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Asymptotic Rejection of Periodic
Disturbances With Fixed or
Varying Period
A constructive derivation of repetitive control is obtained, through attempting to deri
control law for asymptotic rejection of periodic disturbances. This derivation not o
reveals a close relationship between iterative operator inversion and repetitive con
but also suggests a unified design method for a learning control algorithm. Also, bas
the observation, digital repetitive control can be generalized to reject periodic dis
bance whose period is not exactly an integer multiple of the sampling interval. This s
introduces a delay filter in the digital repetitive control law, which optimally interpola
the signal between samples, thus effectively reconstructing the signal of the pre
period and making the learning process of repetitive control successful. The prop
optimal delay filter can be updated easily according to different signal periods. Thus
specifically suitable for on-line tuning when the signal period is changing. Compared
the available tuning methods, the proposed tuning method has excellent steady
performance while maintaining fast transient and system robustness. The simulatio
active noise cancellation within a duct confirm the superiority of this tuning method
@DOI: 10.1115/1.1389309#
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1 Introduction
Repetitive control is effective in asymptotic tracking or reje

tion of periodic signals@1,2#. It consists of a wide variety of
applications, such as noncircular cutting@3#, disk drive tracking
@4#, and active noise cancellation@5#. Repetitive control was ex-
plained and proved by the internal model principle~@1,2#!. This
work, however, proposes a constructive derivation based on
operator theory. First, the disturbance rejection problem is form
lated as a question for solving an operator equation. The de
tion begins with the iterative inversion of an operator by the N
mann series, which results in a Neumann series solution as we
a sufficient existence condition for an operator inversion proble
Additionally, this solution can be alternatively represented by s
cessive iteration of an equation, which provides a good ins
into deriving the learning algorithm for an operator equation. C
sequently, a slight modification of this iteration equation leads
the well-known repetitive control law. Finally, in a mathema
cally rigorous manner, the fixed-point theorem is used to pr
the performance and stability of repetitive control.

In the derivation of repetitive control, two operators are
volved. One is an operator that is a rough inversion of the pl
This operator is closely related to the stability and transient
havior of repetitive control—the better it well inverses the pla
the more stable the overall system is and more quickly the sys
will reach steady state. The other is a delay operator, of which
delay time is equal to the signal period in order to achie
asymptotic signal tracking or disturbance rejection. Based
these observations, the repetitive control system with adjust
delay operator can reasonably track or reject signals with vary
period. This idea naturally leads to an alternative repetitive con
algorithm for asymptotic tacking or rejecting periodic signals w
varying period.

Repetitive control repeatedly generates the present control f
u(t) by learning from the previous period of the control for
u(t2T) and the tracking or disturbance rejection error«(t2T).
However, in a discrete-time system, where only the sampled
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nals are given,u(t2T) and «(t2T) are unavailable unless tha
the signal periodT is exactly an integer multiple of the samplin
interval. When the signal period is precisely known and fixe
integer multiple condition can be easily achieved. However
becomes a difficult task when the signal period varies. There
two types of methods for solving this problem. The first meth
~@6,7#! usesu(t2NTs) and «(t2NTs) to approximateu(t2T)
and«(t2T), respectively, whereNTs is the nearest integer mul
tiple of sampling interval to the signal periodT. The second
method~@7,8#! alters the sampling rate on-line while maintaining
fixed controller. The disadvantage of the first tuning scheme is
inevitable period mismatch due to the roundoff of the actual sig
period. This mismatch may result in undesirable remaining os
lating errors, thus deteriorating the steady-state performance
for the second tuning scheme, the most serious problem is
changing the sampling rate without changing the controller
affect system robustness, and even cause instability.

Based on the idea of the adjustable delay operator, this s
attempts to provide an alternative method for a discrete-time
petitive controller. With the fixed sampling interval, a delay filte
which aims to optimally interpolateu(t2T) and«(t2T) between
samples, is introduced to enhance the steady-state perform
According to distinct signal periods, this optimal filter can b
updated via only a small amount of computations. Thus it can
used as an on-line tuning scheme for the changeable signal pe
This delay filter tuning method is applied to active noise canc
lation within a duct. Simulations illustrate the effective enhanc
ment of the steady-state performance.

2 A Pathway to Repetitive Control
This section provides a constructive derivation of repetit

control. The derivation begins with the formulation of a distu
bance rejection problem, as shown in Fig. 1. The plantP is as-
sumed to be linear time invariant~LTI ! and stable. All signals are
functions defined on@0,̀ !. The objective is to find control signa
u, such that the periodic disturbanced can be asymptotically can
celled, i.e., the error signal«→` as t→`.

In a linear system, the candidate of control signal for asym
totically rejecting a periodic disturbance, must be some lin
combination of a transient signal, which vanishes as time tend
infinity, and a periodic signal whose period is the same as tha

he
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the disturbance. To analyze and synthesize such control sig
an appropriate linear vector space that includes both transien
periodic signals must be formed. Notably, a collection of perio
signals could not make a linear vector space because linear
binations of two or more periodic signals of arbitrary periods w
generally not be periodic, for example,f (t)5sin(2pt)
1sin(2&pt) is not periodic since there exists noTPR such that
f (t1T)5 f (t). Such signals with frequencies of the compone
not related by rational numbers have some ‘‘almost-period
characters. LetH be a linear vector space of complex-valu
functionsx(t),0<t,`, spanned by$ej vt,vPR%, with the norm

ixi5S lim
T→`

1

T E
0

T

ux~ t !u2dtD 1/2

,` (1)

and the inner product

^x,y&5 lim
T→`

1

T E
0

T

x~ t !y~ t !dt, ;x,yPH (2)

wherey(t) represents the complex conjugate ofy(t). Notably,H
is a Hilbert space of almost periodic functions~@9#, sections 13
and 57!; it contains either finite linear combinations(n51

N cnej vnt,
or their limits in the norm defined in~1!. The spaceH is not
separable since its orthonormal basis$ej vt,vPR% is not count-
able. The norm defined in~1!, known as the root-mean-squa
~RMS! norm in many areas of engineering, is a steady-state m
sure, which is unaffected by the transient of a signal. According
the transient signals can be easily defined as signals with
RMS norm; letM be a collection of all such signals:

M5H x: lim
T→`

1

T E
0

T

ux~ t !u2dt50J (3)

M is a closed set. Thus, the union ofH andM , denoted byHøM
makes a new complete linear vector space, which includes
transient and almost periodic functions. In this new space, h
ever, the RMS norm becomes only a seminorm. That is,ixi50
does not implyx5u, rather in this case it only impliesx→0 as
t→`. Consequently, two signals,x and y in HøM , that differ
only by a transient~i.e., ix2yi50! are equivalent in the RMS
sense. Suppose that two functionsx,yPHøM are said to belong
to the same class if the differencex2y belongs toM , then the set
of all such classes is called the quotient space ofHøM relative to
M , represented byE. This quotient spaceE is a Hilbert space with
the inner product defined in the following way: Given two el
ments ofE, i.e., two classesj andh, we choose a representativ
from each class, sayx from j andy from h, then

^j,h&5 lim
T→`

1

T E
0

T

x~ t !y~ t !dt (4)

In a completely analogous manner, the norm can be define
follows

iji5S lim
T→`

1

T E
0

T

ux~ t !u2dtD 1/2

(5)

wherex is any representative from the classj in E. Let ev be the
class containing the functionej vt in E, then the set$ev ,vPR%
forms an orthonormal basis inE.

Fig. 1 A classical disturbance rejection problem
Journal of Dynamic Systems, Measurement, and Control
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Similarly, linear transformations onE can also form a normed
space. LetL (E) be a space of all LTI stable systemsP on E, with
the operator norm

iPi5 sup
iji51,jPE

iPji (6)

The frequency-response function of an operatorPPL (E) is de-
fined by

P~v!5^Pev ,ev&, vPR (7)

The operator norm defined in~6! turns out to be the least uppe
bound of the associated frequency-response functionP(v) ~@10#,
pp. 19–25!.

iPi5sup
v

uP~v!u (8)

The normed spaceL (E) is a Banach space due to the comple
ness ofE.

Accordingly, in this RMS norm setting, the problem o
asymptotic rejection of periodic disturbances can be resta
Given PPL „E… and a periodic disturbanced with finite RMS
norm, find a class of control signalsjPE such that the respons
classPj contains the signal2d. Our initial concern is to deter-
mine if a solution exists and also find a solution if it exists.

Proposition 1. ~Solution to Asymptotic Rejection of Periodi
Disturbances! For an operatorPPL (E), if another operatorC
PL (E) exists, such thati I 2CPi,1, asymptotic rejection of pe-
riodic disturbances can be achieved for any periodicd with finite
RMS norm, and the corresponding control signal class can
expressed in the following

j5H u: u52(
n50

`

~ I 2CP!nCd1x, ;xPM J PE (9)

Proof: Assume that the periodic disturbanced belongs to a
classh in E. Since L (E) is a Banach space, if an operatorC
PL (E) exists, such thati I 2CPi,1, the solution to the follow-
ing operator equation

CPj52Ch (10)

is unique and can be obtained by inverting the operatorCP using
the Neumann series~@11#, p. 70!.

j52~CP!21Ch52(
n50

`

~ I 2CP!nCh (11)

Rewriting ~10! gives

C~Pj1h!50 (12)

The frequency-response functionC(v) of C cannot vanish on any
frequencyv, sincei I 2CPi,1. This implies that the operatorC
cannot annihilate any almost periodic signals, i.e., it has a tri
nullspace. Consequently,~12! implies iPj1hi50. The signal
2d belongs to the class2h, thus also belonging toPj. That is,
the classj causes asymptotic disturbance rejection.

Proposition 1 provides a sufficient condition for the existen
of a solution inE. Clearly, if the control signal for achieving
asymptotic disturbance rejection exists, then it is not uniq
Among all solutions, solutionu52(n50

` (I 2CP)nCd has a very
interesting alternative expression. Solutionu can be obtained by
the following successive iteration

un1152Cd1~ I 2CP!un (13)

or equivalently

un115un2C«n (14)

where «n denotes the error vectorPun1d. That the sequence
$un% converges tou from any initial vectoru0 can be easily veri-
fied. The convergence rate is estimated as follows:
SEPTEMBER 2001, Vol. 123 Õ 325
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i«ni<i I 2CPini«0i (15)

In view of the iteration~14!, it is just like a ‘‘learning’’ mecha-
nism, correcting the guess via the error at each iteration. Rou
speaking, the more closelyCP approximates an identity operato
the quicker$un% could ‘‘learn’’ from the errors. Now, assume tha
the disturbance signal is periodic with the periodT. In an analo-
gous manner, the present control forceu(t) can be generated b
learning from the previous period of signalsu(t2T) and «(t
2T) as follows:

u~ t !5u~ t2T!2@C«#~ t2T! (16)

This is known as the repetitive control law, which automatica
generatesu belonging to the solution class presented in Propo
tion 1. This solution-generating algorithm can be proved in
straightforward manner by applying the fixed-point theorem.

Proposition 2. ~Repetitive Control Law! For an operatorP
PL „E…, if another operatorCPL „E… exists, such thati I 2CPi
,1, asymptotic rejection of any periodic disturbanced with finite
RMS norm, can be achieved by the control signalu generated by
the following control law

u~ t !5@Du#~ t !2@CD«#~ t !, for tP@0,̀ ! (17)

whereD denotes an delay operator, which performs aT-second
delay with zero initial states, i.e., (Du)(t)5u(t2T), and u(t
2T)50 for t2T,0, and« denotes the error vectorPu1d. Ad-
ditionally, u is bounded in the RMS sense.

Proof: The proof consists of three parts. First, let the mapp
F:E→E be defined byF(c)5Dc2CD(Pc1d). Additionally,
the mappingF is a contraction since

iF~c!2F~z!i<iD~ I 2CP!iic2zi,ic2zi ;c,zPE
(18)

Second, we show that the functionu generated by~17! belongs
to some class inE, thus having a finite RMS value. Rewrite~17!
in the following

~ I 2D1CDP!u52CDd⇒u52~ I 2D1CDP!21CDd

where (I 2D1CDP)21PL „E… can be proved directly using Neu
mann series, sinceI 2D1CDP is an identity plus a small opera
tor with the normiD(I 2CP)i,1. Clearly, the disturbance is a
element from some class inE, since it is periodic with finite RMS
value. Therefore,u also belongs to some class inE. Assume the
class containsu is j8. It follows from ~17! thatj8 is a fixed point
of F.

Third, according to Proposition 1, the conditioni I 2CPi,1
guarantees the existence of a class of control signalsjPE for
achieving asymptotic disturbance rejection, i.e.,Pj52h, where
h denotes the class containing the disturbanced. Also, the peri-
odicity of d yields the relationh5Dh, which in turn impliesj
5Dj. Consequently, we obtainF(j)5Dj2CD(Pj1h)5j,
i.e., j is also a fixed point ofF.

Finally, since the contraction mappingF could only have one
fixed point inE ~@11#, p. 256!, we havej85j. The signalu thus
belongs to the equivalence class of the control signals that c
asymptotic disturbance rejection.

j
The proof of Proposition 2 provides a promising method

designing a learning control law or an adaptive algorithm if t
desired solution can be represented in an operator equation
Pu5d, which is assumed to have a solutionu. If we can find a
contraction mappingF of which the solutionx is a fixed point,
then the control lawû5F(û) can generateû that approaches tou
in steady state. In practice, the contraction mappingF must be
causal so that the associated control law can be physically re
able. In the repetitive control law,F is causal if the operatorD and
CD are designed to be causal; thereby, the control signal ca
generated in real-time by processing current or past values o
control signal and cancellation error.
326 Õ Vol. 123, SEPTEMBER 2001
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Compared with direct operator inversion, repetitive control la
~17! has the advantage of precise knowledge of the plant is
necessary to obtain asymptotic disturbance rejection. Instead,
a rough inversionC and the cancellation error« are required.
Practically speaking, this is a very appealing feature, since a m
ematical model can hardly represent a physical system precis
and the disturbance signal is generally not measurable in m
applications.

Inspection of the repetitive control law~17! shows that two
operatorsD and C are involved. OperatorD is a delay operator,
and C is a rough inversion of the plantP. These two operators
play vital roles in the steady state and transient behavior of rep
tive control. In the following section, the design of digital repe
tive controller is considered, and the emphasis is placed on
design of the delay filterD.

3 Digital Repetitive Controller With Lowpass Delay
Filter

Consider a discrete-time repetitive control system, as illustra
in Fig. 2, the plantP(z) is stable and the disturbanced is periodic
with the periodT, which may not be an integer multiple of th
sampling interval. Rather than using the integer-delay operato
z2N @2#, a general filterD(z) is used. The transfer function from
the disturbanced to the residual error« is

«~z!

d~z!
5

12D~z!

12D~z!~12P~z!C~z!!
(19)

Assume that bothC(z) andD(z) are stable, then, according to th
small gain theorem, the sufficient condition for closed-loop sta
ity is

iD~z!~12P~z!C~z!!i`,1 (20)

This sufficient condition is reduced to the condition given
proposition 2 when the transfer functionD is an ideal delay filter.
Thus, if D is an ideal delay filter andC is well designed such tha
the overall system is stable, then perfect asymptotic disturba
rejection can be obtained. Therefore, the design of a repet
controller can be separated into two model-matching proble
The first is to design a causal stable filterD(z), which closely
approximates a delay operator with the delay timeT. The second
is to design a stable compensatorC(z), such thatP(z)C(z) is
approximately an identity operator. Note that the multiplicati
C(z)D(z) must be causal. The design ofC(z) has been exten-
sively studied, for example, Tomizuka et al.@2#; Hu et al. @12#.
This study however, focuses on the design ofD(z).

The filter D(z) is designed to approximate an ideal delay o
erator. In theory, an ideal delay filter is~@13#, eq. ~2!!

D~z!5(
nPZ

sinc~n2h!z2n (21)

whereh5T/Ts , T is the desired delay time andTs is the sam-
pling period. The sinc function is defined as sinc(v)
5sin(pv)/(pv). When the desired delay is exactly an integ
multiple N of the sampling time, the ideal delay filter reduces
z2N. If h5T/Ts is not an integer, the ideal delay filter of~21! is

Fig. 2 A discrete-time repetitive control system
Transactions of the ASME
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noncausal with infinite taps. Thus, in practice, a causal and fin
length filter that well approximates an ideal delay filter must
designed. To simplify the problem,D(z) is restricted to be an FIR
filter. Also, to optimally realize a long delay with a short-leng
FIR filter D(z), the desired delay is split into an integer multip
part and a fractional part of the sampling interval@14,15#. That is,
if the desired delay isT5(N1t)Ts , whereTs is the sampling
interval, N is an integer, and 0<t,1, thenD(z) can be repre-

Fig. 3 Frequency response of the lowpass delay filter D „the
gray line in the phase diagram is the desired phases …
e

l

s
e

a
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sented asz2NQ(z), whereQ(z) well approximates an ideal dela
filter with delayt. Moreover, as implied in~20!, the magnitude of
D(ej v) can be made small in the high-frequency band, such
high-frequency model uncertainty can be tolerated. In this w
the system ‘‘gives up’’ the rejection of the high-frequency distu
bance. Therefore, in frequency domain, the filterQ(e2 j v) should
closely approximate an ideal delay responsee2 j vt within the con-
trol bandwidth, while the magnitude ofQ(ej v) is as small as
possible over the high-frequency band for robustness concern

Assume that the normalized control bandwidth is@0,v0p# and
the high-frequency band is set as@v1p,p#, where 0,v0,v1
,1. Given the filter length 2n11, the FIR filterQ(z) is fixed as
the following form

Q~z!5q2nzn1q2n11zn211 . . . 1q01q1z211 . . . 1qnz2n

(22)

To design the filterQ(z), the following cost function is mini-
mized.

J5E
0

v0p

ue2 j vt2Q~ej v!u2dv1lE
v1p

p

uQ~ej v!u2dv (23)

where l is a non-negative real number. The larger the valuel
selected, the more emphasis there is on the stopband minim
tion. The design criterion leaves the transition band as ‘‘do
care.’’ The cost functionJ can be written in the following matrix-
vector form

J5pqT$v0R~v0!1l@R~p!2v1R~v1!#%q22v0phTq1v0p
(24)

where
q5@q2n q2n11 ¯ qn#T

h5@sinc@v0~t1n!# sinc@v0~t1n21!# ¯ sinc@v0~t2n!##T

R~v!5F 1 sinc~v! sinc~2v! ¯ sinc~2nv!

sinc~v! 1 sinc~v! sinc@~2n21!v#

] ]

sinc~2nv! ¯ 1

G

ex-
of

200
-

mal

th,
DifferentiatingJ with respect toq and setting it equal to zero, w
obtain the optimal solution

q5H R~v0!1
l

v0
@R~p!2v1R~v1!#J 21

h (25)

Note that the matrix inversion part of~25! is independent of the
delayt and thus can be computed beforehand. Given a fractio
delay t, the vectorh can be computed. The coefficients of th
optimal low-pass delay filter are then readily obtained by a sin
matrix multiplication. Therefore, This explicit solution is suitab
for a real-time coefficient update. Given a new signal period,
repetitive controller can be easily updated to minimize the per
mismatch on-line. Another alternative is to calculate a set ofn
11 filter coefficients ofQ(z), with respect to some prescribe
delays between 0 to 1 sampling time and store all these fi
coefficients in a digital memory. Thus, by the table lookup, t
filter coefficients can be updated more quickly. Notably, t
closed-loop stability for these optimal delay filters can be ea
verified. The system stability associated with any one of th
filters generally implies the stability associated with the entire
of filters since these lowpass delay filters have roughly the s
magnitude response.
nal
e
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Consider a discrete repetitive control system as a design
ample, where the sampling frequency is 6 kHz and the period
the disturbance is 50.4. Assume the control bandwidth is 1
kHz, then the filterD(z) in the repetitive controller can be ob
tained via~25! as follows:

D~z!5z250~0.0127z820.0102z720.025z610.0269z510.045z4

20.0609z320.0877z210.177z10.484210.4274z21

10.0951z2220.0888z2320.0269z2410.0347z25

10.0071z2620.0169z2710.0024z28!

Figure 3 displays the resulting frequency response of the opti
lowpass delay filterD(z). This delay filter is obviously a good
approximation of a desired delay operator within the bandwid
with the magnitude of the error responseue2 j 50.4v2D(ej v)u rang-
ing from 275 dB to 225 dB. Notably, since the multiplication
z2NQC must be causal, the lowest realizableN is restricted, when
the orders ofQ andC are determined.
SEPTEMBER 2001, Vol. 123 Õ 327
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4 Application to Repetitive Acoustic Noise Cancella-
tion

Periodic noises, mostly generated by engines, motors, and c
pressors, are very common in our living environment. Using
results obtained in Section 3, the repetitive control scheme is
plied to active noise cancellation~ANC! in a duct ~Fig. 4!. As-
sume the noise source is a piece of machinery that consta
generates periodic noise with constant or varying periods. T
error microphone feeds the residual noise back to the contro
and the controller calculates the control signal to drive the can
ing loudspeaker, thus producing another noise with which to c
cel the primary noise. Given the noise period, which can be
rectly obtained via a nonacoustic sensor@8#, such as a tachomete
or an accelerometer, then the asymptotic noise cancellation ca
attained via learning from the past if the controller is prope
designed.

The plantP(z), which represents the acoustic dynamics in
0.530.1530.15 m3 duct as well as the dynamics of the cancell
tion speaker, amplifiers, and the microphone, is identified us
time-domain least square algorithms with frequency weighti
Figure 5 shows its frequency response. In the low-frequency ba
the plant has transmission zeros around 0 Hz and 700 Hz.
control bandwidth is set as 600 Hz. To stabilize the overall s
tem, the magnitude ofD(ej v) is designed to roll off before the
nodal frequency 700 Hz. The parametersn510, v050.1, v1
50.1167,l50.01 are selected. Thus, given the noise period,
filter D(z) can be determined via the formula given in Section
Figure 6 displays the frequency response of the optimalD(z) with
the desired delay of 50.4~in the unit of sampling interval!. Also,
the FIR compensatorC(z) with the tap length 20 is designed suc
that the multiplicationP(z)C(z) has zero phase and is close to
in the least-squares sense. Figure 7 illustrates the design re
where uD(ej v)(12C(ej v)P(ej v))u,1 for any v, except when
v50. According to Nyquist stability criterion, the overall syste
is stable since the Nyquist locus does not encircle critical po
2110 j .

Fig. 4 An active noise cancellation system

Fig. 5 Frequency response of the plant P„z…
328 Õ Vol. 123, SEPTEMBER 2001

rom: http://dynamicsystems.asmedigitalcollection.asme.org/ on 04/28/201
om-
he
ap-

ntly
he

ller,
el-

an-
di-
r
n be
ly

a
a-
ing
g.
nd,

The
ys-

the
3.

h
1
sult,

int

Fig. 6 Frequency response of the lowpass delay filter D„z…
„the gray line in the phase diagram is the desired phases …

Fig. 7 Magnitude response of C„ej v
…P„ej v

… „above … and
D„ej v

…„1ÀC„ej v
…P„ej v

…… „below …

Fig. 8 The cancellation error signals „above: the integer delay
tuning method; below: the fractional delay tuning method ….
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Table 1

Noise period 56.1 45.56 50.67

E/N for the integer delay tuning method 233.63 dB 210.20 dB 222.64 dB
E/N for the fractional delay tuning method 249.71 dB 246.27 dB 247.51 dB
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The noise period may alter as the motor or compressor is o
ated at different speeds. Two controller-tuning schemes are
sidered in the simulations. One is the integer delay tuning met
proposed by Tsao and Nemani@7# and Hu@6#, that is, adjusting
the order of the repetitive controller according to the roundoff
the given noise period. The other is the fractional delay tun
method proposed herein. That is, the coefficients of the opti
delay filter are updated according to the altered noise period
periodic noise with five harmonic components is created. T
noise period varied from 56.1 samples, to 45.56 samples,
finally to 50.67 samples. Figure 8 shows the simulation results
the assumption that the noise periods can be estimated, and
the repetitive controllers are updated for every 600 sampling
tervals. As a steady-state noise-cancellation meas
cancellation-error to noise ratio~E/N! is defined by the RMS norm
as follows

E/N520 log10S icancellation errori
iuncanceled noisei DdB

Table 1 indicates E/N values for the simulation results. Obviou
the fractional delay tuning method has superior performance o
the integer delay tuning method. The remaining cancellation e
for the integer delay tuning method is primarily attributed to t
roundoff error of the noise period.

Although, the adjustable sampling rate method may achieve
similar steady-state performance to the fractional delay tun
method, adjusting the sampling rate without changing the cont
ler on-line cannot maintain the best transient performance as
proposed tuning method does, as illustrated in Fig. 8. Worse
it may affect the system robustness, and even cause instab
whereas the proposed tuning method still maintains good sys
robustness.

5 Conclusion
A constructive derivation of repetitive control is presented. T

stability and performance of repetitive control is proved by t
fixed-point theorem. This derivation not only leads to a bet
understanding of the learning mechanism of repetitive control,
also provides an alternative method with which to design a lea
ing control law or an adaptive algorithm for a desired solution t
can be represented in an operator equation.

Also, an optimal delay filter is introduced in the digital repe
tive control law to enhance the steady-state performance of re
tive control, when the signal period is not an integer multiple
the sampling interval. The main purpose of this filter is to reco
mic Systems, Measurement, and Control
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struct the inter-sample signals of previous period and makes
learning process of digital repetitive control more accurat
implemented. The proposed delay filter has the feature that,
respect to different signal periods, its coefficients can be upda
quickly. Thus, it is suitable for on-line tuning. Additionally, onc
the nominal controller is well designed, the transient performa
and system stability can be guaranteed for each update. There
when the period of the signal varies, it is perfectly suitable
on-line tuning of the repetitive controller.
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@14# Laakso, T. I., Va¨limäki, V., Karjalainen, M., and Laine, U. K., 1996, ‘‘Split-
ting the Unit Delay,’’ IEEE Signal Process. Mag.,13, pp. 30–60.

@15# Yu, S. H., and Hu, J. S., 2001, ‘‘Optimal Synthesis of a Fractional Delay F
filter in a Reproducing Kernel Hilbert Space,’’ to appear in IEEE Signal P
cess. Lett.
SEPTEMBER 2001, Vol. 123 Õ 329

4 Terms of Use: http://asme.org/terms


