
This article was downloaded by: [National Chiao Tung University 國立交通大學]
On: 27 April 2014, At: 22:50
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer
House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of the Chinese Institute of Engineers
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/tcie20

Capability indices for processes with asymmetric
tolerances
Kuen‐Suan Chen a & Wen‐Lee Pearn b

a Department of Industrial Engineering and Management , National Chin‐Yi Institute of
Technology , Taichung, Taiwan 411, R.O.C.
b Department of Industrial Engineering and Management , National Chiao Tung
University , Hsinchu, Taiwan 300, R.O.C.
Published online: 03 Mar 2011.

To cite this article: Kuen‐Suan Chen & Wen‐Lee Pearn (2001) Capability indices for processes with asymmetric tolerances,
Journal of the Chinese Institute of Engineers, 24:5, 559-568, DOI: 10.1080/02533839.2001.9670652

To link to this article:  http://dx.doi.org/10.1080/02533839.2001.9670652

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained
in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of
the Content. Any opinions and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied
upon and should be independently verified with primary sources of information. Taylor and Francis shall
not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other
liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or
arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any
form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions

http://www.tandfonline.com/loi/tcie20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/02533839.2001.9670652
http://dx.doi.org/10.1080/02533839.2001.9670652
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


Journal of the Chinese Institute of Engineers, Vol. 24, No. 5, pp. 559-568 (2001) 559

CAPABILITY INDICES FOR PROCESSES WITH ASYMMETRIC

TOLERANCES

Kuen-Suan Chen*
Department of Industrial Engineering and Management

National Chin-Yi Institute of Technology
Taichung, Taiwan 411, R.O.C.

Wen-Lee Pearn
Department of Industrial Engineering and Management

National Chiao Tung University
Hsinchu, Taiwan 300, R.O.C.

Key Words: process capability indices, process yield, process centering,
target value.

ABSTRACT

Process capability indices (PCIs) for processes with symmetric
tolerances have received substantial research attention.  But, PCIs for
processes with asymmetric tolerances have been comparatively
neglected.  Recently, Boyles (1994) reviewed the existing PCI litera-
ture and proposed several new indices to handle processes with asym-
metric tolerances.  In this paper we analyze PCIs based on various pro-
cess characteristics, then introduce a new class of capability indices to
handle processes with asymmetric tolerances.  The proposed new indi-
ces are compared with existing PCIs in terms of process yield, process
centering, and process characteristic related to loss functions.  The re-
sults indicate that the new indices are superior to the existing capabil-
ity indices, and provide greater accuracy in current applications using
PCIs to measure process potential and performance.

*Correspondence addressee

I. INTRODUCTION

Process capability indices (PCIs), whose pur-
pose is to provide a numerical measure on whether a
production process is capable of producing items
meeting the quality requirement preset by the
customers, have received substantial attention in the
quality control and statistical literature.  Examples
include Kane (1986), Chan, Cheng and Spiring
(1988), Choi and Owen (1990), Boyles (1991), Pearn,
Kotz and Johnson (1992), Franklin and Wasserman
(1992), Johnson (1992), Kushler and Hurley (1992),
Boyles (1994), Vannman (1995), Pearn and Chen

(1996), and many others.  Most research work,
however, has focused on developing and investigat-
ing PCIs for processes with symmetric tolerances.  A
process is said to have a symmetric tolerance if the
target value T is the midpoint of the specification in-
terval (LSL, USL).  That is, T=M=(USL+LSL)/2, where
USL and LSL are the upper and the lower specifica-
tion limits.

For processes with symmetric tolerances, sev-
eral capability indices have been proposed to provide
uni t l ess  measures  o f  p rocess  po ten t ia l  and
performance.  These include Cp, Cpk, Cpm, and Cpmk

(see Kane (1986), Chan, Cheng and Spiring (1988),
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and Pearn, Kotz and Johnson (1992)).  A superstruc-
ture containing these four basic indices may be
written as (see Vännman (1995)):

   
C p(u, v) =

d – u µ – M

3 σ 2 + v(µ – T)2
(1)

Where µ is the process mean, σ is the process stan-
dard deviation, d=(USL−LSL)/2, M=(USL+LSL)/2, T
is the target value, and u, v≥0.  It is easy to verify
that Cp(0, 0)=Cp, Cp(1, 0) =Cpk, Cp(0, 1)=Cpm, and
Cp(1, 1)=Cpmk.

As noted by Boyles (1991), Cp and Cpk are yield-
based indices which are independent of the target T,
which may fail to account for process centering (the
ability to cluster around the target) with symmetric
tolerances, but have an even greater problem with
asymmetric tolerances: process yield is maximized
(for fixed σ) by µ=M, but T≠M.  In this case, process
yield and centering are conflicting criteria.  For Cpm,
Pearn, Kotz and Johnson (1993) considered the fol-
lowing example (see Fig. 1) with asymmetric toler-
ance (LSL, T, USL), where T={3(USL)+(LSL)}/4, and
σ=d/3.  Then, for processes A and B with µA=T−
d/2=M and µB=T+d/2=USL both have the index value
of Cpm=0.555 and equal degrees of clustering around
the target (as |µ−T|=d/2 for both processes A and B).
However, the expected proportions nonconforming
are approximately 0.27% for process A and 50% for
process B.  Clearly, Cpm inconsistently measures pro-
cess capability in this case and is inappropriate for
asymmetric cases.  These problems call for a need to
generalize the four basic indices to cover cases with
asymmetric tolerances so that positive use of PCIs
can be continued.

II. EXISTING PCIS′  FOR ASYMMETRIC
TOLERANCES

There are several generalizations of Eq. (1) pro-
posed to  handle  processes  wi th  asymmetr ic
tolerances, which overcome some problems of Cpk

and Cpm.  The first generalization proposed for pro-
cesses with asymmetric tolerances shifts one of the
two specification limits, so that the new (shifted)

specification limits are symmetric to the target value
(see Kane (1986), and Chan, Cheng and Spiring
(1988)).  That is, the generalization replaces the true
specification limits (T−Dl, T+Du) with the new sym-
metric limits (unjustified sometimes) T±d*, where d*=
min{Dl, Dm}, Du=USL−T and Dl=T−LSL, then applies
the standard definitions of Cp, Cpk, Cpm, and Cpmk.
With this generalization, the indices defined in (1)
can be rewritten as the following:

   
C p

*(u, v) =
d * – u µ – T

3 σ 2 + v(µ – T)2
(2)

This approach yields the following generalized
indices   C p

*,   C pk
* ,   C pm

* , and   C pmk
* .  Unfortunately, these

generalized indices can understate process capabil-
ity by restricting the process to a proper subset of the
actual specification range, as observed by Boyles
(1994).  For example, consider a process with mean
µ=T−d/2=M, and standard deviation σ=d/3, where the
target value T = {3(USL) + (LSL)}/4 (see Fig. 2).
Then, we have   C pk

* =   C pmk
* =0.  The expected propor-

tions nonconforming, however, are approximately
0.27%.  Both indices   C pk

*  and   C pmk
*  severely under-

state process capability in this case.  It is clear that if
Du= Dl, then the production tolerance becomes sym-
metric and the generalized indices defined in (2) re-
duce to those basic ones defined in (1).

Another generalization proposed for processes
with asymmetric tolerances shifts both specification
limits (see Fig. 3) to obtain one that is symmetric
(Kushler and Hurley (1992), and Franklin and
Wasserman (1992)).  That is, the generalization re-
places the true specification limits (T−Dl, T+Du) with
the new symmetric limits (unjustified sometimes)
T± (Dl+Du)/2, then applies the standard definitions of
Cp, Cpk, Cpm, and Cpmk.  With this generalization, the
indices defined in (1) can be rewritten as the
following:

   
C p

′ (u, v) =
d – u µ – T

3 σ 2 + v(µ – T)2
(3)

This approach yields the generalized indices   C p
′ ,

Fig. 1 Process A and B both have Cpm=0.55.  But the expected
proportions non-conforming are 0.27% for A and 50% for
B

Fig. 2 The process has index values   C pk
* =   C pmk

* =0.  But the ex-
pected proportion non-comforming is no greater than
0.27%
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  C pk
′ ,   C pm

′ , and   C pmk
′ , which can either under-or over-

state process capability, depending on the position
of µ relative to T as noted by Boyles (1994).  For
example, consider the following two processes with
µA=T−d, µB=T+d/2=USL, σ=d/6, and T={3(USL)+
(LSL)}/4 (see Fig. 4).  Then, for process A we have

  C pk
′ =   C pmk

′ =0 , and for process B we have   C pk
′ =1.0 and

  C pmk
′ =0.32. For both indices   C pk

′  and   C pmk
′ , the val-

ues given to process B are higher than those given to
process A.  But, the expected proportion nonconform-
ing, of process B, is approximately 50%, which is sig-
nificantly greater than that (approximately 0.135%)
of process A.  Obviously, both indices   C pk

′  and   C pmk
′

understate or overstate process capability in this case.
We note that if Du=Dl.  Then the specification toler-
ance becomes symmetric and the generalized indices
defined in (3) reduce to those basic ones defined in
(1).

To overcome the problems with asymmetric
tolerances, Boyles (1994) Defined a smooth function
S(x, y)=Φ−1{Φ(x)/2+Φ(y)/2}/3, where Φ(x) is the cu-
mulative function of the standard Normal distribution.
Based on this smooth function, Boyles (1994) con-
sidered a new index Spk generalized from Cpk.  The
index is defined as Spk=S((USL−µ)/σ, (µ−LSL)/σ.  We
note that given Spk=c, we can calculate the process
yield as % yield=Φ((USL−µ)/σ)−Φ((LSL− µ)/σ)=2Φ
(3c)−1 for arbitrary values of c.  Therefore, Spk rep-
resents the actual process yield unlike Cpk which is
only approximately related to process yield (Boyles
(1994)).  Extending this generalization to the index
Cpmk, we obtain Spmk=S((USL−µ)/τ, (µ−LSL)/τ), where
τ=[σ2+(µ−T)2]−1/2 (see Boyles (1994)).  A superstruc-
ture for this generalization may be written as the
following:

   S p(v) = S(
USL – µ)

σ 2 + v(µ – T)2
,

µ – LSL

σ 2 + v(µ – T)2
) (4)

Where v≥0.  It is easy to verify that Sp(0)=Spk, and
Sp(1)=Spmk.

In a recent paper, Johnson, Kotz and Pearn
(1994) proposed a flexible Capability index called
Cjkp to handle non-normal populations.  Since the in-
dex Cjkp can be expressed as (3  2 )−1 min {Du/τ u,

Dl/τ l}, where (τ u)2=σ2{(1−Φ(ζ ))(1+ζ 2)−ζφ(ζ )},
(τ l)

2=σ2{Φ(ζ)(1+ζ2)+ζφ(ζ)} with φ(•) representing the
density function of the standard Normal distribution
and ζ=(µ−T)/σ, the corresponding Boyles’ generali-
zation for the Cjkp index then becomes Sjkp=Φ−1{Φ(Du/

 2 τu)/2+Φ(Dl/  2 τ l)/2}/3.  In addition to the above
generalizations, Boyles (1994) also considered the
following two indices:   C m

✩ ={3(λ1)1/2}−1, and   C pm
+ =

{3(λ r)
1/2}−1 for asymmetric tolerances, where λ 1=

(τu/Du)2+(τu/Du)2, λ r=2λ 1/(1+min{(r)2, (r)−2}), and
r=Dl/Du.  It is clear that if r=1 (or equivalently,
Du=Dl), then we have λr=λ1, and both generalizations

  C m
✩  and   C pm

+  reduce to the basic index Cpm.
Boyles (1994) analyzed these six capability

indices, Cpmk, Spmk, Cjpk, Sjpk,   C m
✩ , and   C pm

+ , and pro-
vided a comparison in order to assess their accuracy
in measuring process potential and performance.  The
comparison is based on several process characteris-
tics including (a) process yield, and (b) process
centering.  Boyles (1994) pointed out that:

(A) Cpmk and Spmk are superior to the other four
indices in terms of process yield.  Spmk is
closely reated to actual process yield, while
Cpmk is only related to approximate process
yield.  Thus, Cpmk may be viewed as an ap-
proximation to Spmk;

(B)   C m
✩ , Cjpk and Sjpk, provide no protection at all

with respect to process yield, and therefore
should not be considered further;

(C) Spmk guarantees levels of process yield con-
ventionally associated with given index levels,
c, across all r valued, while   C pm

+  provides such
guarantees only for ranges of (r, c);   C pm

+  places
bounds on µ proportional to tolerance, while
the bounds given to Spmk are disproportionately
sharp on the “long” side of the specification ;

Boyles (1994) concluded that Spmk is well-calibrated
with respect to process yield, and is most appropriate
for general use.

We point out, however, that for fixed standard
deviation σ, these six indices (including the most ap-
propriate index Spmk) obtain their maximal values

Fig. 3   C p
′ (u, v) shifts the given specification limits (LSL, USL)

to the new specification limits (LSL, USL) which are sym-
metric to the target T

Fig. 4 Process A has   C pk
′ =0, and   C pmk

′ =0.  Process B has   C pk
′ =1,

and   C pm
′ =0.32.  But, the expected proportions non-con-

forming are 0.135% for A, and 50% for B
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not at µ=T, but at some µ* which is between the
target value T and M=(USL+LSL)/2 (see Fig. 5).
The value of µ* relative to T and M reflects the
compromise established by each of the six indices be-
tween process  center ing  and process  y ie ld .
Consequently, these six indices may conflict or show
inconsistent results in terms of process yield, process
centering, and other process characteristics, and thus,
reflect process capability inaccurately.  For example,
consider the following case with asymmetric toler-
ance (LSL, T, USL)=(26, 50, 58). Assume we have
two processes  A and  B wi th  µA=49,  µ B=50
respectively, and standard deviation σA=σB=5.33.  It
is easy to verify that the index values of Cpmk, Spmk,
Cjpk, Sjpk,   C m

✩ , and   C pm
+  for process A are higher than

those for process B in this case.  While process B is
on-target, process A is off-target.  None of the six
indices discussed in Boyles (1994) reflect process ca-
pability accurately enough in this case.

III. NEW PCIS′  FOR ASYMMETRIC
TOLERANCES

In this section, we consider a new class of gen-
eralized capability indices.  The design of the new
PCIs is based on the following criteria used in Chio
and Owen (1990), Pearn, Kotz and Johnson (1992),
and Boyles (1994) in analyzing and comparing the
existing capability indices: (a) process yield, (b) pro-
cess centering, and (c) a process characteristic related
to loss functions. The new indices may be defined
as:

   
C p

′′ (u, v) =
d * – uF*

3 σ 2 + vF2
(5)

Where F=max{d(µ−T)/Du,  d(µ−T)/Dl}, F*=max
{d*(µ−T)/Du, d(µ−T)/Dl}, and u, v≥0.  This generali-
zation yields the following new indices   C p

′′ (0, 0)=   C p
′′ ,

  C p
′′ (1, 0)=   C pk

′′ ,   C p
′′ (0, 1)=   C pm

′′ , and   C p
′′ (1, 1)=   C pmk

′′ .  We
note that if T=M (tolerance is symmetric), then F=
F*=|µ−T| and generalized indices   C p

′′ (u, v) reduce to
the basic indices Cp(u, v) defined in Eq. (1).  Further,
if µ=T  (process is on target), then   C pmk

′′ =   C pm
′′ =

  C pk
′′ =   C p

′′ =d*/3σ.  But, in general, the relationships

among the four new indices   C p
′′ ,   C pk

′′ ,   C pm
′′ , and   C pmk

′′

can be established as the following:

   C pk
′′ = C p

′′ (1 – k) ,

   C pm
′′ = C p

′′ (1 + dK/σ]2)1/2 ,

   C pmk
′′ = C p

′′ (1 – k)(1 + [dK/σ]2)1/2 ,

Where K=max{(µ−T)/Du, d(T−µ)/Dl}=F*/d*.  Thus,
in developing the new indices we have replaced
|µ−T| with F*, and (µ−T)2 with F2 in (2).  This en-
sures that the new indices   C p

′′ (u, v) obtain the maxi-
mal values at µ=T regardless of whether the toler-
ances are symmetric or asymmetric.

For processes with asymmetric tolerances, the
corresponding loss function is also asymmetric to T.
We take into account the asymmetry of the loss func-
tion by adding the factors d*/Du and -d*/Du to µ−T
according to whether µ is greater, or less, than T.  The
factors d*/Du and -d*/Dl ensures that if processes A
and B with µA>T and µB<T satisfy (µA−T)/Du=(T−µB)/
Dl, then the index values given to A and B are the
same (Fig. 6).  It is easy to verify that if the process
is on the specification limits (µ=LSL, or µ=USL), then

  C pk
′′ =   C pmk

′′ = 0.  On the other hand, if LSL<µ<USL, then
we have   C p

′′ (u, v)>0.
In Figs. 7(A), 7(B), 7(C), we plot contours of

  C p
′′ (u, v) (dashed) and Spk (solid) for the standard in-

dex values; 1/3, 2/3, 1, 4/3, 5/3, and, 2, with Fig.
7(A) for   C pk

′′ , Fig. 7(B) for   C pm
′′ , and Fig. 7(C) for

  C pmk
′′ . In all three cases, we have   C p

′′ (u, v)<Spk for all
values of µ.  Thus, given a process with   C p

′′ (u, v)=c
which is 2{1−Φ(3c)}.  Further, given   C p

′′ (u, v)>c, we
can calculate the bounds on |µ−T| as:

   T –
(1 – R)D l

3c v + u(1 – R)
< µ < T +

(1 – R)D u

3c v + u(1 – R)
,

Where R=|1−r|/(1+r), and r=Dl/Du. Therefore, the
bounds on |µ−T| corresponding to   C pk

′′ >c would be
T−Dl<µ<T+Du (equivalently, LSL<µ<USL).  The
bounds on |µ−T| corresponding to   C pm

′′ >c would
be T−{(1−R)/3c}Dl<µ<T+{(1−R)/3c}Du, and the
bounds on |µ−T| corresponding to   C pmk

′′ >c would be

Fig. 5 For fixed σ, the existing indices obtain maximal values
not at T, but at some µ* that is between the target T and
midpoint m

Fig. 6 For fixed σ, the new indices obtain maximal values at T,
and give same index values to processes A, and B, satisfy-
ing (µA−T)/Du=(T−µB)/Dl
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T−{(1−R)/(3c+ 1−R)}Dl<µ<T+{(1−R)/(3c+1−R)}Du.

IV. COMPARISONS

In this section, we compare the new generaliza-
tions,   C p

′′ (u, v), with the existing generalizations

described in section 2.  We note that Boyles (1994)
has provided a comparison among the existing
indices, and made the conclusion that Spmk is the most
appropriate index for general use.  We will provide
the same comparison which is based on the criteria
used by Boyles (1994) including (1) process yield,
(2) process centering, adding another criterion (3) a
process characteristic (relationships to loss function)
considered by Choi and Owen (1990).  We first focus
on the relationships to the yield-based index Spk, and
second on process centering (the ability to cluster
around the target) in the form of bounds placed on
|µ−T|, and last on a process characteristic related to
loss functions.

1. Process Yield

Inspection of the contour plots in section 3 of
Boyles (1994) reveals that with asymmetric tolerances
the existing indices are maximized (for fixed σ) not
by µ=T, but by a value µ* between T and M (see Figs.
4(b), 5(b), 6(b), 6(c), 7(b), and 8(b) in Boyles (1994)),
as we indicated earlier.  On the other hand, we ob-
served that in Figs. 7(A), 7(B), 7(C), the proposed
generalizations   C p

′′ (u, v) are maximal (for fixed σ) by
µ*=T which occurs when the contours of   C p

′′ (u, v)
reach their maximal height at σ=σ*.  Assume the pro-
cess corresponding to µ=µ* and σ=σ* has Spk value
denoted as   S pk

* , a function of r and c, where r=Dl/Du.
Since   C p

′′ (u, v)<Spk, (the contours of   C p
′′ (u, v) are

undercovered by Spk contours for the same level c),
we conclude that if   C p

′′ (u, v)=c, then the process yield
must be no less than that corresponding to Spk=c.  It
can be easily seen that the condition   C p

′′ (u, v) with
µ*=T implies σ*=(d−|M−T|)/3c.

For the six indices, Cpmk, Spmk, Cjkp, Sjkp,   C pm
✩ ,

and   C pm
+  discussed in Boyles (1994), a comparison

based on process yield in terms of Spk for a continuum

Fig. 7 (A) Contours of   C pk
′′  (dashed) and Spk (solid) for the stan-

dard values 1/3, 2/3, 1, 4/3, 5/3, and 2 (top to bottom in
plot). (B) Contours of   C pm

′′  (dashed) and Spk (solid) for the
standard values 1/3, 2/3, 1, 4/3, 5/3, and 2 ( top to bottom
in plot). (C) Contours of   C pmk

′′  (dashed) and Spk (solid) for
the standard values 1/3, 2/3, 1, 4/3, 5/3, and 2 (top to bot-
tom in plot)

Fig. 8 Process yield in terms of Spk for a continuum of processes
with constant values c=1 and c=5/3 for the four indices
shown.  All the curves are symmetric about r=Dl/Du=1 on
a logarithmic scale (curves labeled ‘1’ for    C pk

′′ ,   C pm
′′ ,   C pmk

′′ ,
and curves labeled ‘2’ for Cpmk)
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of processes with constant values c=1 and c=5/3 is
provided (see Fig. 9 in Boyles (1994)).  Boyles (1994)
noted that only Cpmk and Spmk can assure that the pro-
cess yield is at or above nominal index levels for all
values of r.  In Fig. 8, we plot   S pk

*  curves for the new
generalizations   C p

′′ (u, v) and Cpmk at index levels
c=1 and c=5/3.  It can be seen that the   S pk

*  curves for
  C p
′′ (u, v) are bounded by the straight line c and the
  S pk

*  curve for Cpmk.  We note that for any level c the
  S pk

*  curve for Spmk is also bounded by the straight line
c and the   S pk

*  curve for Cpmk although it is omitted
from Fig. 8 (see also Fig. 9 in Boyles (1994)).  Thus,

  C p
′′ (u, v) (except for (u, v)=(0, 0)) guarantees process

yield at or above nominal index levels for all values
of r (like Cpmk and Spmk).

2. Process Centering

Process centering is defined as the ability of the
process to cluster around the target value T.  In most

cases, process centering can be measured by the de-
parture of process mean µ from the target value T,
|µ−T|.  If we impose the condition that the index value
is no less than a given level c, then we can calculate
the bounds on |µ−T| for the existing indices as well
as the new generalizations   C p

′′ (u, v), which can be ex-
pressed in the form:

T−klDl<µ<T+kuDu

For unitless functions (kl, ku) of r and c.  The (kl, ku)
values for the six indices discussed by Boyles (1994)
as well as the proposed new generalizations are dis-
played in Table 1, where c ′=Φ−1{2Φ(3c)−1}/3<c.
From Table 1, we can see that:

(a) The bounds for Spmk and Sjkp are very close
to but slightly greater than those for Cpmk and
Cjkp respectively.  Thus, Cpmk and Cikp are su-
perior to Spmk and Sjkp in terms of process
centering.

(b) The bounds for Cpmk and Cjkp are tighter than
those for   C pm

*  and   C pm
+ .  Thus, Cpmk and Cjkp

are superior to   C pm
*  and   C pm

+  in terms of pro-
cess centering.

(c) Since f (r)/(3c+f(r))<1, and f(r)/(3c+f(r))<
f(r)/3c, the bounds for   C pmk

′′  are tighter than
those for   C pk

′′  and   C pm
′′ .

Therefore, in Fig. 9 we only plot (-kl, ku) curves
(as a function of r) for indices   C pmk

′′ ,  Cpmk and
Cjkp with c=4/3.  In Fig. 9, we note that the bound for

  C pmk
′′ (curves labeled “1”) is significantly tighter than

that of Cpmk (curves labeled “2”) for all values of r.
The bound for   C pmk

′′  is also tighter than that of
Cjkp (curves labeled “3”) except for r≅ 1.  Therefore,

  C pmk
′′  is considered to be superior to Cpmk and Cjkp

(and hence superior to Spmk) in terms of process
centering.

Fig. 9 Bounds placed on |µ−T| for c=4/3 by the three indices
shown.  Positive values represent fractions of Du, nega-
tive values represent fractions of Dl, and 0 represents T
(curves labeled ‘1’ for   C pmk

′′ , curves labeled ‘2’ for Cpmk,
and curves labeled ‘3’ for Cjpk

Table 1  Constants for bounds on |m−T|  implied by various indices

kl ku

  C pk
′′ 1 1
  C pm
′′ f(r)/3c f(r)/3c
  C pmk
′′ f(r)/(3c+f(r)) f(r)/(3c+f(r))

Cpmk min{1/(3c+1), 1/r(3c−1)} min{1/(3c−1), 1/r(3c+1)}
Spmk min{1/(3c′+1), 1/r(3c′−1)} min{1/(3c′−1), 1/r(3c′+1)}

  C pm
✩ 1/(3c) 1/(3c)
  C pm

+ 1/{3c[A(r)]1/2} 1/{3c[A(r)]1/2}
Cjkp 1/{3c(2)1/2} 1/{3c(2)1/2}
Sjkp 1/{3c′ (2)1/2} 1/{3c′ (2)1/2}

Note: f(r)=1−|1−r|/(1+r)>0, where r=Dl/Du,
A(r)=2/(1+min{(r)2, (r)−2}), and c′=Φ−1{2Φ(3c)−1}/3
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3. A process Characteristic Related to Loss Func-
tions

In  the  fo l lowing ,  we  compare  the  new
generalizations   C p

′′ (u, v) with the six indices discussed
in Boyles (1994) based on a process characteristic dis-
cussed in Choi and Owen (1990), which is related to
loss functions.  As we discussed earlier, the new in-
dices   C p

′′ (u, v) obtain the maximal values when the
process is on-target (µ*=T).  On the other hand, the
six indices Cpmk, Spmk, Cjkp, Sjkp,   C pm

✩ , and   C pm
+  obtain

the maximal values when the process is off- target
(M<µ*<T).  To illustrate this point, we consider the
following example with specifications (LSL, T, USL)
=(26, 50, 58).  Since Du=USL−T=8, and Dl=T−
LST=24, the process has an asymmetric tolerance.

Table 2 displays the values of the six indices
discussed in Boyles (1994) as well as the proposed
new indices   C pk

′′ ,   C pm
′′ ,   C pmk

′′  for various values of µ,
with fixed standard deviation σ=8/3.  We note that in
Table 2, Cpmk, Spmk are maximized by µ*=49, and the
other four indices Cpmk,   C pm

+ , Cjkp, and Sjkp are maxi-
mized by µ*=48.  In all cases, we have M<µ*<T.  On
the other hand, the new generalizations   C p

′′ (u, v) are
maximized by µ*=50=T, and the index values are
1.00 for all three new indices   C pk

′′ ,   C pm
′′ , and   C pmk

′′ .
Further, the new indices have taken into account

the asymmetry of the loss function.  Thus, given two
processes A and B with µA>T and µB<T satisfying
(µA−T)/Du=(T−µB)/Dl, the (new) index values given
to A and B are the same.  Table 3 is a summary of
processes (taken from Table 2) satisfying (µA−T)/Du=

Table 2  A comparison among the new indices and existing ones for various of µ and fixed σ=8/3, (LSL, T,
USL)=(26, 50, 58)

µ   C pk
′′   C pm

′′   C pmk
′′ Cpmk Spmk   C pm

✩
  C pm

+ Cjkp Sjkp

26 0.000 0.164 0.000 0.000 0.178 0.331 0.247 0.234 0.391
27 0.042 0.171 0.007 0.014 0.188 0.346 0.258 0.244 0.399
28 0.083 0.179 0.015 0.030 0.198 0.361 0.269 0.255 0.407
29 0.125 0.187 0.023 0.047 0.210 0.378 0.282 0.267 0.417
30 0.167 0.196 0.033 0.066 0.233 0.396 0.296 0.280 0.427
31 0.208 0.206 0.043 0.087 0.237 0.417 0.311 0.295 0.439
32 0.250 0.217 0.054 0.110 0.253 0.440 0.328 0.311 0.452
33 0.292 0.229 0.067 0.136 0.272 0.465 0.347 0.329 0.466
34 0.333 0.243 0.081 0.164 0.292 0.493 0.368 0.349 0.483
35 0.375 0.258 0.097 0.197 0.316 0.525 0.391 0.371 0.501
36 0.417 0.275 0.114 0.234 0.343 0.261 0.418 0.397 0.523
37 0.458 0.294 0.135 0.276 0.375 0.603 0.449 0.426 0.548
38 0.500 0.316 0.158 0.325 0.412 0.651 0.485 0.460 0.577
39 0.542 0.342 0.185 0.383 0.455 0.707 0.527 0.500 0.611
40 0.583 0.371 0.217 0.451 0.506 0.773 0.576 0.547 0.652
41 0.625 0.406 0.254 0.533 0.565 0.853 0.635 0.603 0.702
42 0.667 0.447 0.298 0.632 0.632 0.950 0.708 0.672 0.764
43 0.708 0.496 0.351 0.667 0.706 1.072 0.799 0.758 0.843
44 0.750 0.555 0.416 0.711 0.778 1.231 0.917 0.872 0.948
45 0.792 0.625 0.495 0.765 0.845 1.443 1.075 1.029 1.096
46 0.833 0.707 0.589 0.832 0.911 1.719 1.282 1.259 1.316
47 0.875 0.800 0.700 0.914 0.987 2.003 1.493 1.612 1.657
48 0.917 0.894 0.820 1.000 1.086 2.052 1.530 1.947 2.010
49 0.958 0.970 0.930 1.053 1.119 1.739 1.296 1.376 1.482
50 1.000 1.000 1.000 1.000 1.068 1.340 1.000 1.000 1.068
51 0.875 0.800 0.700 0.819 0.899 1.033 0.770 0.755 0.840
52 0.750 0.555 0.416 0.600 0.699 0.817 0.609 0.590 0.691
53 0.625 0.406 0.254 0.415 0.538 0.664 0.495 0.476 0.590
54 0.500 0.316 0.158 0.277 0.425 0.553 0.412 0.394 0.520
55 0.375 0.258 0.097 0.176 0.347 0.469 0.350 0.333 0.470
56 0.250 0.217 0.054 0.102 0.292 0.406 0.302 0.287 0.433
57 0.125 0.187 0.023 0.044 0.254 0.356 0.265 0.252 0.404
58 0.000 0.164 0.000 0.000 0.225 0.316 0.236 0.224 0.383
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(T−µB)/Dl. For example, consider processes A and B
with µA=51>T, and µB=47<T.  Clearly, we have
(µA−T) /Du=1/8, and (T−µB)/Dl=3/24=1/8.  Thus, qual-
ity loss for processes A and B are the same.  Check-
ing Table 3 for the index values corresponding to
µA=51 and µB=47, we have   C pk

′′ =0.875,   C pm
′′ =0.800,

and   C pmk
′′ =0.700 for both processes A and B.  On the

other hand, the values the other six indices give to
process B are considerably higher than those given
to process A.  In particular, for indices   C pm

✩ ,   C pm
+ ,

Cjkp, and Sjkp the values given to process B are roughly
twice those given to process A.

V. ESTIMATION OF   C p
′′′′ (u, v)

To estimate the new indices   C p
′′ (u, v), Pearn and

Chen (1995) considered the natural estimators which
can be defined as the following:

   
C p

′′ (u, v) =
d * – uF

*

3 S 2 + vF
2

,

Where    F
*

= max{d *( X – T)/D u , d *(T – X )/D l}  and

  F = max{d( X – T)/D u , d(T – X )/D l} with   X =(    X iΣ
i = 1

n
)/

n, and    S = {(n – 1)– 1 (Xi – X )2Σ
i = 1

n
}1/2, the conventional

estimators of µ and σ which may be obtained from a
process that is demonstrably stable (in-control).

As an example, we consider the following pro-
cess with asymmetric specification tolerances
USL=16, T=13.5, and LSL=10.  Suppose the sample
mean   X =14, and the sample standard deviation S=
1.  Then, we can calculate d=(USL−LSL)/2=3, d*=min

{Du, Dl}=min{2.5, 3.5}=2.5,  F =max{d(   X −T)/Du,
d (T−   X ) /Dl}=0.6 ,  and    F

*
=max{d *(   X −T ) /Du,

d*(T−   X )/Dl}=0.5.  Thus, we may obtain   C p
′′
(u, v)=

(2.5−0.5u){3(1+0.36v)1/2}−1.  By setting (u, v)=(0, 0),
(1, 0), (0, 1), (1, 1), we obtain   C p

′′
=0.83,   C pk

′′
=0.67,

  C pm
′′

=0.71, and   C pmk
′′

=0.57.
Pearn and Chen (1995) investigated the statisti-

cal properties of the estimators   C p
′′
(u, v) and obtained

the exact distributions of   C p
′′
(u, v) although the deri-

vations were cumbersome.  Pearn and Chen (1995)
also derived the formulas for the exact r-th moment
(about zero) of the estimators   C p

′′
(u, v).  Expressions

of the r-th moment, the expected value, and the vari-
ance formulas as well as other inferential properties
are as complicated as those which appeared in
Vännman and Kotz (1995).  Further, Pearn and Chen
(1995) showed that in special cases where the speci-
fication tolerances are symmetric (Du=Dl), their re-
sults are identical to (reduce to) those obtained by
Vännman and Kotz (1995).

VI. CONCLUSIONS

In this paper, we first reviewed the existing gen-
eralizations of the basic capability indices Cp(u, v)
including   C p

*(u, v),   C p
′ (u, v), Sp(v) and many others,

which have been proposed to handle processes with
asymmetric tolerances.  Then, we introduced a new
class of generalizations which we referred to as

  C p
′′ (u, v).  The new generalizations   C p

′′ (u, v) are de-
veloped from the basic indices Cp(u, v) by taking into
account the asymmetry of the specification tolerance
(loss function).

The proposed new generalizations are compared

Table 3  The corresponding index values for processes satisfying (µA−T)/Dµ=(T−µB)/Dl

µ   C pk
′′   C pm

′′   C pmk
′′ Cpmk Spmk   C pm

✩
  C pm

+ Cjkp Sjkp

47 0.875 0.800 0.700 0.914 0.987 2.003 1.493 1.612 1.657
51 0.875 0.800 0.700 0.819 0.899 1.033 0.770 0.755 0.840
44 0.750 0.555 0.416 0.711 0.778 1.231 0.917 0.872 0.948
52 0.750 0.555 0.416 0.600 0.699 0.817 0.609 0.590 0.691
41 0.625 0.406 254 0.533 0.565 0.853 0.635 0.603 0.702
53 0.625 0.406 0.254 0.415 0.538 0.664 0.495 0.476 0.590
38 0.500 0.316 0.158 0.325 0.412 0.651 0.485 0.460 0.577
54 0.500 0.316 0.158 0.277 0.425 0.553 0.412 0.394 0.520
35 0.375 0.258 0.097 0.197 0.316 0.525 0.391 0.371 0.501
55 0.375 0.258 0.097 0.176 0.347 0.469 0.350 0.333 0.470
32 0.250 0.217 0.054 0.110 0.253 0.440 0.328 0.311 0.452
56 0.250 0.217 0.054 0.102 0.292 0.406 0.302 0.287 0.433
29 0.125 0.187 0.023 0.047 0.210 0.378 0.282 0.267 0.417
57 0.125 0.187 0.023 0.044 0.254 0.356 0.265 0.252 0.404
26 0.000 0.164 0.000 0.000 0.178 0.331 0.247 0.234 0.391
58 0.000 0.164 0.000 0.000 0.225 0.316 0.236 0.224 0.383
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with existing ones in terms of process yield, process
centering (the ability to cluster around the target), and
a process characteristic related to loss functions.  The
results indicate that: (1) the new generalizations,
particularly,   C pk

′′ ,   C pm
′′ , and   C pmk

′′  guarantee process
yield at or above nominal index levels for all given
index values (like Spmk, the index recommended by
Boyles (1994)), (2)   C pmk

′′  is superior to Spmk in terms
of process centering, and (3)   C pk

′′ ,   C pm
′′ , and   C pmk

′′  ob-
tain the maximal values (for fixed σ) at µ*=T
(on-target), while the others (including Spmk) obtain
the maximal values at some µ* with M<µ*<T (off-
target).  In practical application, process engineers
can set their machine parameter as target value when
Cp(u, v) is applied to evaluate process capability.
Large Cp(u, v) insures high process yield and small
Cp(u, v) indicates the chance of process improvement.
Thus, the proposed new generalizations are superior
to  existing ones, which provide a greater accuracy in
current practice of using PCIs to monitor process po-
tential and performance.
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NOMENCLATURE

µ the process mean
σ the process standard deviation
USL upper specifications limit
LSL lower specifications limit
d (USL−LSL)/2
M (USL+LSL)/2
T the target value
Du T−LSL
Dl USL−T
d* min{Dl, Du}
Φ(x) the cumulative function of the standard Nor-

mal distribution
Spk S((USL−µ)/σ, (µ−LSL)/σ
Spmk S((USL−µ)/τ, (µ−LSL)/τ)
τ [σ2+(µ−T)2]−1/2

(τu)2 σ2{(1−Φ(ζ ))(1+ζ 2)−ζφ(ζ )}, (τ l)
2=σ2{Φ(ζ )

(1+ζ2)+ζφ(ζ)}
φ(• ) representing the density function of the stan-

dard Normal distribution
(τ l)

2 σ2{Φ(ζ)(1+ζ2)+ζφ(ζ)}
ζ (µ−T)/σ
Sjkp Φ−1{Φ(Du/  2 τu)/2+Φ(Dl/  2 τ l)/2}/3

  C pm
✩ {3(λ1)1/2}−1

  C pm
+ {3(λ r)

1/2}−1

λ1 (τu/Du)2+(τ l/Dl)
2

λ r 2λ1/(1+min{(r)2, (r)−2})

r Dl/Du

F max{d(µ−T)/Du, d(T−µ)/Dl}
F* max{d*(µ−T)/Du, d*(µ−T)/Dl}
K max{(µ−T)/Du, dT(−µ)/Dl}=F*/d*

R |1−r|/(1+r)
σ* (d−|M−T|)/3c
c′ Φ−1{2Φ(3c)−1}/3

  F
*

max{d*(   X −T)/Du, d*(T−   X )/Dl}
F max{d(   X −T)/Du, d(T−   X )/Dl}

  X    ( XiΣ
i = 1

n
)/n

S    {(n – 1)– 1 (Xi – X )2Σ
i = 1

n
}1/2
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