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1 Introduction nals are givenu(t—T) ande(t—T) are unavailable unless that

Repetitive control is effective in asymptotic tracking or rejecEhe signal periodr is exactly an integer multiple of the sampling

tion of periodic signalg1,2]. It consists of a wide variety of interval. When the signal period is precisely known and fixed,

lication h noncircular cuttif@, disk drive trackin integer multiple condition can be easily achieved. However, it
appiications, such as noncircular cu , aIS € racking  pecomes a difficult task when the signal period varies. There are
[4], and active noise cancellatigs]. Repetitive control was ex-

plained and proved by the internal model princigle,2]). This two types of methods for solving this problem. The first method

) L 6,7]) usesu(t—NT,) and e(t—NT,) to approximateu(t—T)
work, however, Proposes a constructlvg de_rlvat|on bas?" on de(t—T), respectively, wher® T, is the nearest integer mul-
operator theory. First, the disturbance rejection problem is formy: :

. ; . le of sampling interval to the signal periotl The second
lated as a question for solving an operator equation. The deri\gai,q(7,g)) alters the sampling rate on-line while maintaining a
tion begins with the iterative inversion of an operator by the Ne

. ; - ! ; Yixed controller. The disadvantage of the first tuning scheme is the
mann series, which results in a Neumann series solution as weligsjtable period mismatch due to the roundoff of the actual signal

a sufficient existence condition for an operator inversion problelearind. This mismatch may result in undesirable remaining oscil-
Additionally, this solution can be alternatively represented by su iting errors, thus deteriorating the steady-state performance. As
cessive iteration of an equation, which provides a good insigh; the second tuning scheme, the most serious problem is that
into deriving the learning algorithm for an operator equation. CO'&hanging the sampling rate without changing the controller can
sequently, a slight modification of this iteration equation leads tgfact system robustness, and even cause instability.

the well-known repetitive control law. Finally, in a mathemati- pBased on the idea of the adjustable delay operator, this study
cally rigorous manner, the fixed-point theorem is used to Provgtempts to provide an alternative method for a discrete-time re-
the performance and stability of repetitive control. _ petitive controller. With the fixed sampling interval, a delay filter,

In the derl_vatlon of repetitive control, two operators are inghjch aims to optimally interpolate(t—T) ande(t— T) between
volved. One is an operator that is a rough inversion of the plafamples, is introduced to enhance the steady-state performance.
This operator is closely related to the stability and transient barcording to distinct signal periods, this optimal filter can be
havior of repetitive control—the better it well inverses the p|anhpdated via only a small amount of computations. Thus it can be
the more stable the overall system is and more quickly the systgiged as an on-line tuning scheme for the changeable signal period.
will reach steady state. The other is a delay operator, of which thjs delay filter tuning method is applied to active noise cancel-

delay time is equal to the signal period in order to achievgtion within a duct. Simulations illustrate the effective enhance-
asymptotic signal tracking or disturbance rejection. Based @fent of the steady-state performance.

these observations, the repetitive control system with adjustable

delay operator can reasonably track or reject signals with varying A Pathway to Repetitive Control
period. This idea naturally leads to an alternative repetitive control_l_h. i id tructive derivati f it
algorithm for asymptotic tacking or rejecting periodic signals with IS seclion provides a constructive derivation ol repetiive
varying period. control. 'I_'he_derlvatlon begins with t_he f_ormulanon of a distur-

Repetitive control repeatedly generates the present control fo&aenced I’tEJEthI?n protl_)lem', as _sho_\:_vln in (;:Igt él T2|e| p_Iam;las-

u(t) by learning from the previous period of the control forc$um$ odef_ln%ar 'g‘i 'n_;_’ﬁ“aﬁtf. )t_an : sta f.e'd S|tgn|as_ arel
u(t—T) and the tracking or disturbance rejection ere¢t—T). unctions defined ofi0.-). The objective is to find control signal

. . P _such that the periodic disturbandean be asymptotically can-
However, in a discrete-time system, where only the sampled si lled, i.e., the error signal—o ast—so.
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d Similarly, linear transformations oB can also form a normed
space. Let (E) be a space of all LTI stable systef@®n E, with
u € the operator norm
—_—» P

[Pl=sup [Pé| (6)
lél=1¢<E
Fig. 1 A classical disturbance rejection problem The frequency-response function of an operd&arL (E) is de-
fined by
P(w)=(Pe,,e,), weR (7)

the disturbance. To analyze and synthesize such control signgige gperator norm defined i) turns out to be the least upper
an appropriate linear vector space that includes both transient nd of the associated frequency-response fundtian) ([10]
periodic signals must be formed. Notably, a collection of periodig, 19-25. '

signals could not make a linear vector space because linear com-
binations of two or more periodic signals of arbitrary periods will [Pl|=sugP(w)| (8)
generally not be periodic, for examplef(t)=sin(2mt) ©
+sin(2/2m) is not periodic since there exists fio= R such that e normed spack(E) is a Banach space due to the complete-
f(t+T)=1(t). Suc_h signals with frequencies of the components, e o
not related by rational numbers have some “almost-periodic’ Accordingly, in this RMS norm setting, the problem of
characters. LeH be a linear vector space of complex-valued,qymntotic rejection of periodic disturbances can be restated:
functionsx(t),0<t<e, spanned bye'*",w e R}, with the norm  Gjyen P L(E) and a periodic disturbance with finite RMS
1 (T 12 norm, find a class of control signais= E such that the response
|x|=( Iim—f [x(D)]2dt] <o (1) classP¢ contains the signat-d. Our initial concern is to deter-
=1 Jo mine if a solution exists and also find a solution if it exists.
Proposition 1 (Solution to Asymptotic Rejection of Periodic
Disturbances For an operatoiP e L(E), if another operatoiC
R R L E— e L(E) exists, such thatl — CP||<1, asymptotic rejection of pe-
(xy)=1lim—= f x(Oy(t)dt, Vx,yeH (2)  riodic disturbances can be achieved for any periatiivith finite
T RMS norm, and the corresponding control signal class can be
wherey(t) represents the complex conjugatey¢f). Notably,H expressed in the following

and the inner product

0

is a Hilbert space of almost periodic functiof9], sections 13 o
and 57; it contains either finite linear combinatiols_,c,el ", =1u: u= _E (1-CP)"Cd+x, VxeMfecE (9)
or their limits in the norm defined iil). The spaceH is not n=o

separable since its orthonormal bagE“!,w € R} is not count-

) . Proof: Assume that the periodic disturbandebelongs to a
able. The norm defined i), kn0\_Nn as thg root-mean-squareclass” in E. Sincel(E) is a Banach space, if an operator
(RMS) norm in many areas of engineering, is a steady-state megL(E) exists, such thatl — CP| <1, the solution to the follow-
sure, which is unaffected by the transient of a signal. Accordlng% operator équation '

the transient signals can be easily defined as signals with 289

RMS norm; letM be a collection of all such signals: CPé=—-Cyp (10)
o1 T ) is unique and can be obtained by inverting the oper@®@using
M= X-Tl'm? . x(1)[*dt=0 ) the Neumann serig§11], p. 70.

©

M is a closed set. Thus, the uniontdfandM, denoted byH UM
makes a new complete linear vector space, which includes both
transient and almost periodic functions. In this new space, how-
ever, the RMS norm becomes only a seminorm. Thafxg=0 Rewriting (10) gives

does not implyx= @, rather in this case it only implies—0 as _

t—o. Consequently, two signalg, andy in HUM, that differ C(Pé+m)=0 (12)
only by a transienti.e., |x—y||=0) are equivalent in the RMS The frequency-response functi@{w) of C cannot vanish on any
sense. Suppose that two functiony e HUM are said to belong frequencyw, since|l —CP||<1. This implies that the operat@

to the same class if the differenge-y belongs tdM, then the set cannot annihilate any almost periodic signals, i.e., it has a trivial
of all such classes is called the quotient spack 0fM relative to nullspace. Consequently12) implies |P&+ 7]|=0. The signal

M, represented bE. This quotient spack is a Hilbert space with —d belongs to the class 5, thus also belonging t&¢. That is,

the inner product defined in the following way: Given two elethe classt causes asymptotic disturbance rejection.

ments ofE, i.e., two classeg and 7, we choose a representative Proposition 1 provides a sufficient condition for the existence

g:—(cp)—lcn:—go(l—cp)"cn (11)

from each class, sayfrom & andy from 7, then of a solution inE. Clearly, if the control signal for achieving
1 (T asymptotic disturbance rejection exists, then it is not unique.

(&,7)=lim= f x(t)y(t)dt (4) Among all solutions, solution=—X_,(l - CP)"Cd has a very

T T Jo interesting alternative expression. Solutiertan be obtained by

. the following successive iteration
In a completely analogous manner, the norm can be defined as

follows Upr1=—Cd+(I-CP)u, (23)

(T 2 or equivalently
1= im 7 [ olay ©

Tow

Unt1=Uy—Cey (14)

wherex is any representative from the claé# E. Lete, be the where ¢, denotes the error vectdPu,+d. That the sequence
class containing the functiog“! in E, then the se{e,,0eR} {u,} converges tai from any initial vectoru, can be easily veri-
forms an orthonormal basis iB. fied. The convergence rate is estimated as follows:
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lenl<Il —CP|"||&ol (15) Compared with direct operator inversion, repetitive control law
. . . L . ) (17) has the advantage of precise knowledge of the plant is not
In view of the iteration(14), it is just like a “learning” mecha- necessary to obtain asymptotic disturbance rejection. Instead, only
nism, correcting the guess via the error at each iteration. Rougiyrough inversionC and the cancellation erras are required.
speaking, the more closelyP approximates an identity operator,practically speaking, this is a very appealing feature, since a math-
the quicker{u,} could “learn” from the errors. Now, assume thatematical model can hardly represent a physical system precisely,

the disturbance signal is periodic with the peribdin an analo- 4nq the disturbance signal is generally not measurable in many
gous manner, the present control fotg) can be generated by gppjications.

learning from the previous period of signalgt—T) and e(t Inspection of the repetitive control lawl7) shows that two
—T) as follows: operatorsD and C are involved. OperatoD is a delay operator,
u()=u(t—T)—[Ce](t—T) (16) and C is a rough inversion of the plaR. These two operators

play vital roles in the steady state and transient behavior of repeti-
This is known as the repetitive control law, which automaticallyive control. In the following section, the design of digital repeti-
generates! belonging to the solution class presented in Proposive controller is considered, and the emphasis is placed on the
tion 1. This solution-generating algorithm can be proved in @esign of the delay filteb.
straightforward manner by applying the fixed-point theorem.

Proposition 2 (Repetitive Control Law For an operato®? 3 Digital Repetitive Controller With Lowpass Delay

eL(E), if another operatoC e L (E) exists, such thafl —CP|| Filt
<1, asymptotic rejection of any periodic disturbamteith finite titer
RMS norm, can be achieved by the control sign@enerated by  Consider a discrete-time repetitive control system, as illustrated

the following control law in Fig. 2, the planP(z) is stable and the disturbandes periodic
with the periodT, which may not be an integer multiple of the
u(t)=[Du](t) =[CDe](t), for te[0) (17)  sampling interval. Rather than using the integer-delay operator as

whereD denotes an delay operator, which perform3-second 2" [2], a general filteiD(z) is used. The transfer function from
delay with zero initial states, i.e.Du)(t)=u(t—T), andu(t the disturbancel to the residual erroe is

—T)=0 fort—T<0, ande denotes the error vectétu+d. Ad- &(2) 1-D(2)
ditionally, u is bounded in the RMS sense. —_ = (19)
Proof: The pr_oof consists of three parts. First, let ;he mapping d(z) 1-D(2)(1-P(2)C(2))
F:E—E be defined byF(y) =Dy —CD(Py+d). Additionally, Assume that botiS(z) andD(z) are stable, then, according to the
the mapping- is a contraction since small gain theorem, the sufficient condition for closed-loop stabil-
IF(—-F@l<IDa-CPlly—cl<lp—d VuieE WS
(18) ID(2)(1-P(2)C(2)].<1 (20)

Second, we show that the functiargenerated by17) belongs Thjs sufficient condition is reduced to the condition given in
to some class ifE, thus having a finite RMS value. Rewrit¢7)  proposition 2 when the transfer functihis an ideal delay filter.
in the following Thus, if D is an ideal delay filter an@ is well designed such that

(1-D+CDP)u=—CDd=u=—(1-D+CDP)~'CDd thg oyerall system is ;table, then perfect asymptotic disturbgrjce

rejection can be obtained. Therefore, the design of a repetitive

where (—D+CDP) e L(E) can be proved directly using Neu- controller can be separated into two model-matching problems.
mann series, since-D + CDP is an identity plus a small opera- The first is to design a causal stable fil@(z), which closely
tor with the norm|D (I —CP)||<1. Clearly, the disturbance is anapproximates a delay operator with the delay tim&he second
element from some class i, since it is periodic with finite RMS is to design a stable compensat©(z), such thatP(z)C(z) is
value. Thereforeu also belongs to some class i Assume the approximately an identity operator. Note that the multiplication
class containsi is &'. It follows from (17) that&’ is a fixed point  C(z)D(z) must be causal. The design 6fz) has been exten-
of F. sively studied, for example, Tomizuka et &2]; Hu et al.[12].

Third, according to Proposition 1, the conditi)h—CP||<1 This study however, focuses on the desigrDgk).
guarantees the existence of a class of control sigéal& for The filter D(z) is designed to approximate an ideal delay op-
achieving asymptotic disturbance rejection, iRé=— », where erator. In theory, an ideal delay filter {513], eq.(2))

n denotes the class containing the disturbadcalso, the peri-

odicity of d yields the relationp=D 7, which in turn impliesé D(z)= 2 sindn— )z " (21)
=D¢. Consequently, we obtaifr(¢)=DEé—CD(PE+ ) =¢, nez

i.e., ¢ is also a fixed point of.

Finally, since the contraction mappirkgcould only have one
fixed point inE ([11], p. 256, we haveé’ = ¢. The signalu thus
belongs to the equivalence class of the control signals that ca
asymptotic disturbance rejection.

where n=T/Tg, T is the desired delay time ant is the sam-
pling period. The sinc function is defined as sia¥(
=sin(rw)/(7w). When the desired delay is exactly an integer
Ys6itiple N of the sampling time, the ideal delay filter reduces to
z N If »=TI/T4is not an integer, the ideal delay filter (%1) is

|
The proof of Proposition 2 provides a promising method for
designing a learning control law or an adaptive algorithm if the d

desired solution can be represented in an operator equation like
Pu=d, which is assumed to have a solutionlf we can find a

contraction mapping= of which the solutionx is a fixed point, N -CD
then the control lawll=F(0) can generaté that approaches to o 1-D
in steady state. In practice, the contraction mapgdigiust be

causal so that the associated control law can be physically realiz-
able. In the repetitive control law, is causal if the operatdd and

CD are designed to be causal; thereby, the control signal can be
generated in real-time by processing current or past values of the
control signal and cancellation error. Fig. 2 A discrete-time repetitive control system
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sented ag~NQ(z), whereQ(z) well approximates an ideal delay

filter with delay 7. Moreover, as implied if20), the magnitude of

D(e'”) can be made small in the high-frequency band, such that

high-frequency model uncertainty can be tolerated. In this way,

the system “gives up” the rejection of the high-frequency distur-

bance. Therefore, in frequency domain, the filjge ') should

closely approximate an ideal delay respoasé&’” within the con-

trol bandwidth, while the magnitude dd(e'®) is as small as

possible over the high-frequency band for robustness concern.
Assume that the normalized control bandwidtt @swy7] and

the high-frequency band is set p® 7, 7], where 0K wo<w;

<1. Given the filter length 2+ 1, the FIR filterQ(z) is fixed as

the following form

Q(2)=0_yZ"+q_ps12" *+ ...+ Qot oz ... +gz "
(22)

Magnitude

3000

:
o
o

-
1)
=3

Phase (rad)

'
-
n
<

'2°°o 500 1000 1500 2000 2500 3000 10 design the filterQ(z), the following cost function is mini-
Hz mized.
Fig. 3 Frequency response of the lowpass delay filter D (the o Sjor IPNES m Jon 2
gray line in the phase diagram is the desired phases ) J= . le” 1= Q(e*)[*dw+\ |Q(e!)[*dw (23)
wlw

where\ is a non-negative real number. The larger the value
noncausal with infinite taps. Thus, in practice, a causal and finiteelected, the more emphasis there is on the stopband minimiza-
length filter that well approximates an ideal delay filter must b&#on. The design criterion leaves the transition band as “don’t
designed. To simplify the probler®,(z) is restricted to be an FIR care.” The cost functiod can be written in the following matrix-
filter. Also, to optimally realize a long delay with a short-lengthvector form
FIR filter D(z), the desired delay is split into an integer multiple |
part and a fractional part of the sampling interi/s$, 15, Thatis, 9 7q{@oR(wo) + A[R(7) — 01R(w1) 4~ 20pmhTq+ wom
if the desired delay i¥=(N+7)T., whereT, is the sampling (@4)
interval, N is an integer, and € 7<1, thenD(z) can be repre- where

9=[0-n G-ns1 anl"
h=[sind wo(7+n)] sind wg(7+n—1)] sind wo(7—n)]]"
1 sindw) sinQ2w) sind 2nw)
sind w) 1 sind w) sind (2n—1)w]
R(w)= . :
sind2nw) 1

DifferentiatingJ with respect tay and setting it equal to zero, we Consider a discrete repetitive control system as a design ex-
obtain the optimal solution ample, where the sampling frequency is 6 kHz and the period of
the disturbance is 50.4. Assume the control bandwidth is 1200
kHz, then the filterD(z) in the repetitive controller can be ob-
tained via(25) as follows:

-1

A
q= R(wo)+w_0[R(7T)_w1R(w1)] h (25)

Note that the matrix inversion part ¢25) is independent of the

delay 7 and thus can be computed beforehand. Given a fractiong(z) = z-5%0.012%8— 0.0102” — 0.025°+ 0.026@5+ 0.045*
delay 7, the vectorh can be computed. The coefficients of the
optimal low-pass delay filter are then readily obtained by a single
matrix multiplication. Therefore, This explicit solution is suitable
for a real-time coefficient update. Given a new signal period, the
repetitive controller can be easily updated to minimize the period
mismatch on-line. Another alternative is to calculate a setrof 2
+1 filter coefficients ofQ(z), with respect to some prescribed
delays between 0 to 1 sampling time and store all these filter
coefficients in a digital memory. Thus, by the table lookup, thEigure 3 displays the resulting frequency response of the optimal
filter coefficients can be updated more quickly. Notably, th®wpass delay filteD(z). This delay filter is obviously a good
closed-loop stability for these optimal delay filters can be easigpproximation of a desired delay operator within the bandwidth,
verified. The system stability associated with any one of thewéth the magnitude of the error resporjee %% —D (el )| rang-
filters generally implies the stability associated with the entire sitg from —75 dB to —25 dB. Notably, since the multiplication

of filters since these lowpass delay filters have roughly the sameNQC must be causal, the lowest realizablés restricted, when

—0.0602%—0.087%%+0.177%2+0.4842+ 0.4274 1
+0.095%Z 2-0.088& °—0.0262 *+0.034% >
+0.007% %-0.016%’+0.00248)

magnitude response.
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the orders ofQ and C are determined.
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4 Application to Repetitive Acoustic Noise Cancella- 5 : \ ; : "
tion ‘ : ‘ :
Periodic noises, mostly generated by engines, motors, and cc
pressors, are very common in our living environment. Using tt
results obtained in Section 3, the repetitive control scheme is ¢
plied to active noise cancellatioANC) in a duct(Fig. 4). As-
sume the noise source is a piece of machinery that constar
generates periodic noise with constant or varying periods. T

Magnitude

error microphone feeds the residual noise back to the controll 0 T N T T N

and the controller calculates the control signal to drive the canC. _sob . . . . . 0 T o o ool ]

ing loudspeaker, thus producing another noise with which to caE . . S — .

cel the primary noise. Given the noise period, which can be ¢g -100F - -~ -« <~ ---------{- ;“:\.M%h\‘m\;. e

rectly obtained via a nonacoustic sen8}; such as a tachometerg ...| . = . . e T

or an accelerometer, then the asymptotic noise cancellation car : :

ztetg;gﬁngla learning from the past if the controller is properl -200 500 7000 1500 2000 2500 3000
Hz

The plantP(z), which represents the acoustic dynamics in a
0.5X0.15x0.15 n? duct as well as the dynamics of the cancellaFig. 6 Frequency response of the lowpass delay filter D(z)
tion speaker, amplifiers, and the microphone, is identified usititye gray line in the phase diagram is the desired phases
time-domain least square algorithms with frequency weighting.
Figure 5 shows its frequency response. In the low-frequency band,
the plant has transmission zeros around 0 Hz and 700 Hz. The
control bandwidth is set as 600 Hz. To stabilize the overall sys-
tem, the magnitude ob(e'®) is designed to roll off before the
nodal frequency 700 Hz. The parameters 10, wy=0.1, w; 2 T T T T T
=0.1167,A=0.01 are selected. Thus, given the noise period, tt . . . : .
filter D(z) can be determined via the formula given in Section &
Figure 6 displays the frequency response of the optD{a) with
the desired delay of 50.4n the unit of sampling interval Also,
the FIR compensatdZ(z) with the tap length 20 is designed such
that the multiplicationP(z)C(z) has zero phase and is close to 1
in the least-squares sense. Figure 7 illustrates the design res
where |D(e'®)(1-C(e'®)P(e/®))|<1 for any w, except when
o=0. According to Nyquist stability criterion, the overall systenr
is stable since the Nyquist locus does not encircle critical poil

Magnitu

°
—-1+0j. 2 . . . . .
S05L--\ - o)\ S [P Ce e e .. d
= . . : . :
=
. 0 n /\,“f—\
Noise Microphone 0 500 1000 1500 2000 2500 3000
‘J Source Hz
Nonacoustic ‘Canceling Speaker Fig. 7 Magnitude response of  C(e/®)P(e/*) (above) and
Sensor D(e/*)(1—C(e/*) P(e/*)) (below )
Repetitive
Controlier
Fig. 4 An active noise cancellation system
8 T T T T 8
. - : 2
P 6F-fp--- - I T AL T DU S =
3 ‘ N ©
Sab-fo-eaoa R GNP =
o0
g . . .
Z2F--NC S - - - e e e e 4 e e e e e e d

(=]

1000 1500 2000 2500 3000
Frequency (Hz)

200
g
100 2
8 5
g ° 2
[s]
-100 : : .
200 : L : : 1 0 0.5 1 1.5 2
0 500 1000 1500 2000 2500 3000 Sec
Frequency (Hz)
Fig. 8 The cancellation error signals  (above: the integer delay
Fig. 5 Frequency response of the plant  P(z) tuning method; below: the fractional delay tuning method ).
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Table 1

Noise period 56.1 45.56 50.67
E/N for the integer delay tuning method —33.63 dB —10.20 dB —22.64 dB
E/N for the fractional delay tuning method —49.71 dB —46.27 dB —47.51 dB

The noise period may alter as the motor or compressor is opstruct the inter-sample signals of previous period and makes the
ated at different speeds. Two controller-tuning schemes are céearning process of digital repetitive control more accurately
sidered in the simulations. One is the integer delay tuning methodplemented. The proposed delay filter has the feature that, with
proposed by Tsao and NemdiTi| and Hu[6], that is, adjusting respect to different signal periods, its coefficients can be updated
the order of the repetitive controller according to the roundoff afuickly. Thus, it is suitable for on-line tuning. Additionally, once
the given noise period. The other is the fractional delay tunirthe nominal controller is well designed, the transient performance
method proposed herein. That is, the coefficients of the optimahd system stability can be guaranteed for each update. Therefore,
delay filter are updated according to the altered noise period.when the period of the signal varies, it is perfectly suitable for
periodic noise with five harmonic components is created. Thmm-line tuning of the repetitive controller.
noise period varied from 56.1 samples, to 45.56 samples, and
finally to 50.67 samples. Figure 8 shows the simulation results ffcknowledgment
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