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Abstract

We investigate the task allocation problem of allocating a parallel program on parallel processors with non-uniform commu-
nication latencies. A branch-and-bound algorithm with a dominance relation is proposed to obtain an optimal task assignment. The
key observation on deriving the dominance relation is that tasks can be clustered according to communication weights. The
dominance relation is effective to prune the search space when the task clustering boundary — a small cut — is met. The proposed
algorithm is compared to the A*-algorithm for task allocation. Experiment shows that our proposed algorithm achieves a speed-up
ranging from 1.02 to 1.68, depending on the degree of task clustering and parallelism. This shows the effectiveness of the proposed

dominance relation. © 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

Advances in hardware and software technologies
have led to the use of parallel and distributed computing
systems. To execute a parallel program efficiently, a
scheduler should distribute the parallel program tasks to
processors such that (1) the processor loads are bal-
anced, and (2) the inter-processor communication time
is minimized. This raises the task allocation problem.

We investigate the problem of allocating a parallel
program on a multiprocessor with non-uniform inter-
processor communication latencies. A parallel program
is modeled as a node- and edge- weighted undirected
graph, called a task graph. The task allocation problem
becomes a problem of mapping the set of tasks to the set
of processors such that the completion time is mini-
mized, considering both processor load and communi-
cation overhead.

A set of work has been done for the task allocation
problem. The task allocation problem has been shown
to be NP-complete (Garey and Johnson, 1979) and a set
of heuristics have been proposed (Lo, 1988; Bowen et al.,
1992; Woodside and Monforton, 1993; Hui and Chan-
son, 1997). A drawback on these heuristics is the poor
quality on the assignment found. On the other hand,
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(Richard et al., 1982; Shen and Tsai, 1985; Sinclair,
1987; Peng and Shin, 1993; Hou and Shin, 1997; Lee and
Shin, 1997) proposed state-space searching methods
with differences in the problem formulation for various
applications and machine configurations. The state-
space searching approach finds an optimal assignment
at the cost of un-tractable time and space complexity.

In this paper, we propose a branch-and-bound algo-
rithm with a dominance relation to obtain an optimal
assignment. We follow the problem formulation defined
in (Shen and Tsai, 1985) to investigate the task alloca-
tion problem. The key idea to the efficient task alloca-
tion is that a dominance relation is proposed to reduce
the time- and space-complexity required for obtaining
an optimal assignment. We compare the performance
with A*-algorithm (Shen and Tsai, 1985) to demonstrate
the effectiveness of the dominance relation.

The key observation on deriving the dominance re-
lation is that tasks in the task graph can be clustered
into groups according to communication weights. A
group may consist of tasks suitable to be placed in the
same processor or in the same subnet in a hierarchical
architecture. A small cut in the task graph implies the
boundary of a task group in the clustering. The domi-
nance relation prunes task assignments violating the
clustering on tasks according to the cut.

This paper is organized as follows. In Section 2, we
formulate the optimization problem and model it as a
state-space searching problem. We then present the
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dominance relation in Section 3 and derive the task al-
location algorithm using the dominance relation in
Section 4. The experiment results are shown in Section 5.
Finally, a conclusion is given in Section 6.

2. Problem modeling

In this section, we present how the task allocation
problem is formulated and transformed into state-space
searching problem. This section defines the terminolo-
gies used in this paper and gives the framework of our
proposed task allocation algorithm.

2.1. Formulating task allocation problem

We follow (Shen and Tsai, 1985; Hui, 1997; Bowen
et al., 1992) to formulate the task allocation problem
for mapping parallel processes to processors. This
model assumes that there are little or no precedence
relationships and synchronization requirements so that
processor idleness is negligible. Contentions on com-
munication links are also ignored.

The optimization problem is formulated as follows.
The input to a task allocation algorithm is a task graph
G(T,E,e,c) and a machine configuration M(P,d). The

Fig. 1. Example of a task graph.

output, called a complete assignment, is a mapping that
maps the set of tasks 7 to the set of processors P. An
optimal assignment is a complete assignment with mini-
mum cost. The cost of an assignment is the turn-around
time of the last processor finishing its execution. To find
an optimal assignment, the branch-and-bound algo-
rithm will go through several partial assignments, where
only a subset of the tasks has been assigned. We define
the above terminology to formulate the task allocation
problem.

A parallel program is represented as a task graph
G(T,E,e,c). The vertex set of the task graph is the set of
tasks T = {#,#,...,t,1}. Each task #, € T represents a
program module. The edge set E of the task graph
represents communication between tasks. Two tasks ¢
and ¢; are connected by an edge if #, communicates with
t;. For each task #; € T, a weight e(#;) is associated with it
to represent the execution time of the task #. For each
edge (1, ;) € E, a weight ¢(t;, ;) is given to represent the
amount of data transferred between tasks ¢ and ¢;.

An example task graph is depicted in Fig. 1. Each
vertex is a task and the number on each task is the ex-
ecution weight e(#;) for the task #. Associated with the
number on edge (4, is the communication weight
c(t;,t;). Throughout this article, we will use this task
graph to demonstrate the idea behind our algorithm.

The machine configuration is represented as M(P,d).
P=A{po,p1,...,pm1} is the set of all processors. For
each pair of processors p,p; € P,k # [, a distance
d(pr, 1) 1s associated to represent the latency of trans-
ferring one unit of data between p; and p;. If two tasks ¢
and ¢; are assigned to different processors p; and p;, re-
spectively, the time required for task # to communicate
with #; is estimated to be c(t;,t;) * d(pi, pi). The com-
munication time between two tasks within the same
processor is assumed to be zero.

A machine configuration example is depicted in Fig. 2.
We take the hierarchical architecture as an example. The
machine consists of two subnets. It takes 5 units of time
to transfer a unit of data for two processors in the same
subnet and 20 units for two processors in different
subnets. Throughout this paper, we will use the hierar-
chical architecture to demonstrate the idea of our task
allocation algorithm. However, our proposed algorithm

| interconnection | Apip)
e l __________ eeemcees L ______________ . Di Py | Py by, | P3
| interconnection || interconnection | Do 5 120 20
] [ 8] | | S 20 | 20
e ] Lo e Ly | 7 20|20 0|5
subnet T T subnet ps |20 20] 5 | o0
(2) (b)

Fig. 2. Example of a machine configuration: (a) the hierarchical architecture; (b) the distance matrix (d(px, P)).
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can also be applied to other machine configurations with
non-uniform distances between processors.

A complete assignment A. is a mapping that maps the
set of tasks T to the set of processors P. To find a
complete assignment, our task allocation algorithm will
examine several partial assignments. A partial assignment
A is a mapping that maps Q, a proper subset of 7, to the
set of processors P.

The turn-around time of processor p;, denoted
TA,(4), under a partial/complete assignment A is de-
fined to be the time to execute all tasks assigned to py
plus the time that these tasks communicate with other
tasks not assigned to p;. That is,

> ety

TA(A) = > elt)+ Y

1i:A(tr)=pk 1 A(t)=pr 17:A(t;) %Pk

£ d(poA(L). (1)
The cost of a partial/complete assignment is the turn-
around time of the last processor finishing its execution
cost(4) = max TA.(4). (2)

processor pi
An optimal assignment A, is a complete assignment
with minimum cost

cost(Aop ) =min{cost(4.)|4. is a complete assignment}.

3)

2.2. Transforming to the state-space searching problem —
A*-algorithm

We solve the task allocation problem by state-space
searching with a dominance relation. Shen and Tsai
(Shen and Tsai, 1985) proposed a state-space searching
algorithm without dominance relation to solve the task
allocation problem. This state-space search method is
known as the A*-algorithm (Hart et al., 1968), which
has been proven to guarantee the optimality of the so-
lution obtained. Based on the A*-algorithm, we apply a
dominance relation to reduce the number of states to be
traversed. In our experiment, this A*-algorithm will be
used as a baseline for comparison with our branch-and-
bound algorithm.

As illustrated in Fig. 3, the state-space tree represents
all possible task assignments. We use an (n + 1)-level m-
ary tree to enumerate all possibilities of assigning » tasks
to m processors. In the literature of branch-and-bound
method, a node in the state-space tree is called a
branching state. In this study, a branching state repre-
sents either a partial or a complete assignment, de-
pending on whether the branching state is an internal
node or a leaf node in the state-space tree. In the re-
maining of this article, we will use the terms branching
states and partial/complete assignments interchange-
ably.

The traversal proceeds as follows. During the tra-
versal, an active set (Kohler and Steiglitz, 1974) (also
called the open set in some literature (Hart et al., 1968)),
denoted ActiveSet, is used to keep track of all partial/
complete assignments that have been explored but not
visited. In each iteration during the traversal, the fol-
lowing operations are performed:

Step 1. Remove a partial/complete assignment A,
from ActiveSet and visit A4,.

Step 2. If 4, is a complete assignment, terminate the
traversal and return 4, as the output.

Step 3. Generate children of 4, in the state-space
tree.

Step 4. Put each child node of 4, not pruned by the
dominance relation into ActiveSet.

For simplicity, we use ActiveSet*) to denote the con-
tents of the ActiveSet at the beginning of the kth itera-
tion, and 4% to denote the partial/complete assignment
visited in the kth iteration.

We follow the approach in Shen and Tsai (1985) to
determine the traverse order. For each partial/complete
assignment A, a lower-bound (denoted L(4)) on all
complete assignments extended from A4 (or A itself in
case that 4 is a complete assignment) is estimated. In
each iteration during the traversal, the partial/complete
assignment 4, with minimum Z(-) is removed from Ac-
tiveSet and visited. L(4) is computed according to the
additional cost of assigning tasks not assigned in A.

Given a partial assignment A4 assigning tasks Q C T,
we define ACy(t; — pi,A) to reflect the additional cost on
processor py if task ¢ is assigned to processor p;:

e

/to-r)o\ /tﬂ-rpl\ ;T)z\
t-->py t-->py th-->p; t-->py th->p, th=->p; t-->py 4-->p, 4-->p;

> 1>, >, . N .

7P TP [ ] ®  internal nodes: partial assignments

t-->py L->py G7P2

leaves: complete assignments Goal Nodes)

Fig. 3. State-space tree.
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AC(t; — pr,4) = e(t)) + Z c(ti t;) * d(pi, A(t;))
A

ift pr = pi, (4)

AC(l; — prA) = Y cltity) xd(pip)

i A(t)=pi

if pr # pi. (5)

For a partial assignment A4, the cost lower-bound L(A)
for all complete assignments extended from 4 is esti-
mated to be

L(A) = max (TAk(A)

processor py

Ay (prcgl;zgp,flckmpl,fl))).

timot assigned in A
(6)

Without dominance relations (Kohler and Steiglitz,
1974), the method presented so far is known as A*-al-
gorithm (Hart et al., 1968), which was originally pro-
posed by Shen and Tsai (1985) for task allocation. The
A-algorithm traverses all partial assignments with L(-)
less than the optimal cost. In the remaining sections, we
improve the algorithm by adding a dominance relation
to reduce the number of states traversed.

3. Dominance relation for space pruning

We propose a dominance relation to prune the search
space. We pick two partial assignments A; and 4, in
which the same set of tasks has been assigned. Suppose
cost(Ay) < cost(4,). We call 4, the winner and A4, the
loser. Let 47 _,. and 45_, ., be the complete assignments
with a minimum cost in the sub-tree below 4; and 4,,
respectively. We want to be able to check whether it is
possible that the winner—loser relationship will be re-
versed, that is, cost(4]_,.) = cost(4; ). Our pro-
posed dominance relation claims that what may reverse
the winner—loser relationship is the cut the weights of
edges between assigned and un-assigned tasks in the task
graph.

state-space tree: A &

3.1. Formalization of dominance relation

Definition 1 (Dominance relation). Let A; and 4, be two
partial assignments. We say 4, dominates A4, if we can
guarantee that cost(4|_,..) < cost(4y ,..) where A]
and 4)_, ., are complete assignments with minimum cost
extended from A; and 4,, respectively.

The inference rule we use to derive a dominance re-
lation is as follows. We omitted the proof since it is a
direct consequence from Definition 1.

Corollary 1 (Inference rule for deriving the dominance
relation). Let A, and A, be two partial assignments. A,
dominates A, if for any complete assignment A, extended
Jfrom A,, there exists a complete assignment A} extended
from Ay such that TA,(45) — TAL(4}) = 0 for each pro-
cessor py.

The idea to derive a dominance relation is depicted
in Fig. 4. The assignments 4, 4,4}, and 4, concerned
in Corollary 1 are shown in Fig. 4(a), where
S =T— Q. 4] and A4, are chosen such that 4, and 4,
have the same future extension. We rewrite the turn-
around time equation according to the task classifica-
tion shown in Fig. 4(b). In addition to
TA;(4>) — TA(4,), the communication time between
assigned and to-be-assigned tasks in 4;(4,) also con-
tribute to TA(45) — TA.(4}). This gives a lower
bound estimation on TA(45) — TA,(4}). The pro-
posed dominance relation checks whether 4, can be
pruned according to the estimated turn-around time
difference lower-bound.

We introduce the following notations:

* Execution(R) =), pe(t;) where R is a set of tasks.
» Communication(Ry,Ry) =3 cp >y, €(listy) * d (4, (8;),

A, (¢;)), where R, and R, are sets of tasks.

Following the classification on tasks shown in Fig.
4(b), we rewrite the turn-around time equation in the
following lemma. The proof is omitted since it is a trivial
computation from the turn-around time formula.

Lemma 1 (Reformulating the turn-around time). Let
A, be a partial assignment and A, be a complete assign-
ment extended from A,. Q is the set of tasks assigned in A,
and S is the set of tasks not assigned in A,. Then

;

tasks in p, tasks not in p;

(b)

Fig. 4. Idea behind deriving the dominance relation: (a) selection of partial/complete assignments; (b) classifications on tasks.
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TA(4,) = TA(4,) + Execution(Si(4,))

+ Communication (Qk (4.), Sk (Aa)>

+ Communication (Qk (4.), Sk (Aa))

-+ Communication (Sk(Aa), Sk(Aa)), (7)
where
o Oi(4a) ={t: € Ol4.(t:) = pi} and Ox(4,) = O — O(4,)
o Si(4y) = {6 € S|4,(6) = pi} and S (4;) = S — Si(4a)

Before stating the dominance relation, we state the
turn-around time difference lower-bound TADL,(4,,4,).
Let 4, and 4, be two partial assignments with the same
set of tasks Q, and S = T — Q. TADL,(4,,4,) is a lower
bound on TA(4)) — TA,(4}), where 4| and 4} are any
complete assignments extend from A, and 4,, respec-
tively, such that 4/(#;) = 45(¢;) for each task # € S.
TADL,(4;,4,) is estimated to be

TADLk(Al,Az) = TAk(Az) — TAk(Al)

+Z (mm (AC(t; — p1,42) — ACk(ti_)plaAl)))' (8)

epP
teS p

We then check whether 4, can be pruned or not by
computing TADL,(4,,4,) for each processor p;. If
TADL,(4;,4,) is greater than or equal to zero for each
processor py, it indicates that TA,(4)) — TAx(4]) =0
for each processor p; and hence we can prune 4,. This is
stated in the following theorem.

Theorem 1 (Dominance relation for space pruning).
Let Ay and A, be two partial assignments containing the
same set of tasks. If TADL(41,4,) = 0 for each pro-
cessor py, then A, dominates A,.

Proof. To draw a dominance relation by Corollary 1, we
pick the complete assignment 4 extended from A4, such

that A(1;) = 45(t;) for each ;€ S. The pattern is
depicted in Fig. 4(a). We want to show that
TA(4,) — TA(4]) = 0 for each p;.

We decompose both TA,(4,) and TA,(4]) as stated
in Lemma 1. Since 4/ (#;) = 45(¢;) for each #; € S, we have
e FExecution (Sk (A/z)) — Execution (Sk (A’l)) =0, and
o Communication(Si(45),Sk(45)) — Communication(Sy(4}),

SiA) =
Hence, we have

TA.(45) — TAL(4)) = TAL(4,) — TAk(A )
+ (Communication (Sk( , Qk

)
— Communication( Si(4}), O ))

(Commumcatlon (Sk (4), 04 ))
)

— Communication (Sk 4)),

Procedure DominateTest(4,,4;)
input:
— A,, A;: two partial assignments assigning the same set of tasks
output:
— returns True if 4, can be pruned, otherwise returns False
method:
1) prune ¢ True
2) for each processor p, do
if TADL (A,, A,)<0 then
prune ¢ False
break

3) return prune

Fig. 5. Examining partial assignments using the dominance relation.

:TAk(Az) TAk +Z ACk t; —>A ( ) Az)

— AC(1; _>A,2(ti)aAl))-l 9)

Taking a lower bound on the turn-around time differ-
ence, we have

TA(4}) — TAL(A})TA(4;) — TA(4))
+ me AC(t; — p1,4y) — ACy(t; — p1,41)).

l‘ES

The right-hand side of above inequality is the
TADL;(A4:,4,) defined previously. Hence if
TADL;(4;,4,) = 0 for each p, it implies 4; dominates
A, O

The procedure to detect whether a partial assignment
dominates another is depicted in Fig. 5. The procedure
computes TADL;(4;,4,) for each processor to deter-
mine whether 4, can be pruned or not.

3.2. Example of the dominance relation

We use the task graph in Fig. 1 and the machine
configuration in Fig. 2 to illustrate the idea of the
dominance relation given in Theorem 1. The partial
assignments concerned are 4, and 4, shown in Fig. 6(a).
A, is the winner and 4, is the loser in this comparison.
We apply Theorem 1 to guarantee that the winner—loser
relationship will not be reversed.

Assuming that 4, and 4, have the same future ex-
tension, the weights of the bolded edges in Fig. 6(b) are
the only factors that may reverse the winner—loser re-
lationship. Following the decomposition of turn-
around time stated in Lemma 1, execution time of
tasks {#;,%,...,t;2} and communication time between
these tasks will not reverse the winner—loser relation-
ship. Fig. 6(c) shows the effects on processor p, for all
possibilities of extending 4; and 4,. Theorem 1 states
that assignments of tasks #; and ¢y are the only pos-
sible causes to reverse the winner—loser relationship
since they both communicate with task #, — the primary
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Ay Ay o
%D p, IN)
1D p, 19D p,
6D py 6D p,
TA(A,)=1300  T4y(4,)=3750
TA,(4,)=0 T4 (4,)=3050
T4,(4,)=0 T4,(4,)=0
T44(4,)=0 T45(4,)=0

— edges that may reverse the
winner-loser relationship

(a)
ACy(tDppA,): AC(t2 ppAy):

Y L] Py )4 ) P3 % Ll Po )41 J ) J 4]
t 800 | 200 | 800 | 800 t; 800 [ 200 | 800 | 800
t, 700 | 150 | 600 | 600 t, 850 0 0 0
t, |750] o [ o | o t, |750] 0o | o | o
ts 1000 0 0 0 ts 1000 0 0 0
t; 1200 0 0 t; 1200 0 0 0
tg 1000 | 100 | 400 | 400 tg 1000 [ 100 | 400 | 400
ty 1000 0 0 0 ty 1000 0 0 0
to 450 50 200 | 200 to 500 0 0 0
ty, |600] 0o [ o [ o ty |600] 0 [ o | o
t, |80] o[ o o t, |80] o [ o [ o

© TA(A’,)-TA((A’}) 3750-1300+ (-600) + (-200) O
duetor, duetoz,

Fig. 6. Example to illustrate the dominance relation: (a) partial assignments in consideration; (b) the task graph; (c) effects on p, for all possible

extensions.

difference between 4; and 4,. The sum of communi-
cation weights between tasks {£,#} and {f,f0} is
small compared to the turn-around time lost in A4,.
This means that it is impossible for 4, to win back
what it has lost to 4; on processor py. Similar check
applied to other processors also leads to the same
conclusion. It indicates that the traversal of the sub-
tree rooted at 4, can be ignored. This is the primary
idea of the dominance relation.

4. Task allocation algorithm

We now present the task allocation algorithm. We
present how a good enumeration order is obtained in
Section 4.1. In Section 4.2, the branch-and-bound al-
gorithm along with the complexity analysis will be pre-
sented. We prove that an optimal assignment will be
found by the branch-and-bound algorithm in Section
4.3,

4.1. Preprocessing stage to determine the task enumerat-
ing order

The enumeration order plays an important role on
the performance of the branch-and-bound algorithm.
Our proposed dominance relation is effective when a
small cut between assigned and unassigned tasks is met.
To exploit the effectiveness of the dominance relation
before space overflow, the tasks should be enumerated
in an order such that heavily communicated tasks will be
enumerated consecutively.

The task enumeration order is determined by apply-
ing the max-flow min-cut algorithm recursively to par-
tition the task graph. Each time the max-flow min-cut
procedure is applied, the set of tasks is decomposed into
two partitions connected by a minimum cut. We repeat
the partitioning recursively until each partition contains
only one task. The whole partitioning process can be
represented by a tree. Each leaf in the tree represents a
group containing only one task. The enumeration order
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oty in}
{tostysests} {tg,to,..stin}
oot 1tostaola} s lests} }3@ W}
W @ W
/\ {%/}\{1‘7} UTER Y,

{tpn} {6} {1y
o} {0}

Fig. 7. Determining the task enumeration order.

is thus be determined as a sequence of all leaf nodes by
performing depth first traversal. For instance, the par-
titioning process for the task graph in Fig. 1 is depicted
in Fig. 7. Following this result, we obtain the enumer-
ation order that has been used for illustration in previ-
ous discussion.

4.2. The optimal branch-and-bound algorithm and its
complexity

The branch-and-bound algorithm is shown in Fig. 8.
This is based on the A* traversal scheme with addition
of the dominance relation for space pruning. The
dominance relation is applied to test whether a child of
the currently visited partial assignment 4, can be pruned
or not (cf. Step 4 in Fig. 8). We pick the child of 4, with
minimum L(-) as the killer to examining remaining child
of A4, (cf. Step 3.3 in Fig. 8). The partial assignment
child[k] is pruned and will not be inserted into the Ac-
tiveSet if the killer dominates child|k].

The time complexity encountered by both A*-algo-
rithm and our proposed algorithm to visit a branching
state is as follows. Let n be the number of tasks and m
be the number of processors. In the implementation,
AC(t; — p;,A")s for all children of the visited partial
assignment A, are calculated and stored in the AC-tables
first. Remaining quantities (TA, TAL,L,TADL) can

Algorithm BB-Alloc(G,M)
/* initialization phase */
—  L(root of the state-space tree) ¢ 0
— ActiveSet ¢ {root of the state-space tree}
repeat the following /* traversal phase */
1) remove a partial/complete assignment 4, with minimum L( ) from ActiveSet
2)if 4, is a complete assignment then return 4,
3) /* expand 4, and select the killer */
3.1) let #; be the last task assigned in 4,
3.2) for each processor p;, do
3.2.1) child[k] ¢ partial assignment extended from 4, by assigning £, to p;
3.2.2) compute L(child[k])
3.3) killer # child[i] where L(child[i]) = min {L(child[k]) | child[k] is a child of 4}
3.4) insert killer into the ActiveSet
4) /* insert each children (except for the killer) of 4, into ActiveSet if it cannot be pruned */
for each processor p; such that child[k] killer do
4.1) prune ¢ DominateTest(child[k]killer)
4.2) if prune=False then insert child[k] into ActiveSet

Fig. 8. The branch-and-bound algorithm to obtain an optimal as-
signment.

then be calculated by looking up the AC-tables. By
examining each edge in the task graph and accumulat-
ing communication costs into the AC-table, the 4C-ta-
ble for a partial assignment can be established in
O(n? * m) and AC-tables for all children can be estab-
lished in O(n* * m*). The quantity TAL,(-) can be cal-
culated in O(m * n) and L(+) for a partial assignment can
be calculated in O(m?*n). The time complexity to
compute L(-) for all children is O(m* x n). The ActiveSet
is implemented as a heap and the time complexity to
insert all children is O(m x n * (logm)). Both A*-algo-
rithm and our proposed algorithm encounters the
O(n* *m*)+ O(m®xn) time complexity to visit a
branching state.

Our proposed algorithm encounters an additional
time complexity to test for the dominance relation. In
general, the time complexity to compute TADL; (4, 4,)
is O(m * n). But we notice that, in the proposed algo-
rithm, the two partial assignments 4, and A4, for testing
differ in only the assignment of one task, say f#,.
For processor p; that 4,(t,) # pr and 4,(t,) # pr, we
have ACk(t,* —>p[,A1) = ACk(ti —>p],A2) forpk #p] The
quantity TADL,(4,,4,), for pi:4,(t.) #pc and
A (t,) # pr, can be written as

TADLL (41, 4>) = TA(4s) — TA(4y)
+ Z (AC(t; = pr,A2) — ACK(t;: — px, A2)).

t; not assigned

An implementation of procedure DominateTest with
time complexity O(n x m) can be achieved and the time
complexity to test the dominance relation for all chil-
dren of 4, is O(n* m?). The time complexity for the
proposed algorithm to visit a branching state is thus
O(n? xm?) +O(m* xn) + O(n*xm?) = O(n* xm*)+ O(m*xn).
Since the additional complexity is an order lower than
the base complexity required, it is worthwhile to spend
the additional complexity for reducing number of states
traversed.

The space complexity required by the proposed al-
gorithm is the same as that of the A*-algorithm. Besides
the ActiveSet, the AC-tables for all children of a partial
assignment occupy a space of O(n x m*). Note that 4C-
tables can be reused among different branching states
and the space does not grow with the number of
branching states traversed.

4.3. Correctness proof of the proposed branch-and-bound
algorithm

We now show that our proposed algorithm returns an
optimal assignment. We first show that the traversal
procedure reserves some optimal assignments in the
future search space. A complete assignment A, is said to
be in the future search space of ActiveSet™) if either
A, € ActiveSet™ or there exists a partial assignment
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A, € ActiveSet™ such that 4, can be extended from A,.
Provided that some optimal assignments survived in the
future search space, we show that the terminate condi-
tion implies the optimality of the solution obtained.

Lemma 2. During the traversal, there are always some
optimal assignments survived in the future search space.

Proof. If the pruned partial assignment can be extended
to be an optimal assignment, the definition of the
dominance relation implies that the killer can also be
extended to be an optimal assignment. The branch-and-
bound algorithm always inserts the killer into the Ac-
tiveSet (cf. Step 3.4 in Fig. 8) and hence there are always
some optimal assignments that survive in the future
search space. [

Theorem 2 (Correctness of our proposed algorithm).
Our proposed branch-and-bound algorithm will end up
with an optimal assignment.

Proof. A complete assignment A, will be removed from
the ActiveSet in the last iteration during the traversal.
The complete assignment returned is this 4.. We want to
show that A4, is optimal.

We prove this by contradiction. Suppose 4. is not
optimal. Consider the contents of ActiveSet"/) for the last
iteration j. Lemma 2 states the existence of an optimal
assignment A, in the future search space of ActiveSet").
Thus, we have cost(A.) > cost(Aop) since Aoy is optimal.
Let A4, be the ancestor of A, (or Aoy itself) in
ActiveSet). By the definition of L(-),L(4,) < cost(Aop)-
And hence L(4,) < cost(Aop) < cost(4;) = L(4.). How-
ever, A, is the one with minimum L(-) in ActiveSet”). This
means L(4.) < L(4,). This produces a contradiction and
hence proves this theorem. [

5. Experiments and evaluation

We evaluate the proposed task allocation algorithm
by feeding it with several configuration samples gener-
ated randomly. The test samples cover different degrees
of task clustering and parallelism to test the effectiveness
of the dominance relation.

5.1. Test samples generation

We randomly generate a set of task graphs and map
the task graphs to selected hierarchical machine archi-
tectures. In generating task graphs, the distribution on
weights and edge densities are chosen to cover all de-
grees of clustering on tasks. In selecting the machine
configuration, the processor distances are chosen such
that the parallelism in optimal assignments ranges from
using a few processors to using all processors in the

machine. The effectiveness of the dominance relation is
tested among various degrees of task clustering and
parallelism.

Following the scheme in (Bowen et al., 1992), we
generate task graphs by hierarchically combining small
sub-graphs. At the lowest level is a set of small complete
graphs, each containing 1-4 tasks. The lowest level sub-
graphs are then randomly combined to form a middle-
level sub-graph. The middle-level sub-graphs are then
randomly combined as a final task graph.

Randomly combining sub-graphs are guided by two
parameters, the execution-to-communication weight
ratio (denoted E/C ratio) and the edge density, defined
as follows:

[ ]

Average execution weight among all tasks

E/C= — s .
/ Average communication weight among all edges

e edge density = Probability that two vertices in differ-

ent sub-graphs are connected by an edge.
In the process of randomly combining sub-graphs, each
pair of tasks in different sub-graphs is examined. Whe-
ther there is an edge connecting these two tasks is de-
cided according to the edge density. Once an edge is
really chosen, the weight on the edge is determined ac-
cording to E/C ratio.

We denote the attributes of a task graph as a tuple of
E/C ratio and an edge density. Combination at each
level has its own E/C ratio. For example, a task graph
may be generated as follows: (1) selecting sub-graphs
with E/C =1 as the lowest level sub-graph, (2) com-
bining lowest level sub-graphs to form a middle level
sub-graph with £/C =5 and edge density =20%, (3)
combining middle level sub-graphs to complete a task
graph with £/C = 10 and edge density =20%. We de-
note such a task graph with E/C:(1, 5, 10) and edge
density = 20%.

The degree of clustering on tasks is controlled
through selecting the E/C ratio and the edge density.
The set of tasks can be clearly clustered into groups
when (1) the gap on E/C ratio between adjacent levels
is large, and (2) the sub-graphs are combined in low
edge density. In the experiment, the E/C ratio ranges
from 1 to 20 and the edge density varies from 20% to
80%.

Another input for the task allocation program is the
machine configuration. The machine configuration for
experiments is hierarchical machine similar to Fig. 2(a)
but with a larger size and different latency. In the ex-
periment, each machine consists of three subnet, and
each subnet consists of three processors. We fix the in-
tra-subnet latency to be one. The inter subnet latency
varies from 5 to 20. On mapping the same task graph to
different machines, the parallelism in optimal assign-
ments ranges from using processors in only one subnet
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to using processors across subnets. The parallelism de-
creases as the inter subnet latency increases.

5.2. Evaluation metrics

We compare the performance of the proposed task
allocation algorithm to A*-algorithm. Let n be the num-
ber of tasks and m be the number of processors. According
to Section 4.2, we estimate the time for the A*-algorithm
to visit a branching state as C; * n> * m> + C, * n * m?,
where C; and C, are some constants. Similarly, the time
for the proposed algorithm to visit a branching state is
C, *n? xm?> + Cy x nxm> + C; * n + m* for some constant
C;. Let ST be the number of states traversed by the pro-
posed algorithm and the number of states traversed by the
A*-algorithm is R times S7. The speed-up is thus

Speed-up
(Cyxn?xm?> + Cyxnxm’) xR+ ST
(Crxn?sxm?+ Cyxnsxm’+ Cyxn*xm?)«ST
R

= 7(73
1 + Cyxn+Cy*m

We estimate the constants on a PC with PentiumPro
processor and find that C; > C;. This is because es-
tablishing 4 C-tables is mainly the multiplication oper-
ations and testing the dominance relation is mainly table
lookup with the add operations. The speed-up can be
approximated by the ratio on traversed states when n
and m exceed certain threshold. We thus take the metric
to evaluate the effectiveness of the dominance relation as
follows.

speed-up ~ R
B number of states traversed by A x-algorithm
 number of states traversed by the proposed algorithm"

5.3. Experiment result

The performance is evaluated using 240 task graphs
and three hierarchical machine configurations. The task
graphs are generated according to six different £/C tu-
ples and four different edge density values, hence re-
sulting in 24 sets of task graphs. We generate 10 task
graphs per set. The three machine configurations differ
in the inter subnet latencies, varying from 5 to 20. The
combinations of task graphs and machine configura-
tions cover all degree of clustering on tasks and paral-
lelism to test the effectiveness of the dominance relation.

Fig. 9 shows the experiment results. Experiment re-
sults on different machine configurations are depicted in
different charts. We take the harmonic mean on the
speed-up for each set of ten task graphs generated under
the same E/C tuple and edge density. The speed-up
ranges from 1.02 to 1.68, depending on the degree of
clustering on tasks and parallelism. As expected, the

(Machin 1: inter subnet latency=20)
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Fig. 9. Performance of the proposed task allocation algorithm:
(a) performance comparison in Machine 1; (b) performance compari-
son in Machine 2; (c) performance comparison in Machine 3.

curves show that the dominance relation is effective
when the tasks can be clearly clustered into groups and
the parallelism becomes large.

6. Conclusion

In this paper, we proposed a two-stage task allocation
algorithm to obtain an optimal solution for the task al-
location problem. The first stage is a recursive parti-
tioning procedure for determining the task enumeration
order to exploit the effectiveness of the dominance rela-
tion. The second stage is a branch-and-bound algorithm
using the dominance relation to prune the search space
such that the time and space required can be significantly
reduced. We evaluate the performance of our proposed
branch-and-bound algorithm by comparing it to the A*-
algorithm for task allocation (Shen and Tsai, 1985).
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The dominance relation is the key to the efficient task
allocation. The key observation is that tasks can be
clustered according to the communication weights.
When the boundary of task clustering — a small cut — is
met, whether a sub-tree in the state-space tree needs
further traversal becomes clear. The dominance relation
determines whether a partial assignment can be pruned
according to the edge weights contributed to the cut.

The proposed task allocation algorithm is evaluated
on randomly generated task graphs. Compared to the
A*-algorithm for task allocation (Shen and Tsai, 1985),
the speed-up of our proposed algorithm ranges from
1.02 to 1.68, depending on whether the tasks can be
clearly clustered into groups. This shows the effective-
ness of the proposed dominance relation.

7. For further reading

Billionnet et al. (1992), Chou and Chung (1995),
Stone (1979), Tom and Murthy (1998).
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