H

X

ELSEVIER

Computer Standards & Interfaces 23 (2001) 325-340

COMPUTER STANDARDS
t INTEREACES

www.elsevier.com/locate/csi

A unified interface for integrating information retrieval

Y ue-Shan Chang *, Min-Huang Ho ®, Shyan-Ming Y uan®

& Department of Electronic Engineering, Ming-Hsin Institute of Technology, 1 Hsin-Hsing Road, Hsin-Fong, Hsin-Chu 304 Taiwan
® Department of Computer and Information Science, National Chiao Tung University, Hsin-Chu 31151 Taiwan

Received 5 March 2001, returned for revision 28 April 2001; accepted 7 June 2001

Abstract

In this paper, we propose a unified interface and a flexible architecture for querying various information sources on the
Internet and the WWW using both a popular object model and a data model. We propose an Integrated Information Retrieval
(IIR) service based on the Common Object Service Specification (COSS) for Common Object Request Broker Architecture
(CORBA) and apply the Document Type Definition (DTD) of eXtensible Markup Language (XML) to define the metadata
of information sources for sharing the ontology between mediator and wrappers. The objective of using the IIR design is not
only to provide programmers with a uniform interface for coding a software application that can query a variety of
information sources on the Internet, but also to create a flexible and extensible environment that easily allows system
developers to add new or updated wrappers to the system. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Unified interface; Integrated information retrieval; Meta-Search; Object-oriented; CORBA; XML; Interoperability

1. Introduction
1.1. Problems and motivations

The retrieval of information dispersed among
multiple and heterogeneous sources requires a gen-
eral familiarity with their contents and structures,
with their query languages, and with their location
on existing methods. In addition, each type of infor-
mation source has its own proprietary protocol over
standard transport protocol. A client who wants to
retrieve information from those information sources

* Corresponding author. Tel.: +886-3-5591-402; fax: +886-3-
5572-930.
E-mail addresses: ysc@mhit.edu.tw (Y .-S. Chang),
smyuan@cis.nctu.edu.tw (S.-M. Y uan).

has to follow their protocols as well as the standard
transport protocols. Therefore, the development of
software to ease the integration and interoperation of
existing information sources is one of the most sig-
nificant challenges currently facing computer re-
searchers and developers.

Many systems have been proposed for services to
accomplish information retrieval, that is, the gather-
ing and integration of multiple, distributed, hete-
rogeneous, autonomous information sources on the
WWW and the Internet. There are, for example,
Information Manifold [1], InfoSleuth [2], TSIMMIS
[3,4], OBSERVER [5,6], SIMS [7-9], WebFINDIT
[10]. Most, however, share one or more of the fol-
lowing problems.

- Most existing systems have been cheerfully de-
veloped with proprietary technologies, a fact, which
deters users from applying them.

0920-5489,/01/$ - see front matter © 2001 Elsevier Science B.V. All rights reserved.

Pll: S0920-5489(01)00083-6

326 Y.-S. Chang et al. / Computer Standards & Interfaces 23 (2001) 325-340

«An industrial standard and modularized pro-
gramming environment helps an applications devel-
oper to create elaborate applications. Programmers
using most existing systems find that the systems do
not support an Applications Programming Interface
(API) and are forced to develop their own program-
ming interface. Even when an API is supported, the
programmer needs to spend extra effort on informa:
tion delivering over the network.

- It is important for a system to have flexibility,
extensibility and scalability. There are fewer existing
systems that provide the extensibility needed when
their information space dynamically changes.

- The ontology of the information sources is
shared. The metadata management of information
sources is useful when retrieving and extracting in-
formation. So that, the system has to provide with
accessing and maintaining the metadata of informa
tion sources to guarantee the consistency of the
ontology and to provide a robust updating capability
with information sources.

- To speed up the development of the system, it is
far more preferable to have the service provider
rather than the system developer implement the in-
formation source wrapper. This is because the ser-
vice provider is more informed about information
sources and about the interface. But given the lack of
a unified API, this situation is not easily achieved
with existing systems.

To transparently access heterogeneous informa-
tion sources, data suppliers and consumers need to
be decoupled by a unified and integrated interface. In
this paper, we propose an Integrated Information
Retrieval (1IR) for the Common Object Request Bro-
ker Architecture (CORBA) [11] of Object Manage-
ment Group. The design of the IIR interface follows
the style of Common Object Service Specification
(COS9) [13]. IR provides mechanisms for separat-
ing users from complicated semantics while federat-
ing the multiplicity of information.

In addition, certain projects for gathering and
integrating information are implemented by agent
technology, examples of which are seen in Refs. [10]
and [14]. As may be seen in Ref. [15], the distribu-
tion of the information gathering leads naturally to a
desire for cooperative software agents with dis-
tributed problem-solving mechanism for locating, re-
trieving and integrating information sources. We also

applied agent technology to implement the IIR in-
frastructure. A wrapper associated with an informa-
tion source is implemented and configured as an
agent, and it is through the information-broking agent
that al query requests are dispatched to relevant
wrappers.

1.2. Objectives

This paper has the following major objectives.
First, we propose a uniform interface for information
retrieval and gathering in an approved standard of
distributed object-oriented environment. This offers a
programming interface to retrieve what applications
are wanted, and uses agent technology [16] to imple-
ment the infrastructure of IIR. Since the architecture
of 1IR is of an N-tier client/server model and its
interface is uniform, any specific application that
needs to retrieve information from the Internet or the
WWW needs only to initiate the query operation of
an agent via lIR. Programmers need neither explore
the interface of various information sources nor con-
struct query components in their applications.

Second, each type of information source has its
own query language, schema and attribute. With this
approach, it is necessary to support an extensible
environment that will allow integrating various infor-
mation sources in the future. We propose an extensi-
ble environment that permits source providers to
define their own query interface and schema in
a well-known object model and language. As for
application programmers, it is not necessary via
the IR framework that they explore query inter-
faces of information sources when querying infor-
mation. Section 3 will describe the IIR interface
with flexible metadata management and data repre-
sentation.

Third, the Document Type Definition (DTD) an-
nounced by the World Wide Web Consortium
(W3C)! is a popular description language of schema.
We apply the DTD of eXtensible Markup Language
(XML) to define the schema of information sources,

! http: / /www.w3c.org.

Y.-S. Chang et al. / Computer Standards & Interfaces 23 (2001) 325-340 327

and to provide the interface in the IR for managing
metadata. A client may easily initiate a query opera-
tion of metadata to obtain the schema of information
SOurces.

Fourth, due to the unity of interface, a service
provider can easily implement a wrapper for their
information sources on the CORBA environment and
speed up the system development. This is reasonable
because the service provider is far more informed
about information sources. The system, therefore,
has scalability.

In addition, both the object model of CORBA and
data model of XML are the approved standards and
are widely accepted by the industry and so will be by
users and programmers.

Finally, we adopt Structured Query Language
(SQL) in the IIR for transparently querying informa-
tion from various sources on the WWW and the
Internet. SQL has been adopted not only in the
relational database but also in HTML-based [17] and
XML-based [18] documents. IIR can seamlessly
combine references to the Web with references to the
relational database. Anyone familiar with SQL can
create programs using |IR easily.

The challenge is to provide across-the-board
transparency that allows clients to use Web-based or
Internet-sharing data irrespective of platforms, loca-
tions, or systems. There are some difficulties [14]
concerning the processing, retrieval, gathering and
integration of information on the Internet. Refs. [19]
and [14] depict the key challenges to providing con-
sistently convenient access to information sources
despite changes in sources and application systems.
In Section 5, we explain how the IIR design resolves
these challenges.

This paper is organized as follows. Section 2
describes the background to designing and imple-
menting the IR and surveys the related works. Sec-
tion 3 mainly depicts the design of the IIR. We
examine some design issues including IR architec-
ture, query language, data model, metadata manage-
ment and programming scenario. Section 4 presents
two applications using the IR, the first is being a
meta-search engine, and the second, an Information
Retriever based on the Z239.50. Section 5 discusses
the challenges and advantages about applying IIR to
deploy the applications, and gives the future work.
Section 6 presents conclusions.

2. Background
2.1. XML data model

Recommended by the World Wide Web Consor-
tium (W3C)?, XML is a subset of Standard General-
ized Markup Language (SGML). It is a description
language for representing documents, and is defined
inaDTD. A DTD defines the types of elements that
can be used in the document and the possible rela-
tionships between them. An element can be thought
of as a kind of container for each distinct thing in a
document. It is up to the person who creates the
DTD to decide exactly what the “things” are. A
document instance has a preferred hierarchy in which
there are two kinds of relationships between ele-
ments: parent—child and peer—peer.

The DTD can aso be used as a specification
modeling language, which specify the specification
of an information system [20]. The DTD used in this
paper is to specify the specification of information
source, as shown in Fig. 1. The specification is used
for modeling the capability and the output of the
information agent. Clients retrieving information
from sources can refer to the syntax shown in the
specification to formulate the expression of a query.
The specification can aso be viewed as metadata of
information sources in |IR. The metadata will be
described in Section 2.2. In addition, the specifica
tion will be also a material for generating the infor-
mation agent in the future. The XML is also used for
representing the data of query results from the infor-
mation sources.

2.2. Related works

Except for those systems mentioned in Section 1,
here, we present two CORBA-based information re-
trieval services: OQS [13] and ZORBA [26].
2.2.1. OQS of CORBA

To uniform the access interfaces for heteroge-
neous databases, OMG proposed an Object Query

2 ttp: / /www.w3c.org/XML.

328 Y.-S. Chang et al. / Computer Standards & Interfaces 23 (2001) 325-340

Information
source
specification

Individual
source
characteristj

Written in
custom
language

Fig. 1. Specification modeling architecture.

Service (OQS) on CORBA to provide query opera-
tions on collections of objects. OQS provides stan-
dard interfaces, which form a framework for han-
dling queries, can be sub-typed for further functions
and aso for returning collections of objects. The
OQS design provides the architecture for a nested
and federated service that can coordinate multiple
nested query evaluators. The OQS covers the follow-
ing operations.

1. Prepare the query for execution.

2. Execute the query.

3. Determine the preparation and execution status
of the query.

4. Obtain the result of the query.

In addition, the OQS provider must support at
least one of the following two query languages: SQL
(Structured Query Language) or OQL (Object Query
Language). According to the above description, OQS
covers basic query and result collection operations. It
has not stressed the points described in Section 1.

2.2.2. ZORBA

ZORBA [26] is an information retrieval technol-
ogy using distributed objects. It is intended to pro-
duce a standard re-usable interface for performing
distributed search and retrieval, and to provide sup-
port for all aspects of distributed resource discovery
over a variety of information sources available on

the Internet using distributed object technologies. It
defines a set of interfaces in CORBA IDL. The
interfaces only include information query. Obvi-
oudly, it is similar to the OQS. This interface does
not yet deal with the following:

1. sorting query results,
2. metadata schema(s), and
3. query languages.

3. Design of integrated information retrieval

A flexible architecture and framework can im-
prove access transparency, system scalability and
extensibility. We dedicate our IIR design to such
participants as data providers and information inquir-
ers who can dynamically join the system flexibly, no
matter what types of information are concerned. Any
information source can at any time be joined dynam-
icaly into the system. An IIR client can obtain the
information about information sources by inquiring
their metadata. A service provider can aso replace,
access, and maintain the metadata of information
sources and provide an adaptable environment.
M etadata management and the extensibility and scal-
ability of system critically enforce the IIR. In addi-
tion, we propose that the system should be capable
of retaining the autonomy of a jointed local query
system, that is, that the IR and local query systems
should co-exist.

The following is a detailed explanation of the
design of the IR framework and of the approaches
needed to accomplish the objectives stated in Section
1, especialy including IR architecture and interface,
metadata management, query language and IR pro-
gramming example, etc.

3.1. IR architecture

IR architecture is simple and complete. From the
client’s perspective, the requirements are a uniform
access interface as well as a unified data model for
representing the results of queries. With IIR, clients
use a standard query interface to acquire information
based on a CORBA object model.

Y.-S. Chang et al. / Computer Standards & Interfaces 23 (2001) 325-340 329

Fig. 2 depicts IIR architecture. It comprises Infor-
mationRetriever, MetaData, Wrapper and Collec-
tor. InformationRetriever acts as a mediator for
dispatching query requests to the wrappers of infor-
mation source and collects the results. A client pro-
gram sends a query request to the information sources
by first obtaining the InformationRetriever object
from a Factory object. Due to the access trans-
parency, the operations for querying all information
sources using IIR are the same. A client queries
information sources by mean of invoking Informa-
tionRetriever. The InformationRetriever activates
corresponding wrapper(s) according to the query
string involved in the parameter of query operation.
It is obvious that clients accessing information
sources are completely transparent by invoking an
InformationRetriever object.

MetaData class is the management of metadata.
Its purpose is to minimize the degree of complexity
for federating heterogeneous information sources.
With IIR, it has three following functions. First, a
client can query the MetaData, construct a world-
view and formulate the query string when it is
unfamiliar with the schema and the semantics of
accessed information sources. Second, the metadata
is the ontology with respect to information sources.

Eesults Query Request

1

The InformationRetriever and the Wrapper shares
the metadata in querying information sources and in
translating the content of the query. InformationRe-
triever will refer to the metadata in judging the
query string and determining the related wrapper
when it receives a query request. MetaData provides
the ability of access transparency for the IIR. Finally,
IIR is needed to enable management of the metadata
when the source dimension changes, that is, for
example, for adding or deleting a wrapper of infor-
mation source. Neither the query operations in client
nor the objects in IIR are necessary to be changed.
The InformationRetriever refers the metadata and
judges the meaning of the query operation. Obvi-
oudly, the IR have extensibility and scalability. There
is a need to have some supporting methods for the
management of metadata in 1IR.

The Wrapper is responsible for tranglating the
query request into the request format associated with
the information source and the results from the local
system data representation to the IR system. If the
results are from multiple similar sources, they are
filtered. The wrapper activates the Filter object ac-
cording to the kind of sources. The result is packed
into a standard format, for example, XML, and put
into the Collector object. Finally, the Collector col-

Dispatcher
/CORBA Client

Factory

{

e |
NI\ o~

) W

Clollector

Information
Retriever

Fig. 2. Architecture of IIR.

330 Y.-S. Chang et al. / Computer Standards & Interfaces 23 (2001) 325-340

lects the result and trandates it into export view. For
the client, 1R supports a unified invocation approach
for querying source and obtaining results.

3.2. Query language

Query language is for formulating the expression
of query to a well-developed system. The most
popular query language for querying relational
databases and Web-based documents [17,18,21] is
the SQL. The many benefits of using the SQL as the
query language in Web-based documents are listed
in Ref. [17]. Owing to these benefits and the integra-
tion of various information sources that maybe con-
figured on the WWW or the Internet, we decided to
adopt the SQL as the query language rather than
invent a new one. In this way, the query language of
IR provides programmers with the illusion that the
information sources are stored and organized in a
relational database.

As mentioned above, the purpose of IIR is to
integrate the information retrieval of information
sources on the WWW and the Internet. It is neces-
sary to clarify the supported sources in IIR. It is
obvious that the tied sources must be sources that
can be queried in SQL, such as the DBMS (Data
Base Management System), Internet- and WWW-
based processing system and the Web-based docu-
ments, because the query language used in IIR is
SQL. For example, the search engine on the WWW
and the Z39.50 service mentioned in Section 4.
Naturally, SQL can be used on the Internet for any
service that can be queried.

As we know, a schema describes the structure of
a relational database, i.e. the tables, fields and the
rel ationships between them. For example, the schema
for a student database might include a table with
the following fields. first_name, last_name, stu-
dent_number and address, where each student has a
distinct student_number, but different students may
have the same first_name or last_name.

Generally, a Web-based document or a Web-based
processing system involves a table, even if it has
multiple backend physical databases because it has a
single interface to query inner data via the Common
Gateway Interface (CGI) program. For example,
search engine and biographical query system. Such

the systems, we can suppose the whole system con-
tains only a single table. The table name is defined
as the service name. For example, users desire to
obtain, in general, the title, description, and URL
associated with a specific keyword from a search
engine. In this way, a search engine can be viewed
as a single table database including three fields, even
if most search engines consist of many backend
physica databases, and users can query specific
keyword through the table. Not al information
sources certainly do not simply consist of a table in
their database. The service provider can identify the
number and the name of table in an information
source.

3.2.1. Query in search engine

Next, we show examples of how the query lan-
guage can be used to query the desired data from
information sources. It is assumed that the schema of
the search engines generally involves description,
title and URL. Each search engine has its own search
conditions. For example, Ref. [23] shows the search
conditions for Yahoo and Altavista search engines.
These conditions form the WHERE clause of the
SQL language when it is used to query search en-
gines.

1. //Show the information about the “CORBA”
from Y ahoo.

SELECT® FROM Yahoo WHERE Keyword
= “CORBA”;

2. //Show the URL about the “MP3” from Al-
tavista that tag is “text”.

SELECT URL FROM Altavissa WHERE
Keyword = “MP3” and Tag = “text”;

The example shows that the query operation is
invoked with a specific condition excepting the
keyword condition. The condition “Tag” means
the keyword is placed in the “text” of WWW
document.

3. //Show the Title and URL for the “Program-
ming Language” and “Object-oriented” from
Yahoo and Altavista
SELECT Title and URL From Yahoo and
Altavissta WHERE Keyword = “Program-
ming Language” and Keyword = “Object-
oriented”;

Y.-S. Chang et al. / Computer Standards & Interfaces 23 (2001) 325-340 331

Table 1
InformationRetriever interface

Interface InformationRetriever{

}
Interface Wrapper{

}

MetaData Get_meta(in QuerySourceType);
Wrapper prepare (in ParameterList pl, in QuerySourceName
gsName, in QueryLanguageType qlType)

Collector Query() raises(QueryProcessingError, Querylnvalid);

The example shows that the query operation is
invoked in two search engines—Yahoo and Al-
tavista. IR will accept the request and dispatch it to
the wrappers associated with Yahoo and Altavista,
respectively. When obtained, the results from two
wrappers are merged.

In addition, combining the second and third ex-
amples creates a problem in which a condition might
conform to the rule of one search engine but not the
other. For example, a user can query a certain key-
word placed in the “Anchor” tag from the Altavista
search engine, but may not be able to do so with
Y ahoo.

Search engine is a type of WWW query system
that has no manifest schemas of information sources.
The query language that can be applied in the search
engine can aso be applied in other WWW query
systems that can be abstracted of SQL syntax, such
as Squeal [17], while tying these systems to IIR.
Similarly, other WWW-based information sources
with manifest schema, such as XML document [18],

Table 2
MetaData interface

can also apply the query language to query informa-
tion.

3.3. lIR interface

All 1IR interfaces are structured according to the
IIR architecture described in Section 3.1. In this
section, we describe most 1R interfaces.

In IR, the InformationRetriever interface has
two methods, which are Get_meta() and prepare(),
as shown in Table 1. The purpose of the Get_meta()
operation is to obtain the MetaData associated with
the query language type and return a MetaData
object reference. The prepare() operation is for
preparing a query request and obtaining a Wrapper
object. A client uses this method to send a query
string to the InformationRetriever. The Information-
Retriever then makes a decision over which wrapper
to invoke through comparing the passed query string
with the content of metadata. The InformationRe-
triever then invokes the associated Wrapper and

Interface MetaData{

Boolean QL _Available(in QuerySourceType qsType);
Boolean Regsitry(in QuerySourceMeta metadata);
Boolean Unregsitry(in QuerySourceName qsName)
Boolean Replace(in QuerySourceName gsName, in
QuerySourceMeta metadata);
QuerySourceMeta get(in QueryLanguageType ql_type)

332 Y.-S. Chang et al. / Computer Standards & Interfaces 23 (2001) 325-340

returns its object reference to the client. The client
need not know how to invoke the wrapper. That can
be done by invoking a unified information retrieval
interface—InformationRetriever. Similarly, client
can obtain the results from a Collector object regard-
less of what kind the information sources are. Of
course, the InformationRetriever needs to parse the
query string and overlook all the metadata stocked in
the MetaData object. Section 3.4 explains the meta-
data management in detail. In addition, the Wrapper
object has only one method—Query(), which is to
execute the query request and return the result that
are kept in the Collector.

The next interface is the MetaData, as shown in
Table 2. As described in Section 1, the management
of the metadata of information sources is useful for
retrieving and extracting information. For this rea
son, the system must have access and maintain the
metadata of information sources to guarantee the
consistency of the ontology and to provide robust-
ness with respect to updating information sources.
This interface maintains the metadata of the informa-
tion source, and this metadata involves learning about
how to make a query and what is in the reply. When
a client program wants to invoke a query request to
specific source, it can examine the MetaData to
obtain the format of the query request and the schema
of the result, while the client does not need to know
about the information source. MetaData has five
methods. They are: QL_ Available(), Registry(), Un-
registry(), Replace() and get(). The QL_ Available()
operation is used to examine the MetaData whether

Table 3
Collector and Iterator interface

acertain type of query source is available or not. The
next three methods are in order to provide system
extensibility. In IIR, source providers are permitted
to define their own interface and schema of the
information source. All definitions about the infor-
mation source have to be registered in the MetaData
of IIR using the Registry() operation. The query
interface and schema of the result are represented in
XML and presented in Section 3.5. Similarity, a
source can be un-registered by the Unregistry() oper-
ation. Lastly, the get() operation is used to obtain the
metadata.

The third interface is the Collector, as shown in
Table 3. This interface collects the query results
from the information source. According to the design
of IIR, the Collector is created by the Filter object,
which is an inner object of IIR. This interface has
three methods. The first is GetMeta(), which has the
same function as the GetMeta() in the Information-
Retriever interface. Through this operation, clients
obtain the schema of the query result. The second
method is the retrieve_element_at(), which is used
to obtain an arbitrary element. In addition, we aso
design an lIterator interface to access the results
one-by-one. The client program invokes the create—
iterator() operation to create an lterator object. The
Iterator has three methods: next(), reset() and
more(). The next() operation retrieves the next result
of the current record. The reset() operation resets the
index of the Iterator object into the top. The more()
operation is used to detect whether there are any
results in the lterator object.

Interface Collector{
Readonly attribute long Result_size;

Iterator create iterator();
}
Interface Iterator{
Result next();
Boolean reset();
Boolean more();

}

MetaData GetMeta(in QueryLanguageType);

Result retrieve_element_at(in long where);

Y.-S. Chang et al. / Computer Standards & Interfaces 23 (2001) 325-340 333

3.4. Metadata management

Naturally, the service provider of information
sources generally conceals the schema of the infor-
mation source from general users. However, a sys-
tem developer of information gathering and integra-
tion may obtain the schema of the sources in either
an official or unofficial way and tie the source by
developing a wrapper. For example, a meta-search
engine [23] ties multiple search engines into the
system. A developer can, by probing the user inter-
face of search engine, obtain the schema of the
search engine.

Metadata management is important for supporting
an integrated interface for multiple information
sources because each source has its own interfaces
and attributes. When processing a request from
clients, a flexible framework is necessary for know-
ing the interfaces and attributes of backend sources.
To minimize the degree of complexity for federating
heterogeneous information sources for modern appli-
cation requirements, we propose to provide designers
with a metadata management mechanism for devel-
oping a federated query system with dynamic scala
bility and extensibility.

In IR, metadata is modeled by the DTD of XML
for information representations, both for the data
subscriber and the supplier. We add a registry
method to the MetaData interface. All participants
must register themselves in IIR. The MetaData in-
terface manages the metadata according to the type
of query language.

MetaData
Root

The metadata is constructed as a three-level hier-
archy in IIR, which is shown in Fig. 3. The third
level consists of metadata of query systems. The
second level represents a collection of query systems
with the same query language type. The MetaData
manager stands in the first level. Based on metadata
and specified query parameters, InformationRe-
triever knows how to plan the query path for query
requests.

3.4.1. Query interface metadata

Table 4 shows an example of query definition for
a search engine. It represents the interfaces and
attributes of a search engine in the DTD of XML.
Other type metadata of information sources can be
similarly defined with the search engine. Here, we
explain the query template of the search engine
shown in Table 4. In general, a search engine query
string consists of many keywords and attributes. The
keywords at least contain a keyword. Each keyword
might have an Included attribute that shown whether
or not the keyword is involved in the target of
queried sources. The attributes are defined by refer-
ring to Ref. [22], which lists many of the attributes
used in Yahoo and Altavista search engines.

According to the definition, a client program can
obtain metadata of an information source to interpret
what the attributes and query string of query opera-
tion are and how to issue query a request. For
example, the following is a query string that contains
akeyword and an attribute named “Date”:“SELECT

SQL Type
MetaData

Search Engine
MetaData

RDBI1
MetaData

Search
. RDBn Engine 1
MetaData MetaData

Other Type
MetaData

Search
L) Engine | 239.50 LLL
MetaData MetaData

Fig. 3. MetaData heirarchy.

334 Y.-S. Chang et al. / Computer Standards & Interfaces 23 (2001) 325-340

Table 4
Query definition of search engine

2 <?xml version="1.0"7>
3 <IDOCTYPE SEARCHENGINEINTERFACE [

10 <IELEMENT DOMAIN (#PCDATA)>

11 <IELEMENT TAG (#PCDATA)>

12 <IELEMENT DATE (#PCDATA)>

13 <IELEMENT NEAR (#PCDATA)>

14 <IELEMENT DISPNUM (#PCDATA)>
15 <IELEMENT AREA (#PCDATA)>

16 <IELEMENT DATABASE (#PCDATA)>
17 >

1 <!--This DTD includes the meta data of Search Engine query -- >

4 <IELEMENT QUERYSTRING (KEYWORDS, ATTRIBUTE)>
5 <IELEMENT KEYWORDS(INCLUDED?, KEY WORD)+>

6 <IELEMENT INCLUDED (4PCDATA)>

7 <IELEMENT KEYWORD (#PCDATA)>

8 <IELEMENT ATTRIBUTE (DOMAIN | TAG | DATE | NEAR | DISPNUM |
9 AREA | DATABASE)?>

"FROM Yahoo WHERE Keyword = “CORBA”
and Keyword = “Object” and Date =
«20001020””

The keyword and attribute have to comply with
the definition of the query. In the query string, the
SELECT clause means find information from the
source(s) designated in the FROM clause. The re-
sults of the SELECT clause have to be a subset of
fields of the information source. The schema of the
information source is defined and published by the
service provider or the system developer, as shown
in Table 5. The InformationRetriever can use the
WHERE clause to compare with the metadata and

Table 5
Schema of search engine

judge whether the information source supported this
query or not. If the equation in the WHERE clause
has no equivalent ELEMENT, the InformationRe-
triever can return an error message to the client to
indicate that the information source does not support
the query. A Wrapper of the sources is also needed
to check the query string based on the definition and
construct the query message that will be sent to the
backend information source. In addition, Wrapper
also refers to the schema of the information source
and to the query string for constructing results. An
obvious merit of defining metadata by the DTD is
that client can easily validate results from the Wrap-

2 <?xml version="1.0"7>
3 <IDOCTYPE SEARCHENGINERESULT [

<IELEMENT TITLE#PCDATA)>
<IELEMENT URL(#PCDATA)>
<!IELEMENT DESCRIPTION(#PCDATA)>

[e<BEN [SRV N N

1 <!--This DTD includes the meta data of Search Engine result -- >

<IELEMENT RESULT(TITLE, URL, DESCRIPTION, WEIGHT)>

Y.-S. Chang et al. / Computer Standards & Interfaces 23 (2001) 325-340

per. Similarly, for other information sources, source
providers can aso define their own query interface
and register it in IIR.

Apparently, the system can integrate most of the
information sources that have well-defined query
syntax and semantics. We only define the metadata
of the information sources and build a Wrapper
based on IIR.

3.4.2. Query result metadata

Intuitively, there are three different views of in-
formation created in a query system: Export Views,
System Views and Import Views. Import Views
represent the data format and memory layout of
information providers. Export Views represent the
set of data that satisfies the query criteria for data
inquirers. System Views are standardized collections
translated from different Import Views and it will be
trandated into Export Views. Conventionally, there
isaneed for N? trandators for N information inquir-
ers and N information providers. To minimize the
need for trandation, Export Views can be repre-
sented by XML directly, instead of the vendor pro-
prietary information format. That is, the system just
needs N preprocessors to convert Import Views into
System Views.

335

Similarly, source providers also want to define
their result schema of the information source and
register it in IIR. According to the result schema, a
client program can interpret what information is
contained in the returned result. Table 5 shows an
example of the schema of a search engine. Most
search engine return result to users consists of the
Title, URL and Description. The wrapper uses the
schema to organize the query result, and the client
can also retrieve the content of the query result based
on the schema.

3.5. Query scenario of IIR

Fig. 4 shows the IIR invocation sequence. For a
client program, it first must bind to Factory to
obtain its object reference, and execute a create()
operation to construct a new InformationRetriever
object. When Factory receives a create request, it
creates an InformationRetriever and returns the ob-
ject reference to the client. Once the client has this,
other operations can be executed, such as GetMeta()
and prepare(). Firgt, the client invokes GetMeta() to
obtain the metadata of a specified information source.
Then, the client uses the prepare() operation to
obtain a Wrapper object. Once the Wrapper object

Information Type/ Extractor Information
Client Factory Retriever MetadData /Filter ~ Collector wrapper
::Bind
::Create
Create
.:GetMeta N
::Prepare
repare Create s
Create
::Query
Filtering
Initial
s:Reyrieve element at >

Fig. 4. The lIR invocation sequence.

336 Y.-S. Chang et al. / Computer Standards & Interfaces 23 (2001) 325-340

is constructed, al of attributes are stored in Wrap-
per.
Then, the client program uses the Query() method
to issue a query request. Once the Wrapper object
receives a request, it encapsulates query strings and
attributes into the query format of the information
source, and sends the encapsulated query string to
the corresponding source. When the Wrapper object
receives the query result from the information source,
it de-encapsulates returned messages and puts them
into a Collector object. Then, the Wrapper object
returns the Collector object reference to the client
program, which then extracts the query results. By
such scenario, it is obviously that an application
wanting to query the Internet needs neither to have a
complex query component, nor to expend much so-
phisticated network-accessing effort. It needs only to
issue a few of invocations on the wrapper.

4. Application

We demonstrate the feasibility of IR by integrat-
ing two prototypes of information retrieval on the
WWW. The first is a meta-search engine termed
Octopus [23] and the other an information retrieval
facility [25]. These two prototypes are modified
dightly to satisfy the imperative. Here, we state
briefly how the two prototypes may be integrated
into the system.

4.1. Octopus

Such as shown in Fig. 5, this system involves two
search engine agents, which are implemented as
CORBA objects. However, using a similar method
would easily allow us to add other search engine
agents to the system.

Because the system uses IIR IDL definitions, it
provides a single and uniform interface for searching
Web documents. On receiving a query from a WWW
user, the system dispatches it to multiple search
engines in paralel, and collates the returned refer-
ences.

In merging Octopus into the system, the first
requirement is to define the interface and the result
schema of Octopus [23] in DTD. The DTD-style
definition of these two materials is described in

Web Client
TP
Web Server
CGI
Mediator

1

IIR Environment
YahooAgent

Altavista Agent

Yahoo Altavista

Fig.5. Meta-search engine achitecture.

Section 3.5. The InformationRetriever will invoke
operations of the Octopus wrapper. Octopus wrapper
will collect results that are the schema-compliance
format.

In this system, a Web user posts a query request
via the Common Gateway Interface (CGI). The CGI
then forks a mediator for each request. The responsi-
bilities of the mediator are as follows: firgt, it creates
a thread of the InformationRetriever to perform the
query; second, it collates the returned information
from all the agents before merging and filtering
them; finally, it returns the query results to the Web
user.

The InformationRetriever is responsible for issu-
ing the invocation of operations. All search engines
have their own attributes, which are dlightly differ-
ent. One agent has one wrapper. The first task of a
wrapper is to add keyword into the related agent, and
set its attributes. Next, it will encapsulate query
information into the HTTP format of the related
search engine. Finaly, when the client performs the
Query() operation to invoke a search, it will send the
query information to the related agent and obtains
the results from the search engine. Once a search

Y.-S. Chang et al. / Computer Standards & Interfaces 23 (2001) 325-340 337

engine returns the results, the wrapper will extract
the returned information, and return the extracted
information to the mediator. A further clear advan-
tage with our system is that programmers can imple-
ment their own wrappers in application to have
search service ability. Because we have a uniform
interface—IIR, other agents are easily added to our
system.

4.2. 739.50 wrapper

Z39.50 is a well-known standard of information
retrieval protocol defined by the National Informa-
tion Standards Organization (N1SO), and widely used
in information retrieval applications and library sys-
tems. This protocol specifies a set of query syntaxes
and attributes, and works on the basis of the protocol
TCP/IP. To implement the protocol based on
TCP/IP or WWW + CGlI for a distributed environ-
ment, more effort on information transfer over the
network is needed. The programmer must take care
the session and presentation semantics of query re-
quests cross the network.

In Ref. [25], we propose an information storage
and retrieval facility based on CORBA. This facility
provides information search, retrieval and storage
services. In addition, an experimental digital library
system based on this facility was implemented in our
project to demonstrate how to use it. The system
architecture of an ISRF implementation is discussed
in Ref. [25]. Similarly, to merge the Z239.50 function
into IR, we define the query interface of the 239.50
wrapper described in Ref. [25] in XML's DTD. But
the interfaces are not all exported and registered into
the metadata management mechanism, because only
asimplified query operation is needed on the WWW.
For example, in this system we do not support the
check of access capability of the client. For the
client, because the interface of IIR is uniform, the
scenario of query processing is same as the Octopus.

5. Discussions
5.1. Challenges

This section discusses the challenges of deploying
IIR for information gathering and integration, that is,

the issues mentioned in Section 1. We explain how
the IR design resolves these challenges.

5.1.1. Describe information sources

“Ontology” refers to an understanding of some
domain of interest. It embodies some sort of world-
view with respect to a given domain. Such a world-
view is often seen as a set of concepts, including
entities, attributes and their inter-relations; this is
referred to as a conceptualization. In IIR, the infor-
mation source ontology is defined and modeled in
terms of the DTD, as described in Section 3. IIR
offers an interface to maintain the metadata. The
interface allows the owner of sources to specify,
access, and update the description and schema of
their information sources. The implementation de-
tails concerning the source ontology in IIR are hid-
den from users in the structure of the information
SOUrces.

5.1.2. Determine relevant information sources

When a client issues a query request in terms of
the proposed query language to IR, the query string
may involve the type of information sources or the
name of information sources. The InformationRe-
triever will determine the relevant information
sources to be queried from the query invocation
issued by client. Even if the relevant information
sources are vague in the query string, the Informa-
tionRetriever can determine the relevant sources from
the query string itself, because IR keeps the infor-
mation sources ontology in MetaData. The Informa-
tionRetriever does this by mapping between the
world-view ontology and information source ontol-
ogy. For instance, a query string issued by a client
may include a SELECT part of a SQL query, which
implies the target of the query request by mapping
the world-view to a certain source view. The Infor-
mationRetriever uses the mapping to determine the
target information source.

5.1.3. Generating query plans for answering queries

As mentioned above, the InformationRetriever
resolves relevant information sources by parsing the
query string. The problem of generating query plans
may have two aspects. The first concerns the client’s
knowledge of querying information sources and
whether he will be able to generate a clear plan to

338 Y.-S. Chang et al. / Computer Standards & Interfaces 23 (2001) 325-340

query behind the sources. For example, the client
may explicitly generate a query plan as a set of
generic specified SQL queries, each of which uses a
specific internal sources structure, that is, a set of
attributes specified in a particular relevant source
ontology. The second aspect concerns generating a
query plan by the InformationRetriever. The Infor-
mationRetriever retains the knowledge of the infor-
mation sources and is, of course, able to generate the
query plan for answering queries based on the
knowledge of source.

5.1.4. Integrating / filtering query results

One of responsihilities of the InformationRe-
triever is to dispatch the request to the relevant
information source wrapper that retrieves the desired
information from the source. Afterwards, the wrap-
per delivers the results from the information source
to the filtering agent that integrates the results refer-
ring to data representation of the metadata. Finaly,
the client may obtain a Collector object to retrieve
the integrated results.

5.1.5. Assuring the correctness of source description

The source view of information and the mapping
between the source view and world-view are both
specified by the wrapper builder or the source
provider. IR aso offers an interface to permit the
source provider to maintain the metadata of informa:
tion sources. Therefore, we presume that the source
provider has a complete knowledge of their products
and if so, the issue of the correctness of the sources
description is determined in 1IR.

5.1.6. Robustness of updating information sources

Metadata management provides a method for
adding new or for updating existing information
sources. When source ontology is updated, providers
can update their own source ontology via the Meta-
Data interface, which contains replacement and dele-
tion operations, etc. That guarantees the ontology of
information sources being the latest.

5.1.7. Robustness of security of information

Security of information sources is obviously a
difficult issue with information retrieval technology
on the Web because of its characteristic of openness.
Security can be achieved by specifying the source

ontology or limiting the access ability of an agent in
IIR. The source provider can also develop the infor-
mation source agent based on the unified interface of
IIR in order to limit the ability of access. If neces
sary, source provider could choose to hide particular
information from the metadata of the information
source.

5.1.8. Maintaining interoperability

CORBA is an open system model that supports
communication between the software components of
a distributed environment as well as the dynamic
location and integration of information sources. It
also maintains the autonomy, so that a client can
invoke remote objects transparently without having
the information of server object. The agents of infor-
mation sources obviously can be easily distributed at
different locations in an IIR system. To replace a
new version agent of information sources in the
system causes no problems.

In addition, CORBA offers an I1OP (Internet In-
ter-ORB Protocol) for interoperating with other ob-
ject-oriented model [10,12]. The wrapper of an infor-
mation source can aso be developed in another
object models. A client issuing an invocation of an
object can be mediated through 110OP bridges.

5.2. Advantages

There are many benefits of making a large client /
server middle-ware based on CORBA [24]. To im-
plement an |IR-based information retrieval system,
we can raise further advantages.

First, with the progress in information retrieva
technology, more useful information sources can be
tied into a system by the same way. The system
developer can easily tie new information sources into
the system simply by creating information source
agents. In our experience, most codes found in agents
are the same, because the agents have the same
server stub generated by an IDL compiler. To create
a new agent, only a small part of a program needs
rewriting. All the network operations are hidden
from the CORBA’s server stub. Thus, when con-
structing the new agent, the developer needs to only
handle the interface of the information sources. The
other components of the system can be changeless.

Y.-S. Chang et al. / Computer Standards & Interfaces 23 (2001) 325-340 339

Second, programmers can easily build applica
tions that need to be able to query information
sources, such as data warehousing and data mining
on the Web. Application programmers using the
interface to deploy their applications that need to
query information on the Internet can hide the com-
plexity from network programming and concentrate
most effort on other significant value-added services.
After the information source agent returns the re-
sults, the program does not need to extract the
information from the complicated and proprietary
data format because, since they are all based on the
same interface, applications are undiscerning when
guerying agents.

Third, CORBA is a distributed object-oriented
environment. In IR, agents can be easily distributed
at different locations. In this way, balancing the load
while the system increases in size is easy. The
system manager can dynamically add other agents
into the system. Thus, a system based on IIR has
inherent scalability.

Finally, because this is a modularized and compo-
nent-based approach, it will be easy in the future to
replace certain components with new and useful
algorithms, such as a weighting algorithm or a natu-
ral language processing algorithm. So, an IR system
also has inherent flexibility.

In addition, IR clearly applies many industrial
standards, including CORBA as the object model,
XML as the data model, and SQL as the query
language. This advantage reinforces the inclination
of programmer study and application and reduces the
complexity of system development. We also hope to
establish a standard for IR on the COSS of CORBA.
We believe that I1IR can be easily applied to other
types of information sources. Thus, the same ap-
proach may be extended to most search or query
services—whether or not on the Internet—since its
underlying design incorporates the advantages de-
scribed above.

6. Conclusion

In this paper, we have proposed an IIR facility
based on CORBA to integrate existing Information-
Retrieval techniquesfor providing a Web-based min-
ing facility. IR not only offers a programming inter-

face for retrieving information, but also provides a
flexible and extensible environment in consolidating
information sources. The query definition and result
schema are modeled in the DTD of XML, which
alows the service provider to add new agents to the
system with facility. |IR aso alows source providers
to define their own query interface and schemain a
well-known object model and language. Since IIR
architecture is of an N-tier client/server model and
has a uniform interface, an application required to
retrieve information or mine data from the Internet
needs only to initiate the query operation of an agent
using IIR. Using the IIR framework, programmers
querying information need neither explore the inter-
face of various information sources, nor construct
query components in their applications.

CORBA clients can aso use this interface to
invoke search engine agents in their application pro-
grams. In addition, clients developed using other
object models, Microsoft's COM /DCOM, for exam-
ple, can in the same use these agents by means of the
Internet Inter-ORB Protocol of CORBA.

Acknowledgements

We are grateful for the many excellent comments
and suggestions made by the anonymous referees.
We also thank the National Science Council for their
financial support through the project numbered as
NSC 89-2626-E-159-001.

References

[1] A.Y. Levy, A. Rajaraman, J.J. Ordille, Query heterogeneous
information sources using source description. Proceedings of
the 22th VLDB (1996) 251-262.

[2] RH. Bayardo et d., InfoSleuth: agent-based semantic inte-
gration of information in open and dynamic environments.
Proceedings of the ACM SIGMOD (1997) 195-206.

[3] H. GarciaMolina, J. Hammer, K. Ireland, Y. Papakonstanti-
nou, J. Ullman, J. Widom, Integrating and accessing hetero-
geneous information sources in TSIMMIS. Proceedings of
the AAAI Symposium on Information Gathering, Stanford,
California, USA. 1995, pp. 61-64.

[4] H. GarciaMolina, Y. Papakonstantinou, D. Quass, A. Ra
jaraman, Y. Sagiv, J. Ullman, V. Vassdos, J. Widom, The
TSIMMIS approach to mediation: data models and lan-
guages. J. Intell. Inf. Syst. 8 (2) (1997) 117-132.

340 Y.-S. Chang et al. / Computer Standards & Interfaces 23 (2001) 325-340

[5] E. Mena, V. Kashyap, A. lllarramendi, A.P. Seth, Domain
specific ontologies for semantic information broking on the
global information infrastructure, in formal ontology, in: N.
Guarino (Ed.), Information Systems, 10S Press, Amsterdam,
Netherlands, 1998, pp. 269—-283, June.

E. Mena, A. lllarramendi, V. Kashyap, A.P. Seth, OB-

SERVER: an approach for query processing in global infor-

mation systems based on interoperation across pre-existing

ontologies. Distrib. Parallel Databases 8 (2) (2000) 223-271,

April.

Y. Arens, C.Y. Cheg, C. Hsu, C.A. Knoblock, Retrieving and

integrating data from multiple information sources. Int. J.

Intell. Coop. Inf. Syst. 2 (2) (1993) 127-158.

[8] Y. Arens, C.A. Knoblock, C. Hsu, Query processing in the
SIMS information mediator, in: A. Tate (Ed.), Advanced
Planning Technology, AAAI Press, Menlo Park, Cliff., 1996,
pp. 61-69.

[9] Y. Arens, C.A. Knoblock, W.M. Shen, Query reformulation
for dynamic information integration. J. Intell. Inf. Syst. 6
(2/3) (1996) 99-130.

[10] A. Bouguettaya, B. Benatallah, L. Hendra, M. Ouzzani, J.
Beard, Supporting dynamic interactions among Web-based
information sources. |EEE Trans. Knowl. Data Eng. 12 (5)
(2000) 779-801, Sept.

[11] Object Management Group, The Common Object Request
Broker (CORBA): Architecture and Specification, vol. 2.2,
1998 February.

[12] K. Brockschmidt, Inside OLE. 2nd edn., Microsoft Press,
Redmond, WA, 1995.

[13] Object Management Group, CORBA services: Common Ob-
ject Services Specification1995 OMG Document Number
95-3-31, March 31, www.omg.org.

[14] Soe-Tsyr Yuan, Ontology-based agent community for infor-
mation gathering and integration. Proc. Natl. Sci. Counc.,
Repub. China, Part A 23 (6) (1999) 766—781.

[15] D.S. Harverkamp, S. Gauch, Intelligent information agents:
review and challenges for distributed information sources. J.
Am. Soc. Inf. Sci. 49 (4) (1997) 304-311, April 1998.

[16] H.S. Nwana, D.T. Ndumu, An introduction to agent technol-
ogy. Lecture Notesin Artificial Intelligence, Springer, Berlin,
Germany, 1997.

[17] E. Spertus, L.A. Stein, Squedl: a structured query language
for the Web. Int. J. Comput. Networks 33 (2000) 95-103.

[18] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, D. Suciu,
A query language for XML. Proceedings of the 8th Interna-
tiona World Wide Web Conference, Elsevier, Amsterdam,
1999.

[19] C.A. Knoblock, A. Levy, Information gathering and integra-
tion. The Tutoria of the 13th National Conference on Artifi-
cia Intelligence Portland, Oregon, USA, August, 1996.

[20] M. Leventhal, D. Lewis, M. Fuchs, Designing XML Internet
Applications, Prentice Hall PTR, Upper Saddle River, NJ,
1998. 07458.

[21] D. Konopnicki, O. Shmueli, Information gathering in the
World Wide Web: the W3QL query language and the W3QS
system. ACM Trans. Database Syst. 23 (4) (1998) 369-410,
Dec.

[22] S. M. Yuan and Y.S. Chang, “Design and Implementation of

[6

—_

[7

—

Heterogeneous Full-text retrieval engine agent,” Technical
Report, Department of CIS, National Chia-Tung University,
1998.

[23] Y.S. Chang, SM. Yuan, W. Lo, A new multi-search engine
for querying data through internet search service on CORBA,
Int. J. Comput. Networks 34 (3) (2000) 467—480, Sept.

[24] R. Orfali, D. Harkey, Client /Server Programming with JAVA
and CORBA, John Wiley & Sons, New York, USA, 1997.

[25] W. Lo, Y.S. Chang, C.L. Chou, R.K. Sheu, SM. Yuan, An
Information Store and Retrieval Facility on CORBA, Lecture
Notes in Computer Science (LNCS) of Springer-Verlag,
vol. 1846, Springer-Verlag, Heidelberg, Germany, 2000, pp.
374-379, June.

[26] N. Ward, M. Lawley, S. Finnigan, ZORBA: information
retrieval using distributed object technologies, EGOEQO’ 98,
(1998) http: / /www.dstc.edu.au,/ZORBA.

Chang Yue-Shan was born on August
4, 1965 in Tainan, Taiwan, Republic of
China. He received the BS degree in
Electronic Technology from National
Taiwan Institute of Technology in 1990,
the MS degree in Electrical Engineering
from the National Cheng Kung Univer-
sity in 1992, and the PhD degree from
Computer and Information Science at
National Chiao Tung University in 2001.
Dr. Chang is a lecturer at the Depart-
ment of Electronics Engineering of Ming

: Hsin Ingtitute of Technology. His re-
search interests are in Distributed Systems, Object Oriented Pro-
gramming, Information Retrieval and Integration, and Internet
Technologies.

Min-Huang Ho was born on February
1, 1969 in Kaohsiung, Taiwan, Republic
of China. He received the BS and MS
degree in Industrial Education from Na-
tional Taiwan Normal University in 1993
and 1995, respectively. Currently, he is
a candidate of PhD in Computer and
Information Science at Nationa Chiao
Tung University. His research interests
are in Distributed Systems, Internet
Technologies, and Mobile Agent Tech-
nologies.

Shyan-Ming Yuan was born on July
11, 1959 in Mauli, Taiwan, Republic of
China. He received the BSE.E degree
from National Taiwan University in
1981, the MS degree in Computer Sci-
ence from University of Maryland Bal-
timore County in 1985, and the PhD
degree in Computer Science from Uni-
versity of Maryland College Park in
1989. Dr. Yuan joined the Electronics
Research and Service Organization, In-
dustrial Technology Research Institute
as a Research Member in Oct. 1989.
Since September 1990 he had been an Associate Professor at the
Department of Computer and Information Science, National Chiao
Tung University, Hsinchu, Taiwan. He became a Professor in
June, 1995. His current research interests include Distributed
Objects, Internet Technologies, and Software System Integration.
Dr. Yuan is a member of ACM and |IEEE.

