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A maximum descent (MD) method has been proposed for vector quantization (VQ)
codebook design. Compared with the traditional generalized Lloyd algorithm (GLA), the
MD algorithm achieves better codebook performance with far less computation time.
However, searching for the optimal partitioning hyperplane of a multidimensional cluster
is a difficult problem in the MD algorithm. Three partition techniques have been pro-
posed for the MD method in the literature. In this paper, a new partition technique based
on the tabu search (TS) approach is presented for the MD algorithm. Experimental re-
sults show that the tabu search based MD algorithm can produce a better codebook than
can the conventional MD algorithms.
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1. INTRODUCTION

Vector quantization (VQ) has been extensively and successfully used in speech en-
coding and image compression [1]. The k-dimensional, N-level vector quantizer is de-
fined as a mapping from a k-dimensional Euclidean space Rk into a certain finite set C of
Rk. This finite set C = {Y1, Y2, …, YN} is called a VQ codebook. Each Yi∈Rk in codebook
C is called a codeword, i = 1, 2, …, N. The VQ quantizer consists of two procedures: an
encoder and a decoder. The encoder assigns each input vector X to an index i, which

Received November 24, 1999; revised April 17, 2000; accepted July 19, 2000.
Communicated by Yung-Nien Sun.



HSIANG-CHEH HUANG, SHU-CHUAN CHU, JENG-SHYANG PAN AND ZHE-MING LU754

points to the closest codeword Yi in the codebook. The decoder uses the index i to look
up the codeword Yi in the codebook. The squared Euclidean distortion measure is often
used to measure the distortion between the input vector X = {x1, x2, …, xk} and the
codeword Yi = {yi1, yi2, …, yik}, i.e.,

. (1)

The key problem with VQ is to generate a good codebook from a number of training
vectors. The codebook design problem is essentially a clustering problem where a train-
ing set S = {X1, X2, …, XM} is clustered into N subsets S1, S2, …, SN , which satisfy

(2)

and

if i ≠ j . (3)

The centriod of the subset Si is the codeword Yi , and if
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then Xl∈Si. The aim of the codebook design algorithm is to minimize the total distortion
defined as follow:

. (5)

A generalized Lloyd clustering algorithm [2] proposed by Linde, Buzo, and Gray,
called the LBG algorithm or GLA, is typically used to generate VQ codebooks. However,
this iterative algorithm depends on the initial codebook, often obtains the local optimal
codebook and requires intensive computation. Thus, the two prominent problems in
codebook design are how to approach the global optimum and how to reduce the compu-
tational complexity. In order to obtain better codebooks, Vaisey and Gersho [3] com-
bined the simulated annealing (SA) technique and the LBG iteration in VQ codebook
design. In their SA-GLA algorithm, they took the codebook design as a combinatorial
problem by perturbing the encoder of a vector quantizer in order to let the LBG algo-
rithm converge again and again so as to obtain lower overall distortion. This method can
improve codebook performance; however, the computational time used by this algorithm
is at least several times that used by the LBG algorithm. The stochastic relaxation (SR)
approach [4] has also been proposed to improve codebook performance. The basic idea
of the SR approach is to perturb the solution by adding some values to the codewords
during each iteration. Many methods designed to reduce the computational time have
appeared in the literature. The subspace distortion method [5] attempts to reduce the
computation burden by reducing the dimension of the distortion measure in the LBG
algorithm. The pairwise nearest neighbor (PNN) algorithm [6] is a bottom-up clustering
algorithm that generates a codebook by merging nearest training vector clusters until the
desired number of codewords is obtained. The codebooks generated by both methods are
not as good as the codebook generated by the LBG algorithm although the computational
time is reduced by several times.
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Designed to generate better codebooks while reducing the computational time, the
maximum descent (MD) algorithm [7] has been proposed for VQ codebook design. This
algorithm begins by treating the training vector set S = {X1, X2, …, XM} as a global clus-
ter. Then, the algorithm generates the required number of clusters one by one, subject to
the maximum distortion reduction criterion, until the desired number of codewords is
obtained. Compared with the LBG algorithm, the codebook performance is improved,
and the computational time is substantially reduced. However, searching for the optimal
partitioning hyperplane in a multidimensional cluster is a difficult problem with the MD
algorithm. Three techniques [8] have been presented for searching for the optimal parti-
tioning hyperplane with the MD method. However, these techniques all restrict the
searching range to hyperplanes that are perpendicular to the basis vectors of the vector
space that can be obtained using discrete cosine transform (DCT), so it is difficult for
them to find the global optimal partitioning hyperplane. In order to find the global or
nearly global optimal partitioning hyperplane, the tabu search (TS) approach first pro-
posed by Glover [9] is introduced in this paper. The tabu search approach is a global op-
timization technique with short-term memory, that can be used to solve many difficult
combinatorial optimization problems. In previous works [10-11], the tabu search ap-
proach has been successfully applied to codebook index assignment over channel noise
and texture segmentation. The main problem with MD is determining how to split one
cluster into two clusters with minimal mean squared error. This is a typical combinatorial
optimization problem, so the tabu search approach is suitable for solving it.

Section 2 presents the main idea of the maximum descent algorithm and three con-
ventional methods used to search for the optimal partitioning hyperplane. Section 3 pre-
sents the proposed tabu search based maximum descent algorithm. Section 4 describes
experiments carried out to compare the codebook performance of the proposed algorithm
with that of the LBG algorithm, the simulated annealing method and the basic MD algo-
rithms with the three partition techniques presented in [8]. Section 5 concludes the paper.

2. THE MAXIMUM DESCENT ALGORITHM

Let us consider the design of an N-level codebook C = {Y1, Y2, …, YN} for training
set S = {X1, X2, …, XM}, where Yi∈Rk, i = 1, 2, …, N, Xm∈Rk, m = 1, 2, …, M, M >> N.
The maximum descent algorithm first views the training vector set S as a global cluster.
This cluster is split into two new clusters by an optimal partitioning hyperplane. One of
these two clusters is then further partitioned into two clusters so as to generate three new
clusters based on a maximum distortion reduction criterion. For the general case of
L(L>2) clusters, the MD method attempts to generate L+1 clusters by splitting one of the
former L clusters into two new clusters and keeping the other L-1 clusters unchanged
such that the distortion can be reduced as much as possible. This procedure is performed
until the desired number of clusters is obtained. Finally, the centriods of these clusters
are taken as codewords.

Now, we will to investigate the distortion reduction resulting from splitting a cluster
into two new clusters. Without loss of generality, we consider the case in which the
original training set S has been partitioned into L clusters, i.e., S = {S1, S2, …, SL}. As-
sume that a hyperplane Hi(U, v) = {Z∈Rk : UTZ = v } further partitions the cluster Si into
two non-empty clusters given by
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}:{ vZUSZS T
iia <∈= ,

}:{ vZUSZS T
iib ≥∈= , (6)

where U∈Rk, v∈R, 1 ≤ i ≤ L, and T denotes the transpose.
The centroid of cluster Si can be defined as

, (7)

where ni is the number of input vectors that belong to cluster Si. When the centriod Yi is
used to quantize all the vectors inside Si , the induced total squared Euclidean distortion
D(Si) is

, (8)

where ||Xj − Yi||2 denotes the squared Euclidean distortion between Xj and Yi. Then the
reduction in distortion induced by partitioning the cluster Si into two clusters using the
partition plane Hi can be expressed as

ri = D(Si) − [D(Sia) + D(Sib)]. (9)

Direct computation of Eq. (9) requires many calculations of squared distances. In order
to reduce the computational complexity of Eq. (9), we can easily rewrite Eq. (9) as fol-
lows (the proof for this can be found in [8]):

(10)

or

, (11)

where ni , nia and nib are the number of vectors in Si , Sia and Sib, respectively. Yi, Yia and Yib�

are the centroids of clusters Si , Sia and Sib, respectively.
From equation 10 we can easily prove that ri is always greater than zero, i.e., that

the reduction in distortion is never less than zero. In order to obtain the maximum reduc-
tion function for cluster Si, we need to use some techniques to search for the optimal
partitioning hyperplane for cluster Si. To form L+1 clusters from the L clusters with
maximum distortion reduction, the maximum distortion reduction functions of all the
clusters need to be calculated (Fig. 1a); then, one of the L clusters Sp which satisfies
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is split into two new clusters while the remaining L-1 clusters stay un-

changed. In the step that obtains L+2 clusters from the L+1 clusters, only two maximum
distortion reduction functions, i.e., par̂ and pbr̂ , of the newly formed clusters Spa and
Spb (Fig. 1b) need to be computed since the ir̂ s of all other clusters have already been
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(a)

(b)

Fig. 1. The optimal formation of (L+1) clusters that provides maximum reduction of overall distor-
tion.

computed in the previous step. Thus, in each step in forming an additional cluster, only
two optimal partitioning hyperplanes need to be found. Based on this maximum descent
criterion, the clusters are split one by one until the required N clusters are obtained. We
can easily prove that only 2N-3 optimal partition searches are required to design an
N-level vector quantizer, so the number of optimal partition searches is proportional to
the size of the codebook.

It is noted that the MD algorithm has an advantage in that it tends to partition clus-
ters that are densely populated and never generates a cluster that includes only one vector,
which sometimes happens with the conventional LBG algorithm. However, exhaustive
searching for the optimal partitioning hyperplane of a multidimensional cluster is a dif-
ficult and computationally intensive problem, and it is very hard to carry out in practice.
In order to reduce the complexity, three methods of searching for the optimal partitioning
hyperplane were presented in [8] and are geiven below.

2.1 Constrained Exhaustive Search

This method searches for the optimal hyperplane among the hyperplanes that are
perpendicular to the basis vectors of the vector space that can be obtained by means of
the discrete cosine transform of the input image. For a cluster Si, the lower and upper
bounds of the vectors on one of the DCT basis axes are found. The algorithm first assigns
a splitting threshold T to the lower bound and places the training vectors whose projec-
tions on this axis are smaller than T into cluster Sia and puts the remaining ones into Sib. ri

for threshold T is computed. The threshold T is then increased by means of a predeter-
mined incremental step. The procedures are repeated until T reaches the upper bound.
The optimal partitioning hyperplane and the corresponding ir̂ on this axis are recorded.
Based on the same procedure, all other optimal partitioning hyperplanes for other basis
axes are found. By finding the maximum ir̂ among all the ir̂ s obtained, the constrained
global optimal partitioning hyperplane and the corresponding distortion reduction func-
tion are obtained for cluster Si.
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2.2 Successive Search

Constrained exhaustive search is a computationally intensive technique. Its com-
plexity can be reduced by using a successive search method based on the idea that the
maximum reduction can often be obtained when D(Sia) is equal to D(Sib). This method
starts by assigning a threshold T half way between the upper and lower bounds on an axis.
Then D(Sia) and D(Sib) are evaluated. If D(Sia) > D(Sib), the threshold is set to T1, which is
half way between T and the lower bound. If D(Sia) ≤ D(Sib), T1 is set to a value half way
between T and the upper bound. D(Sia) and D(Sib) are computed for T1, and the next
threshold T2 can be determined using the same method described above. This procedure
is repeated until the difference between D(Sia) and D(Sib) is smaller than a pre-defined
value. The optimal hyperplane and the distortion reduction value are thus obtained.
Similarly, successive search needs to be performed over all the basis axes in order to find
the maximum distortion reduction value and the optimal hyperplane.

2.3 Fast LBG Search

If the optimal partition hyperplane is restricted to being perpendicular to only one of
the basis vectors of the transformed vector space, then we can use the following fast LBG
algorithm to perform binary splitting of a cluster Si into Sia and Sib so as to reduce the
amount of computation. In this method, the difference in the Euclidean distances d(X, Yia,
Yib) between the input vector X∈Si and the two centroids Yia and Yib is defined as fol-
lows:
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where X = (x1, x2, …, xk), Yia = (a1, a2, …, ak) and Yib = (b1, b2, …, bk).
Based on Eq. (12), if
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then the vector X is closer to the cluster Sia, so the vector X can be placed in Sia. Other-

wise, it is placed in Sib. Since (aj − bj) and do not change throughout the

partitioning process and can be pre-calculated, the amount of computation is greatly re-
duced.

3. TABU SEARCH BASED MD ALGORITHM

The above three methods restrict the searching range to hyperplanes that are per-
pendicular to the basis vectors of the vector space that can be obtained by means of dis-
crete cosine transform of the input image, so it is difficult for them to find the global op-
timal hyperplane. In this section, we will introduce the tabu search technique which can
be used to search for the optimal hyperplane.
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The basic idea of tabu search is to explore the search space of all feasible solutions
by means of a series of moves and to forbid some search directions at the present itera-
tion in order to avoid cycling and jump off local optima. The elements of moving from
the current solution to its selected neighbor are partially or completely recorded in the
tabu list for the purpose of forbidding reversal of replacement in a number of future it-
erations. The tabu search approach begins with test solutions generated randomly and
evaluates the objective function for these solutions. If the best of these solutions is not
tabu or if it is tabu but satisfies the aspiration criterion, then this solution is selected as
the new current solution to be used to generate test solutions for the next iteration. It is
called the aspiration criterion if the test solution is a tabu solution but the objective value
is better than the best value of all the iterations.

The basic task of the MD algorithm is to find the optimal partitioning of a certain
cluster S into two clusters Sa and Sb which maximizes the following objective function

(14)

or

. (15)

Here n, na and nb are the number of vectors in S, Sa and Sb respectively, where n = na + nb.
Y, Ya and Yb�are�����centroids of clusters S, Sa, and Sb, respectively.

In order to describe the proposed algorithm, the corresponding indices of the train-
ing vectors that belong to cluster S are used to form a solution. Every solution can be
divided into two parts. The corresponding training vectors in the first part belong to
cluster Sa, and the corresponding training vectors in the second part belong to cluster Sb.
Thus the optimal partitioning of S into Sa and Sb can be found using the following algo-
rithm.

Let Pt, pc and pb be the test solutions, the best solution of the current iteration and
the best solution of all the iterations, respectively, where Pt = {p1, p2, …, pNs}, pi = {pia,
pib} is one of test solutions, pia includes the indices of the training vectors that belong to
Sa, pia includes the indices of the training vectors that belong to Sb, 1 ≤ i ≤ NS, and NS is
the number of test solutions, pc = {pca, pcb} and pb = {pba, pbb}.

Let Rt , rc and rb denote the objective function values for the test solutions, the ob-
jective function value for the best solution of the current iteration, and the objective
function value for the best solution of all the iterations, respectively, where Rt = {r1,
r2, …, rNs}, ri is the objective function of pi, 1 ≤ i ≤ NS, and NS is the number of test
solutions. The initail test solutions are generated randomly. After the first iteration, the
test solutions are generated from the best solution of the current iteration by means of
some moves. The tabu list memory stores the moved indices only. It is a tabu condition if
the moved indices used to generate the test solution from the best solution of the current
iteration are the same as any records in the tabu list memory. The algorithm is given as
follows:

Step 1. Set the tabu list size be TS , the number of test solutions be NS and the maximum
number of iterations be Im. Set the iteration counter i = 1, and let the insertion
point of the tabu list tl = 1. Generate NS initail solutions Pt = {p1, p2, …, pNs}
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randomly, calculate the corresponding objective values Rt = {r1, r2, …, rNs}
according to Eq. (14) and find the current best solution pc = pj, j = arg maxl rl , 1
≤ i ≤ NS. Set pb = pc and rb = rc.

Step 2. Copy the current best solution pc to each test solution pi, 1 ≤ i ≤ NS. For each test
solution pi = {pia, pib}, 1 ≤ i ≤ NS , generate a new solution by means of the
following three substeps.

Step 2.1. If nia ≥ 2 and nib ≥ 2, select pia or pib randomly; else if nia = 1 and nib ≥ 2,
select pib; else if nib = 1 and nia ≥ 2, select pia; else if nia = 1 and nib = 1,
select neither of them.

Step 2.2. If pia is selected, then select an index in pia randomly and move it to pib;
else if pib is selected, then select an index in pib randomly and move it to
pia. If neither of them is selected, the solution remains unchanged.

Step 2.3. Calculate the corresponding objective value ri for the new test solution.
Step 3. Sort r1, r2 ,…, rNs in decreasing order. From the best new test solution to the

worst new test solution,if the new test solution is a non-tabu solution or if it is a
tabu solution but its objective value is better than the best value of all iterations
rb, then choose this new solution as the current best solution pc, choose its
objective value as the current best objective value rc, and go to step 4; otherwise,
try the next new test solution. If all new test solutions are tabu solutions, then go
to step 2.

Step 4. If rb < rc, set pb = pc and rb = rc. Insert the moved index of the current best solution
pc into the tabu memory list. Set the insertion point of the tabu list tl = tl + 1. If tl

> TS, set tl = 1. If i < Im, set i = i + 1 and go to step 2; otherwise, record the best
solution and terminate the algorithm.

4. PERFORMANCE COMPARISONS

In order to demonstrate the efficiency of the proposed algorithm, the LBG algorithm,
the SA algorithm, the conventional MD algorithms and the tabu search based MD algo-
rithm were all implemented to generate codebooks. For the SA algorithm, the initial tem-
perature T0 was 35, and the temperature was decreased by 1% after each iteration step
until the number of iterations reached 30. Because each iteration of SA included the LBG
algorithm, the CPU time of the SA was about 25 times that of the LBG algorithm in the
experiments. Here, the parameters of tabu search were TS = 20, NS = 20, and Im = 200. All
the tests were run on a Pentium II PC running at 233MHz. Three images, LENA, PEP-
PERS and F-16, with a resolution of 512 × 512 pixels, 8bits/pixel, were used. The image
LENA was used to generate codebooks of size 256 with dimension 16(4 × 4), and the
images PEPPERS and F-16 were used to test the coding performance of the codebooks.
Results are shown in Tables 1 and 2. Table 1 compares the six algorithms based on CPU
time and PSNR when generating codebooks of size 256 were generated. From Table 1�
we can see that the PSNR of the tabu search based MD algorithm was improved by
0.5dB compared with the constrained exhaustive MD algorithm and by 1.4dB compared
with the LBG algorithm although it needed more CPU time compared with the con-
strained exhaustive MD algorithm. For the images outside the training set, Table 2 shows
the performance of codebooks of size 256 that were generated by different algorithms.
From Table 2, we can see that the PSNR of the tabu search based MD algorithm was
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Table 1. Performance comparison of LBG, SA and various MD algorithms for the image
within the training set.

Algorithm
CPU time

(Sec)
PSNR(dB)

LBG 360.5 30.23
SA 9035.2 31.48

Constrained Exhaustive Search MD 120.2 31.14
Successive Search MD 15.3 30.96
Fast LBG Search MD 3.8 31.08

Tabu Search Based MD 1023.1 31.64

Table 2. Performance comparison of LBG, SA and various MD algorithms for images
outside the training set.

PSNR of the coded images (dB)
Algorithm

Peppers F-16
LBG 28.45 26.37
SA 29.01 26.93

Constrained Exhaustive Search MD 28.94 26.82
Successive Search MD 28.85 26.75
Fast LBG Search MD 28.87 26.79

Tabu Search Based MD 29.14 27.08

improved by 0.2dB compared with the constrained exhaustive MD algorithm and by
0.7dB compared with the LBG algorithm. Although the proposed algorithm needs more
CPU time than the conventional MD algorithms, it needs less time than the SA algorithm
and has better performance than the SA algorithm and the other algorithms. In conclu-
sion, the proposed algorithm can obtain better reconstructed image quality than the LBG
algorithm and all the conventional MD methods not only for an image in the training set,
but also images outside the training set.

5. CONCLUSIONS

In this paper, a tabu search based maximum descent method for generating code-
books for vector quantization has been proposed. This method generates better code-
books than does the LBG algorithm or the conventional MD algorithms although it needs
more CPU time than the LBG algorithm and the conventional MD algorithms. Not only
is the performance improved, but the computation time is also reduced based on a com-
parison of the proposed algorithm with the simulated annealing method. Since codebook
design is performed off line for most applications, the proposed tabu search based maxi-
mum descent algorithm can be viewed as a good approach to codebook design.
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