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Abstract. Let α be a permutation of the vertex set V (G ) of a connec-
ted graph G. Define the total relative displacement of α in G by

δα (G )G ∑
x,y ∈ V(G)

�dG (x, y)AdG (α (x), α (y)) �,

where dG (x, y) is the length of the shortest path between x and y in G.
Let π*(G ) be the maximum value of δα (G ) among all permutations of
V (G ). The permutation which realizes π*(G ) is called a chaotic map-
ping of G. In this paper, we study the chaotic mappings of complete
multipartite graphs. The problem is reduced to a quadratic integer pro-
gramming problem. We characterize its optimal solution and present an
algorithm running in O(n5 log n) time, where n is the total number of
vertices in a complete multipartite graph.
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1. Introduction

Let α be a permutation of the vertex set V (G ) of a connected graph
G. Define the total relative displacement of α in G by

δα (G )G ∑
x,y ∈ V (G )

�dG (xAy)AdG (α (x), α (y)) �,

where dG (x, y) is the length of the shortest path between x and y in G. It is
easy to see that a permutation α of V (G ) is an automorphism of G if and
only if the total relative displacement of α in G is zero. Let π(G ) and π*(G )
denote respectively the smallest nonzero total relative displacement and the
largest total relative displacement in G. The permutation which realizes
π*(G ) is called a chaotic mapping of G. The chaotic mapping is related to
the sorting problem in computer science (Refs. 2–4). Computing π(G ) and
π*(G ) is an important research topic in graph theory (Refs. 1, 5, 6). The
exact value of π(G ) has been obtained for G, when G is a path or a complete
multipartite graph Kn1 ,n2 ,...,nt in which all vertices are partitioned into t sub-
sets with cardinalities n1, n2, . . . , nt , respectively; an edge (u, û) exists if and
only if two vertices u and û belong to different subsets.

(i) See Ref. 5. Let G be a path with n vertices. Then, the minimum
total relative displacement is π(G )G2nA4.

(ii) See Ref. 1. Let 1⁄n1⁄n2⁄ · · ·⁄nt , where t¤2 and nt¤2. Then,

π(Kn1 ,n2 ,...,nt)G�
2nhC1A2, if 1Gn1G· · ·GnhFnhC1⁄ · · ·⁄nt ,

and t¤ (hC1), for some h¤2,

2nk0 , if 1Gn1Fn2 or n1¤2 and

nkC1GnkC1 for some k, 1⁄k⁄ tA1,

and 2Cnk0⁄n1Cn2, where k0

is the smallest index for which

nk0C1Gnk0C1,

2(n1Cn2A2), otherwise.

In this paper, we study how to compute π*(Kn1 ,n2 ,...,nk ). This problem
can be reduced to a quadratic integer programming due to the following
result.

Lemma 1.1. See Ref. 1. Let Kn1 ,n2 ,...,ntG(X1, X2, . . . , Xt ) be a complete
t-partite graph with partite sets X1, X2, . . . , Xt . Let α be a permutation of
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V (Kn1 ,n2 ,...,nt ). For each 1⁄ i, j⁄ t, define

aijG�Aij (α ) �G�{x �x ∈ Xi and α (x) ∈ Xj }�.

Then,

δα (Kn1 ,n2 ,...,nt )G ∑
t

iG1

n2
i A ∑

1⁄ i, j⁄ t

a2
ij . (1)

Since ∑t

iG1 n2
i is fixed for a given complete multipartite graph, the prob-

lem of determining π*(Kn1 ,n2 ,...,nk ) is equivalent to the following quadratic
integer programming:

(QIP) min ∑
1⁄ i, j⁄ t

a2
ij ,

s.t. ∑
t

iG1

aijGnj , for 1⁄ j⁄ t,

∑
t

jG1

aijGni , for 1⁄ i⁄ t,

aij¤0 are integers.

In this paper, we characterize the optimal solution of this minimization
problem and present an algorithm running in O(n5 log n) time, where n is
the number of vertices in a complete multipartite graph. We also give
explicit values of π*(Kn1 ,n2,...,nk ), based on the characterization, in some
special cases.

2. Characterization of the Optimal Solution

Let AG(aij ) be a tBt nonnegative matrix. We call

CG(ai1 j1 , ai1 j2 , ai2 j2 , ai2 j3 , ai3 j3 , . . . , ais js , ais j1 )

a cycle of length 2s, s¤2, in A. A cycle C of length 2s is said to be over-
weight if either aik jk¤1 for 1⁄k⁄s and

ai1 j1Aai1 j2Cai2 j2Aai2 j3Cai3 j3A· · ·Cais jsAais j1Hs,

or aik jkC1¤1 for 1⁄k⁄s, where jsC1Gj1, and

Aai1 j1Cai1 j2Aai2 j2Cai2 j3Aai3 j3C· · ·Aais j sCais j1Hs.
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Below, we show a matrix with overweight cycle of length 2:

AG�
3 → 1

↑ ↓
1 ← 2

1 1

1

1

0

� .

It is not difficult to see that, since AG(aij ) has an overweight cycle, ∑ a2
ij G

19 is not of minimum value under the constraints that the row sums and
column sums are fixed. The next matrix A′G(a′ij ) reaches a smaller value
∑ a′2ij G17,

A′G�
2 2 1

2 1 1

1 1 0
� .

Theorem 2.1. AG(aij ) is an optimal solution of Problem (QIP) if and
only if no overweight cycle exists in A.

Proof. Necessity. Suppose that A has an overweight cycle CG

(ai1 j1 , ai1 j2 , . . . , ais j1 ). Without loss of generality, assume that aik jk¤1 for
1⁄k⁄s and

ai1 j1Aai1 j2Cai2 j2Aai2 j3Cai3 j3A· · ·Cais jsAais j1Hs.

Define A′G(a′ij ), where

a′ijG�
aijA1, if (i, j )G(ik , jk ) for some 1⁄k⁄s,

aijC1, if (i, j )G(ik , jkC1) for some 1⁄k⁄s,

aij , otherwise.

Now,

∑ a2
ijA∑ a′2ij Ga2

i1 j1Ca2
i1 j2C· · ·Ca2

is j1Aa′2i1 j1Aa′2i1 j2A· · ·Aa′2is j1

G2(ai1 j1Cai2 j2C· · ·Cais js)

−2(ai1 j2Cai2 j3C· · ·Cais j1)A2s

H0.

Therefore, ∑ a2
ij is not the minimum. Note that the row sums and column

sums of A and A′ are equal respectively. Hence, we have the proof for
necessity.
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Sufficiency. For contradiction, assume that all cycles of A are not
overweight and ∑ a2

ij is not the minimum. Let A*G(a*ij ) denote an optimal
solution.

Let

∆ ijGaijAa*ij , 1⁄ i, j⁄ t.

Define a directed bipartite multigraph G with bipartition (X, Y ), where

XG{x1, x2, . . . , xt}, YG{y1, y2, . . . , yt},

xi joins to yj with ∆ij edges if ∆ijH0, and xi joins from yj with ∆ij edges if
∆ijF0. Since

∑
t

jG1

∆ ijG0, for 1⁄ i⁄ t,

and

∑
t

iG1

∆ ijG0, for 1⁄ j⁄ t,

the outdegree and indegree of each vertex in G are equal. Thus, each compo-
nent of G has a directed Eulerian circuit, and hence G can be decomposed
into directed cycles C1, C2, . . . , Cm . For each cycle Cl , define

w(Cl )G ∑
(xi ,yj ) ∈ Cl

aijA ∑
(yj ,xi ) ∈ Cl

aij .

Note that,

∆ ijH0, for (xi , yj ) ∈ Cl ,

and that ∆ijH0 implies aij¤1, since a*ij ¤0. Thus,

aij¤1, for (xi , yj ) ∈ Cl .

This means that, if w(Cl )H�E(Cl ) ��2, where �E(Cl ) � is the number of edges
in cycle Cl , then Cl introduces an overweight cycle in A. Since A has no
overweight cycle, we have

w(Cl )⁄ �E(Cl ) ��2, for 1⁄ l⁄m.
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Therefore,

∑
1⁄ i, j⁄ t

a2
ijA ∑

1⁄ i, j⁄ t

a*2
ij G ∑

1⁄ i, j⁄ t

a2
ijA ∑

1⁄ i, j⁄ t

(aijA∆ ij )
2

G2 ∑
1⁄ i, j⁄ t

aij∆ ijA ∑
1⁄ i, j⁄ t

∆2
ij

G2 ∑
m

lG1

w(Cl )A ∑
1⁄ i, j⁄ t

∆2
ij

⁄2 ∑
m

lG1

(1�2) �E(Cl ) �A ∑
1⁄i, j⁄t

∆2
ij

G�E(G ) �A ∑
1⁄ i, j⁄ t

∆2
ij

G∑
i, j

�∆ ij �A ∑
1⁄ i, j⁄ t

∆2
ij

⁄0,

where �E(G ) � denotes the number of edges in G. This contradicts the fact
that A*G(a*ij ) is an optimal solution, while AG(aij ) is not. �

With the above characterization, we are able to find a chaotic mapping
for certain complete multipartite graphs.

Corollary 2.1. Let Km,n be a complete bipartite graph, and let lG
min{m, n}, where mCn¤4. Then,

π*(Km,n)G2(mCnA2) l.

Proof. Let

AG�mAl l

l nAl� .

Then, A has no overweight cycle. By Theorem 2.1 and (1),

π*(Km,n)G(m2Cn2)A[(mAl )2C2l2C(nAl )2

G(−4)l2C2(mCn) l ]

G2(mCnA2) l. �
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Corollary 2.2. In Kn1 ,n2 ,...,nt , if aijG(1�t)(niCnj )A(1�t2) ∑t

iG1 ni is a
nonnegative integer for each 1⁄ i, j⁄ t, then AG(aij ) gives a chaotic map-
ping of Kn1 ,n2 ,...,nt and

π*(Kn1 ,n2 ,...nt )G(1A2�t ) ∑
t

iG1

n2
iC(1�t2) � ∑

t

iG1

ni�
2

.

Proof. Since for each i and i ′,

aijAai′ jG(niAni ′)�t

and for each j and j ′,

aijAaij ′G(njAnj ′)�t,

all cycles in A have weight zero. By Theorem 2.1, ∑ a2
ij is minimum. Thus,

A determines a chaotic mapping of Kn1 , n2 ,...nt by mapping aij elements of the
partite set Xi to the partite set Xj . Furthermore, it is easy to check that

π*(Kn1 ,n2,..., nt )G ∑
t

iG1

n2
iA ∑

1⁄ i, j⁄ t

a2
ij . �

Example 2.1. For a complete 3-partite graph K3,6,9 with partite sets

X1G{1, 2, 3},

X2G{4, 5, 6, 7, 8, 9},

X3G{10, 11, 12, 13, 14, 15, 16, 17, 18},

from Corollary 2.2, we have

AG�
0 1 2

1 2 3

2 3 4
� ,

and

π*(K3,6,9)G(1A2�3)(32C62C92)C(1�9)(3C6C9)2G78.

One of the chaotic mappings is as follows:

αG�1 2 3 � 4 5 6 7 8 9 � 10 11 12 13 14 15 16 17 18

4 10 11 � 1 5 6 12 13 14 � 2 3 7 8 9 15 16 17 18� .

For a special t-tuple (n1, n2, . . . , nt ), we can also find π*(Kn1 ,n2 ,...,nt ).
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Corollary 2.3. Let sG(s1, s2, . . . , st ) be a t-tuple such that siG0 or 1,
1⁄ i⁄ t, and let n1As1, n2As2, . . . , ntAst be a graphical sequence of a simple
graph. Then,

π*(Kn1 ,n2 ,...,nt)G ∑
t

iG1

ni (niA1).

Proof. Since (n1As1, n2As2, . . . , ntAst ) is a graphical sequence, let G
be a graph with such degree sequence. Moreover, let B (G )G[bij ] be the
adjacent matrix of G. Now, define AG[aij ] such that

aijGbij , for i ≠ j,

aiiGsi , for 1⁄ i, j⁄ t.

By direct counting, we see that A has no overweight cycles; thus, by
Theorem 2.1, we have an optimal solution. By (1), we can figure out easily
π*(Kn1,n2 ,...,nt ). �

3. Algorithm

Theorem 2.1 suggests the following algorithm to compute
π*(Kn1,n2,...,nt ).

Algorithm 3.1. Start from an initial matrix (aij ),

aijG�ni ,

0,

if iGj,

if i ≠ j.

Carry out the following steps in each iteration.

Step 1. Check whether the matrix (aij ) has an overweight cycle. If not,
then stop; we obtain

π*(Kn1 ,n2 ,...,nt )G ∑
t

iG1

n2
iA ∑

1⁄ i, j⁄ t

a2
ij .

Otherwise, go to Step 2.
Step 2. Suppose that ai1 j1, ai1 j2 , ai2 j2 , . . . , ais js , ais j1) is an overweight

cycle, with aik jk
¤1 for 1⁄k⁄s and ai1 j1Aai1 j2Cai2 j2A· · ·

Cais jsAais j1Hs. Then, set

ai1 j1 ← ai1 j1A1,

ai1 j2 ← ai1 j2C1,
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ai2 j2 ← ai2 j2A1,

· · · ,

ais js ← ais jsA1,

ais j1 ← ais j1C1.

Go to the next iteration.

Note that, initially,

∑
1⁄ i, j⁄ t

a2
ijG ∑

t

iG1

n2
i .

In each iteration, if Step 2 is performed, then this sum decreases at least by
one. Therefore, the algorithm stops within ∑t

iG1 n2
i GO(n2) iterations, where

nG∑t

iG1 ni . In the following, we explain how to implement each iteration in
O(n3 log n) time. Therefore, we have the following theorem.

Theorem 3.1. π*(Kn1 ,n2 ,...,nt ) can be computed in O(n5 log n) time.

Proof. First, we construct a directed graph H with vertex set

VG{ûij �aij¤1},

edge set

EG{(ûij , ûi′j ′) � i ≠ i ′, j ≠ j ′ },

and edge weight

w(ûij , ûi′j ′)G(1�2)(aijCai′j ′)Aaij ′A1.

Note that

�V �⁄ ∑
t

iG1

niGn.

Therefore, H can be constructed in O(n2) time. �

Lemma 3.1. The matrix (aij ) has an overweight cycle if and only if H
has a simple directed cycle with positive total weight.

Proof. H has a directed cycle (ûi1 j1 , ûi2 j2 , . . . , ûis js ) with a positive total
weight if and only if aik jk¤1 for 1⁄k⁄s and

ai1 j1Aai1 j2Cai2 j2A· · ·Cais jsAais j1Hs. �
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Now, let P be the subgraph of H induced by all edges with positive
weight, and let Q be the subgraph of H induced by all edges with nonposi-
tive weight. Replace each negative edge-weight in Q by its absolute value.
Let Q ′ be the resulting edge-weighted directed graph.

(i) Check Whether P Contains a Directed Cycle. This can be done
in at most O(n2) time. If yes, then we have found already a directed cycle
of H with positive total weight. Otherwise, P is acyclic.

(ii) Compute the Shortest Path in Q ′ for Every Pair of Vertices. This
can be done in O(n3) time. Let q(ûij , ûi ′ j ′) denote the length of the shortest
path from ûi j to ûi ′ j ′ in Q ′.

Make nC1 disjoint copies P0, P1, . . . , Pn of P. Denote by ûk
ij the copy

of the vertex ûij in Pk . For each pair of vertices ûij and ûi ′j ′ , with
q(ûij , ûi ′j ′)FS, add edges ûkA1

ij , ûk
i ′j ′) for 1⁄k⁄n, each with weight

Aq(ûij , ûi ′j ′). Meanwhile, delete all edges in P0. This results in an acyclic
directed graph R with O(n2) vertices.

Lemma 3.2. H has a simple directed cycle with positive total weight
if and only if either P contains a cycle or there exist i, j, k such that R has
a directed path from û0

ij to ûk
ij with positive total weight.

Proof. Suppose that H has a simple directed cycle C with positive
total weight. If every edge has a positive weight, then P contains a cycle.
Otherwise, C can be decomposed into 2k paths alternatively in P and Q.
Suppose that ûij is the starting vertex of such a path in Q. It is easy to see
that we can find a path from û0

ij to ûk
ij in graph R, with positive total weight,

corresponding to cycle C.
Conversely, if P contains a cycle or if there exist i, j, k such that R has

a directed path from û0
ij to ûk

ij with positive total weight, then it is easy to
find a directed cycle C with positive total weight in H. This cycle may not
be simple. However, it can be decomposed into several simple directed
cycles, at least one with positive total weight, since the sum of weights of
those simple directed cycles equals the positive total weight of C. �

Now, for each pair of û0
ij and ûk

ij , compute the longest path from û0
ij to

ûk
ij in R. Since R is acyclic, this can be done trivially by dynamic program-

ming in O(n5) time.
In fact, there are at most n û0

i js and finding all longest paths from û0
ij to

other vertices needs at most O(n2) time. However, we describe next a clever
way running in O(n3 log n) time.

Construct R ′ from R by adding edges (ûkA1
ij , ûk

ij ) for all 1⁄k⁄n and
1⁄ i, j⁄ t. Clearly, R ′ is a disjoint union of n copies of the subgraph induced
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by the vertices in P0∪ P1. Let g(u, û) denote the length of the longest path
from vertex u to vertex û in R ′. It is easy to see that there exist i, j, k such
that R has a directed path from û0

ij to ûk
ij with positive total weight if and

only if g(û0
ij , û

n
ij )H0.

(iii) For every pair of vertices û1
ij and û2

i ′j ′ , compute the longest path
from û1

ij to û1
i ′j ′ . This can be done in O(n3) time since P1 is acyclic.

(iv) For every pair of vertices û0
ij and û1

i ′j ′ , compute the longest path
from û0

ij to û1
i ′j ′

g(û0
ij , û

1
i ′j ′)G max

u ∈ V (P1)
(−q(û0

ij , u)Cg(u, û2
i ′j ′)),

where V (P1) denotes the vertex set of P1. This can be done in O(n3) time.

Similarly, we can compute all

g(û0
ij , û

2
i ′j ′)G max

u ∈ V (P1)
(g(û0

ij , u)Cg(u, û2
i ′j ′ )),

g(û0
ij , û

4
i ′j ′)G max

u ∈ V (P2)
(g(û0

ij , u)Cg(u, û4
i ′j ′)),

g(û0
ij , û

8
i ′j ′)G max

u ∈ V (P4)
(g(û0

ij , u)Cg(u, û8
i ′j ′)),

· · ·

g(û0
ij , û

n
ij ),

totally in O(n3 log n) time.
This completes the proof of Theorem 3.1. �

4. Conclusions

We have studied a quadratic integer programming problem with appli-
cation in a graph problem and found an algorithm to solve the graph prob-
lem in O(n5 log n) time, where n is the number of vertices in the given graph.
This is the first polynomial-time algorithm for this graph problem.
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