request frame is a set of compatible
connections. A configuration is a set of routes, and it is compatible if the total weight
of routes passing through every link is at most one. A request frame is said to be
realizable if there exists a compatible configuration which contains routes realizing
all connections in the request frame. A multirate network is said to be (multirate)
rearrangeable if every request frame is realizable.

In classical circuit switching, all connections are assumed to have the same rate
one. Namely, a network is said to be rearrangeable in classical circuit switching if
every compatible request frame of connections with weight one is realizable. It is well
known [1] that the symmetric three-stage Clos network C(n, m, r) is rearrangeable
in circuit switching if and only if m�n. Now, since multirate is involved, more
crossbars are needed in the center stage to reach the rearrangeability. Chung and
Ross [3] showed that if m�2n&1, the symmetric three-stage Clos network
C(n, m, r) is multirate rearrangeable when each connection has weight chosen from
a given set [1, p]. After proving this result (Corollary 3), they stated that ``It would
be of interest to show that Corollary 3 holds for the general discrete bandwidth case
with K distinct rates.'' For an easy reference, we call it the Chung�Ross conjecture.

Chung�Ross conjecture. If m�2n&1, the symmetric three-stage Clos network
C(n, m, r) is multirate rearrangeable when each connection has weight chosen from
a given finite set [ p1 , p2 , ..., pk] where 1� p1> p2> } } } > pk>0 and pi is an
integer multiple of pk for 1�i�k&1.

Melen and Turner [7] gave a routing algorithm CAP and with CAP, it can be
shown that the multirate three stage Clos network C(n, 2n&1, r) is rearrangeable
when each connection has a weight at most 1�2. Using this fact, Lin et al. [6]
recently showed that the Chung�Ross conjecture is true for a restricted discrete
bandwidth case where each connection has a weight chosen from a set [ p1 ,
p2 , ..., pk] such that 1� p1> p2> } } } > pk>0 and pi is an integer multiple of p i+1

for 2�i�k&1. In fact, the Chung�Ross conjecture seems to be true not only in
the discrete bandwidth case but also in the continuous bandwidth case. By using
some coloring and partition arguments from graph theory, Du et al. [5] proved
that C(n, m, r) for m�41n�16 is multirate rearrangeable in the general bandwidth
case.

In this paper, we consider multirate rearrangeability in the Clos network
C(n, m, r) with arbitrary rates. We study a monotone routing and establish a rela-
tion between the multirate rearrangeability under monotone routing and a system
of linear inequalities. From investigating the system, we obtain some properties of
the monotone routing and improve some best known results for small n.

2. MAIN RESULTS

We study a simple routing method as follows.

Monotone routing. Sort all requests in weight-nonincreasing order and realize
each request one by one whenever a connection can be found.
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Define a linear system I(n, k) with k�n+1, consisting of k+n inequalities as
follows.
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1+x1

2+ } } } +x1
n+x0
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1+x2

2+ } } } +x2
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2+ } } } +xn
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xk
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2+ } } } +xk
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2+ } } } +xk
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n+ } } } +xn
n+ } } } +xk

n�1

where real variables x0
1�0 and x j

i �0 for 1�i�n and 1� j�k satisfy the follow-
ing constraint.

x j
i (x j

i &x0
1)�0, for 1�i�n, 1� j�k (3)

The above inequality (3) means that if x j
i >0, then x j

i �x0
1 for 1�i�n and

1� j�k.
The relationship between system I(n, k) and the multirate rearrangeability of the

Clos network C(m, n, r) is shown in the following lemma.

Lemma 2.1. If I(n, k) has no solution, then C(m, 2k&1, r) is multirate rear-
rangeable under monotone routing.

Proof. By contradiction, suppose C(m, 2k&1, r) is not multirate rearrangeable
under monotone routing. Consider the first request which cannot be routed, and
assume it is from input switch I to output switch J with weight w. Then for each
center switch H, either the link from input switch I to H has a load greater than
1&w or the link from H to output switch J has a load greater than 1&w. There-
fore, either there exist k center switches such that every link from I to them has a
load greater than 1&w or there exist k center switches such that every link from
them to J has a load greater than 1&w. Without loss of generality, assume the
former case occurs. Note that I has n inlets, and without loss of generality, assume
the request (I, J, w) is from the first inlet. Set x i

j to be the weight of request from
the jth inlet through the i-th center switch. Then we have

:
n

j=1

x i
j>1&w, for i=1, 2, ..., k.
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By substituting w with x0
1 we obtain the inequalities (1). In addition, the inequalities

(2) are satisfied under the constraint of connection capacity, and the inequalities (3)
are satisfied, because monotone routing is applied. Therefore, system I(n, k) has a
solution, a contradiction. K

Now we study the necessary and sufficient conditions that system I(n, k) has a
solution.

Lemma 2.2. If I(n, k) has a solution, then 1
3�x0

1> k&n
k&1 .

Proof. Summing up all inequalities in (1) will lead to (k&1) x0
1>k&n. Now

consider the left hand side of the inequality. Suppose, by contradiction, x0
1> 1

3 .
Then there are at most two nonzero variables in [x j

i : 1� j�k], for each i,
2�i�n, and at most one nonzero variable in [x j

1 : 1� j�k]. Without loss of
generality, we assume x1

1>0 and x1
2>0. Moreover, we can further assume that

x2
2>0, x2

3>0, and x3
4>0, x3

4>0, ..., and so on. It is clear that under the constraint
(2) at most n&1 inequalities in (1) can be satisfied at the same time, a contradic-
tion. K

Corollary 2.1. I(n, n+w n
2x) has no solution.

Proof. It follows immediately from Lemma 2.2. K

Lemma 2.3. If x0
1� k&n

k&2 , then

(a) each inequality in (1) has at least two nonzero variables, and

(b) each set [x j
i : 1� j�k], for 1�i�n, has at least two non zero variables.

Proof. (a) Suppose, by contradiction (and without loss of generality), that
x1

2�x0
1>0 and x1

i =0 for i=1 and 3�i�n. Note that if x j
2 {0, then x j

2�x0
1 ,

and x1
2+x j

2�x1
2+x0

1>1, a contradiction. Hence, x j
2=0 for 2�i�k. The sum of

nonzero variables in the last (k&1) inequalities of (1) is at most n&1+
(k&2) x0

1�(n&1)+(k&2) k&n
k&2=k&1, a contradiction.

(b) Suppose, again by contradiction (and without lose of generality), that
there exists x1

i0
>0 such that x j

i0
=0 for 2� j�k. Then the sum of nonzero variables

in the last (k&1) inequalities of (1) is at most n&1+(k&2) x0
1�k&1, a con-

tradiction. K

Lemma 2.4. I(4, 5) has no solution.

Proof. Suppose, by contradiction, that it has a solution. Then by Lemma 2.2,
we can assume that x0

1= 1
4+=, where =� 1

12 . We can further assume, by Lem-
ma 2.3(b), that x2

1�x0
1 and x0

1�x1
1� 1

2 (1&x0
1)= 3

8& =
2 . In the following we consider

two cases separately.

Case 1. x1
2 {0 and x1

3=x1
4=0. In this case, x1

2> 3
8& =

2 . If there are two nonzero
variables in [x2

2 , x2
3 , x2

4], then the sum of nonzero variables in the last three
inequalities of (1) is at most 27

8+ 3
2=�3, a contradiction.

Subcase 1.1. x2
3 {0 and x2

2=x2
4=0. In this special case, we can assume, by

Lemma 2.3, that x3
2 {0 and at least one variable in [x3

3 , x3
4] is nonzero. If both of
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them are nonzero (note that x1
2+x3

2+x2
3+x3

3+x3
4>1+2x0

1), then the sum of non-
zero variables in the last two inequalities of (1) is less than 3&(1+2x0

1)+2x0
1=2,

a contradiction. If x3
3 {0 and x3

4=0 (note that x1
2+x3

2+x2
3+x3

3>2&2x0
1), then

at most one variable in [x4
2 , x4

3 , x5
2 , x5

3] is nonzero. This means that at least one
of the last two inequalities of (1) has just one nonzero variable, contradicting
Lemma 2.3(a). Thus x3

3 {0 and x3
4 {0. If x4

2=x5
2=0, then x4

3+x4
4+x5

3+x5
4+2x0

1

�2&2x0
1+2x0

1=2, a contradiction. Hence, without loss of generality, let x4
2 {0

and x4
4 {0. Since x3

4+x4
4>2&2x0

1&(1& 3
8+ =

2)= 7
8& 5

2=�1&x0
1 , then x5

4=0 (and
x5

1=x5
2=0), again contradicting Lemma 2.3(a).

Subcase 1.2. x2
4 {0 and x2

3=x2
2=0. This special case is the symmetry of

Case 1.1.

Case 2. x1
2 {0 and x1

3 or x1
4 is nonzero. In this case, we know, from Lem-

ma 2.3(a), that at least one variable in [x2
2 , x2

3 , x2
4] is nonzero. Thus the sum of

nonzero variables in the last three inequalities of (1) is at most 3&3x0
1+3x0

1=3,
a contradiction. K

Lemma 2.5. I(6, 8) has no solution.

Proof. Suppose, by contradiction, that I(6, 8) has a solution. Then due to
Lemma 2.3 we can assume that x0

1= 2
7+=, where 0<=� 1

21. According to Lem-
ma 2.3(b), we can further assume (without lose of generality), that x1

1>0 and
x2

1>0. If there are more than two nonzero variables in [x j
i : j=1, 2, 2�i�6], then

the sum of nonzero variables in the last six inequalities of (1) is at most
5&3x0

1+6x0
1�6, a contradiction. Hence, for the first two inequalities of (1), each

of them has exactly one nonzero variable besides x j
1 , j=0, 1, 2. If there exists an i0

such that x j
i0

{0, j=1, 2, then x j
i0

=0 for 3� j�8, since x1
i0

+x2
i0

>1&x0
1 . Hence,

the sum of the nonzero variables in the last six inequalities of (1) is at most
4+6x0

1�6, a contradiction. So without loss of generality, we can assume that

x1
1>0, x1

2>0, and x1
i =0, for i{1, 2;

x2
1>0, x2

3>0, and x2
i =0, for i{1, 3.

If one of the last six inequalities of (1) has four nonzero variables, then for the rest
of the five inequalities, the sum of nonzero variables is at most 5&5x0

1+5x0
1=5,

a contradiction. Thus, there must exist a nonzero variable xi0
that appears in

exactly two inequalities. If i0 {2, 3, then among the last six inequalities of (1) four
of them do not have nonzero variable xi0

. Thus the sum of nonzero variables is at
most 4&4x0

1+4x0
1=4, a contradiction. Therefore, without loss of generality, we

assume i0=2, i.e., x3
2 {0 and x j

2=0 for j{1, 3. Note that the sum of nonzero
variables in the last five inequalities of (1) is at most 4&2x0

1+5x0
1�5, a contradic-

tion. K

Theorem 2.1. C(n, m, r) is multirate rearrangeable under monotone routing when

(a) 2�n�4 and m�2n+1, or

(b) 5�n�6 and m�2n+3.
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Proof. It follows from Lemma 1 and above results on system I(n, k). K

When comparing this theorem with the best known results (Theorem 5 in [5]),
we find that monotone routing shows better performance when n=3, 4 and equal
performance when n=2, 5, 6.

3. CONCLUSION

In this paper, we have established a relationship between the rearrangeability of
the multirate Clos network C(n, m, r) and a linear system I(n, k) of inequalities
through studying monotone routing. This gives an improvement for the upper
bound of m for small n. Since small Clos networks are used to be fundamental
recursive structure of large networks, this improvement is significant in the
hardware optimization of switching networks. For future research, it would be
interesting to analyze monotone routing combined with other routings. In addition,
as monotone routing does not require any assumption on bandwidth and structures
of interconnection networks, the proposed approach used in the Clos network may
be extended in other multirate rearrangeable switching networks such as the Benes$
network [1] and the Cantor network [2].
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