N,

& The Journal of

{t

4 Systems and

ﬂ Software
ELSEVIER The Journal of Systems and Software 58 (2001) 135-152

www.elsevier.com/locate/jss

Design of a scalable multiprocessor architecture and its simulation
Der-Lin Pean, Chao-Chin Wu, Huey-Ting Chua, Cheng Chen *

Department of Computer Science and Information Engineering, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30050, Taiwan, ROC
Received 15 April 2000; received in revised form 21 September 2000; accepted 11 November 2000

Abstract

Performance enhancement and system scalability are two of the most important issues in the design of multiprocessor systems. A
scalable cluster-based multiprocessor architecture and its simulation environment called SEECMA are proposed. Several new issues
in our architecture, including scalable cache coherence protocols, relaxed memory consistency models, memory optimization
techniques and several types of processors are considered. It has been developed to meet current trends in clustering architecture
design. Additionally, the SEECMA environment is presented as a helpful investigation tool for both education and research. In
addition to many simulation options, it is provided with a user-friendly graphic interface. SEECMA can automatically collect data
from several simulation runs and display the results for comparison. So far, we have evaluated several vital issues of cluster-based
multiprocessors on SEECMA including effective prefetching and replacement policies, and optimization of migratory sharing using
both hardware and software mechanisms. On average, these enhance system performance by up to 8%, 9% and 7%, respectively.
Our cluster-based multiprocessor architecture also scales more readily than the current general, or cluster-based, multiprocessor
environments. © 2001 Elsevier Science Inc. All rights reserved.

Keywords. Cluster-based multiprocessors; Shared memory; Program-driven simulation; Performance evaluation; Multithreaded processor

1. Introduction

The gap between the computing power of micropro-
cessors and that of the largest supercomputers is
shrinking, while the price/performance advantage of
microprocessors is increasing. This clearly points to us-
ing microprocessors as the computation engines in large
multiprocessor systems. The challenge lies in building a
machine that can scale up its performance while main-
taining the initial price/performance advantage of the
individual processors. Scalability allows a parallel ar-
chitecture to leverage commodity microprocessors and
small-scale multiprocessors to build larger scale ma-
chines. These larger machines offer substantially higher
performance, which provides the impetus for program-
mers to port their sequential applications to parallel
architectures instead of waiting for the next higher
performance uni-processor. Due to the rapid progress in
VLSI and packaging technologies, they have become a
driving force in the design and development of highly
scalable parallel systems using cluster-based architec-

* Corresponding author. Tel.: +886-35712121 ext. 54734; fax: +886-3-
5724176.
E-mail address: cchen@csie.nctu.edu.tw (C. Chen).

ture, simultaneously exploiting local communication.
Currently there are commercial supercomputers con-
structed with a cluster-based architecture, such as the
CONVEX SPP series (CONVEX, 1994). Meanwhile,
system designers must rely upon a convenient and ac-
curate simulation environment to verify their designs or
determine the most cost-effective strategies. Our cluster
multiprocessor and its simulation environment, called
simulation and evaluation environment for cluster-
based multiprocessor architecture (SEECMA), are de-
signed to address the above issues. SEECMA is the
outcome of follow-up work on simulation and evalua-
tion environment for shared-memory multiprocessor
architecture (SEESMA) (Wu et al., 1998¢c).

Our architecture is designed for high performance
and scalability. Our main purpose is to construct effec-
tive memory and interconnection architectures. After
our evaluation, we found that our architecture has the
following desirable attributes.

1. A multithreaded processor architecture in a cluster-
based system is possible, which is more effective when
combined with our proposed mechanisms.

2. Several memory consistency models (Wu, 1998a; Wu
and Chen, 1998b) to improve the parallelism of the
system were constructed, all resulting in improved
system performance.

0164-1212/01/$ - see front matter © 2001 Elsevier Science Inc. All rights reserved.

PII: S0164-1212(01)00034-6

136 D.-L. Pean et al. | The Journal of Systems and Software 58 (2001) 135152

3. We propose several new cache coherence protocols
and directory structures in the linked-base type of
cluster-based architecture, and these also perform
better than existing protocols. We also demonstrate
that some cache coherence protocols that perform
well in non-cluster-based systems perform poorly in
cluster-based systems.

4. Several new prefetching and replacement policies
are presented to improve the efficiency of the cache
system, and simulation results prove these to be
effective.

5. With the assistance of these effective mechanisms, we
find our architecture has high scalability when evalu-
ating performance.

As SEECMA is extended from SEESMA (Wu et al.,
1998¢c), the kernel simulator is the MINT package
(Veenstra and Fowler, 1994), which was originally de-
veloped at the University of Rochester. SEECMA aims
to provide a simulation and evaluation environment for
cluster-based multiprocessor systems. It supports the
following simulation functions:

. two types of processor architectures;

. two-level caches with write caches (WCs);

. a message-passing-based interconnection network;

. four types of memory consistency models;

. five types of cache coherence protocols;

. three types of cache coherence directory structures;

. effective replacement policies; and

. effective prefetching schemes.

SEECMA is equipped with versatile simulation
options and users may customize the target memory
architecture by clicking on the appropriate buttons in
a user-friendly X-windows interface.

Users are provided with either a menu or graphic
input environment through a Graphic User Interface
(GUI). The menu-based interface is similar to conven-
tional windows functions while the graph-based inter-
face is more convenient for beginners. Users move the
cursor around various architectural components and
click on them to select the required simulation options.
Each time a simulation option is located, the graph is
updated. On-line help is also supported. Other than the
above, SEECMA automatically collects numerical data
from several simulation results, and displays the corre-
sponding statistical graphs. So far, both bar charts and
line charts are available. Using these graphs, users are
able to compare the performance of different architec-
tural parameters.

SEECMA, with its abundant simulation features,
serves as a valuable research environment for system
designers who are interested in cluster-based multi-
processor architecture. We have used SEECMA on
many research issues related to memory subsystems,
including cache coherence protocols, memory consis-
tency models, interconnection networks, cache hierar-
chies, migratory sharing (Su et al., 1996), as well as

01N LN AW~

prefetching and replacement policies (Pean et al.,
1998a).

As a result of simulation, we found that our new
mechanisms, developed in our cluster-based architec-
ture, performed much better than current methods. We
illustrate some of them in the following. Note that all
the comparisons, including non-cluster system archi-
tecture and DASH (Lenoski and Laudon, 1989) system
architecture, are made based on the simulations per-
formed using SEECMA. Our inter-clustered cache pre-
fetching mechanism performs, on average, about 8%
better than the original non-inter-clustered cache system
for benchmarks in the SPLASH benchmark suite (Singh
et al., 1992; Woo et al., 1995). Our effective replacement
policy performs, on average, about 9% better than the
original replacement policy. We propose a migratory-
sharing optimization mechanism; the total system per-
forms 7% better, on average, than the system without
our optimization. Other effective mechanisms also per-
form well, and we describe them in detail in the fol-
lowing sections.

The rest of the paper is organized as follows. Section 2
gives an overview of the overall system architecture.
Section 3 describes the main system features and design
issue considerations. An overview of the SEECMA
simulation and evaluation environment is given in
Section 4. Section 5 evaluates the performance of our
architecture on SEECMA, and Section 6 gives our
conclusions and outlines future work.

2. Overall system architecture

Our system architecture is a cluster-based distributed
shared-memory multiprocessor system. The general ar-
chitecture of our target machine is shown in Fig. 1.
Within our clustering architecture are multiple cluster
nodes interconnected by a k-ary n-cube network. Each
cluster node contains local shared-memory, an inter-
cluster cache, a few processor environments (PEs), and a
local bus.

The inner structure of a cluster node is shown in
Fig. 1(b), and either MIPS R3000 processors or PMPs
(Hirata et al., 1992) are used throughout the system.
There is a single Local Shared Memory (LSM) asso-
ciated with each cluster node to reduce memory con-
tention and improve data locality. The inter-cluster
cache is implemented with the goals of further facili-
tating data sharing among the clusters and utilizing
data locally; it contains data that are usually referenced
by the intra-cluster processors. The two components
inside the Inter-Cluster Processor (ICP) are the input
and output controllers; they are responsible for pac-
keting request and acknowledgement. The local bus
acts as an intra-connection network among intra-clus-
ter PEs, the inter-cluster cache and LSM. Scalability is

D.-L. Pean et al. | The Journal of Systems and Software 58 (2001) 135152 137

Blocking-load processor Lockup-free second-level cache

Second-level g

FLWB cache SLWB s

Q

(=1

FLC SLC — |§

o

8

First-level N Second-level g
cache First-level write buffer =
write buffer S

=}

(a) 3

Cluster Node

Cluster Node

InterCluster | Dummy
Cache che
<\
InterCluster
Processor

—

In put
Cor oller

m,
| —
InterCluste|
—— |

(b) (InterCluster Interconnection Network)

Fig. 1. (a) Processor environment. (b) The overall architecture of our
cluster-based multiprocessor.

not a major concern in small-scale architectures, and
we have therefore adopted a well-known snoopy-based
protocol, Berkeley Protocol (Mazin et al., 1995), to
maintain intra-cluster cache coherence. On the other
hand, scalability is maintained through the global in-
terconnection network by using the enhanced IEEE
SCI Standard (IEEE SCI, 1992).

Shared memory is divided into several equal-size
pages that are allocated to nodes in a round-robin
fashion. Each processor environment (PE) includes a
two-level cache hierarchy associated with write buffers,
as presented in Fig. 1(a). In order to support released
memory consistency models, we have added a lockup-
free second-level cache (SLC) (David, 1995). The first-
level cache (FLC) is a write-through on-chip cache
whereas the SLC is a copy-back cache. Both caches are
direct-mapped with the same line size in both, and full
inclusion is supported. If a block is presented in the
FLC, it will also be present in the SLC. On the other
hand, the SLC is lockup-free while the FLC is blocking
with an invalidation pin, so that a block can be in-
validated outside the processor. All coherence actions
associated with the system-level cache coherence pro-
tocol are handled by the SLC, inter-cluster cache and
memory controller. Between the FLC and the SLC a
first-level write buffer (FLWB) is used to avoid pro-
cessor stalls on write accesses. Moreover, to make the
SLC lock-free, for when multiple outstanding write
requests are allowable, a second-level write buffer
(SLWB) is also included to store all of the writes that
induce global actions.

This clustering system brings a few benefits, such as
resource sharing, exploitable packaging technologies,
and allowing processors within clusters to share data in
a more effective manner.

3. Main architecture features and design issue consider-
ations

3.1. Cluster-based multiprocessor and interconnection
network

A cluster-based multiprocessor system has multiple
cluster nodes interconnected through a k-ary n-cube
network, where each cluster node is assembled by sev-
eral PEs linked by a local bus. Each cluster node is a
small-scale multiprocessor system and multiple clusters
form a large-scale system. This clustering architecture
benefits from both small- and large-scale architectures,
and hence is extremely attractive. The number of cluster
nodes and PEs per node is specified by the users. If there
is a single PE for each cluster node, then the cluster-
based multiprocessor architecture becomes a typical
multiprocessor system.

As stated by Dally (1990), most modern concurrent
computers use k-ary n-cube or isomorphic to k-ary n-
cube networks, such as rings, meshes, tori, direct and
indirect binary n-cubes and Omega networks. In order
to guarantee generality, a k-ary n-cube network is cho-
sen for our system and we provide specific parameter
adjustments: (1) radix, (2) dimension, (3) switch delay,
(4) wire delay of a link, (5) link width and (6) uni-di-
rectional or bi-directional transmission. These provide
for various research purposes.

3.2. Inter-cluster prefetching scheme

Data prefetching is one of the more useful ap-
proaches to effectively exploit local communication in
our system. The prefetching scheme in clustered multi-
processors is slightly different to that of non-clustered
multiprocessors, because data access may go through
intra- and inter-clustering interconnection networks.

There are more levels of memory hierarchy in clus-
tering than in non-clustering multiprocessor systems.
Thus, a normal prefetching access must traverse more
memory levels to read or write data while misses occur.
In addition to the original memory accesses, there are
multiple repeats of such accesses when prefetching is
used. On the other hand, the traffic in every level of
clustering multiprocessor systems also increases several
times as the amount of prefetching data is increased.
This causes the prefetching accesses to be delayed at
every level of the memory hierarchical levels. Thus, we
implement the prefetching mechanism in the inter-clus-
tering cache rather than the SLC of our clustering
multiprocessor system as shown in Fig. 2. The inter-
clustering prefetching scheme extracts some perfor-
mance gains by decreasing the network contention in the
higher levels of the memory hierarchy. It also increases
the locality of intra-clustering data because it brings in
the data that may be required in this clustering node in

138 D.-L. Pean et al. | The Journal of Systems and Software 58 (2001) 135152

P: Processing Node
N: Fetched Address
Inter-Clusteri INC: Address Counter

Cache

Hit/Miss

Ack ! Ack
(n) (n+1)

Cluster

Local Shared Inter-cluster
Memory Cache

To Inl.a(-emslararv%mnmun
N

Fig. 3. Traffic request of inter-cluster prefetching scheme.

the near future. This inter-clustering prefetching tech-
nique causes less local bus requests, because it issues
fewer read miss requests, and this may improve the
clustering system. Here, we send only one request at
every read miss request. As shown in Fig. 3, while
reading for block n misses, it issues only the read miss
request for block n. When other SLCs and inter-clus-
tering caches receive the request for block number #,
they search for not only block #, but also block n + 1.
After searching for these data blocks, they can reply for
these blocks. Traditional hardware prefetching mecha-
nisms use a small cache block size; the advantages and
disadvantages of the strategy are possibly avoiding false
sharing misses, but bring in apparent traffic overhead.
Therefore, instead of the access count widely used in
previous hardware prefetching mechanisms, the inter-
cluster prefetching (ICP) sends only one request during
read misses.

In this way, the ICP scheme involves fewer local bus
requests and extracts performance gain from decreasing
network contention and traffic overloading. As a result,
it will improve the locality of intra-clustering data and
we show the figure of merit in Section 5.

3.3. Effective block replacement scheme

As limited cache size introduces cache conflict the
replacement policy is one of the fundamental issues in
cache design (Culler et al., 1999). The replacement pol-
icy adopted for our architecture is based on the Berkeley

protocol (Mazin et al., 1995). Fig. 4 is the transition
diagram of the Berkeley protocol, with four states: In-
valid, Clean-Shared (possibly shared and not modified),
Dirty-Shared (possibly shared and modified), and Dirty-
Exclusive (no other copies in caches and modified). A
block in either the Dirty-Shared or Dirty-Exclusive state
must be written back to main memory if it is selected for
replacement. Dirty-Exclusive must be associated with
only one cache. Dirty-Shared can be in only one cache,
but it may be Clean-Shared in other caches. In addition,
the Berkeley protocol uses the idea of ownership; if a
block is not owned by any cache, memory is the default
owner. The consistency rules are:

(1) Read Miss: If a block is Dirty-Shared or Dirty-
Exclusive, the cache with that copy must provide block
contents to the other cache directly, and set its local
state as Dirty-Shared. Otherwise, it is loaded from main
memory. In any case, the state of the requesting cache
block is set to Clean-Shared. Note that the target block
always sources from its owner.

(2) Write Hit: If a block has remained in the Dirty-
Exclusive state, write will proceed without delay. If it is
Clean-Shared or Dirty-Shared, an invalidation signal
must be sent through the bus before write can proceed.
All other caches invalidate their copies upon matching
of block address, and the local state is changed to Dirty-
Exclusive in the originating cache.

(3) Write Miss: Similar to read miss, the requested
block is always provided from the owner. Any cache
that has copies should transfer their state to Invalid. At
the same time, the block in the requesting cache is up-
dated as Dirty-Exclusive.

If the replacement shows up in a Clean-Shared cache
line, some transaction must be done in advance. An
example is illustrated in Fig. 5. Initially the states of
specific blocks PO, P2 and memory are Dirty-Shared,
Clean-Shared and Gone, respectively. The cache in P2
first issues a block replacement request. Once PO re-
ceives the request, and no other processors have that

e 'RRMis.

.
Invalid k - -RW Miss, Invalidatien: -
LD
~

Y
',
%,

Legend:

LR: Local Read
LW: Local Write
RR: Remote Read
RW: Remote Write
LD: Local Delete
Remote Delete
— BusTrans.

z -
: i .. - * Processor Trans.
irty- LW Hit Dirty-

(------- RR Miss- - ~\ Shared

¢ >

VR

{ ,QM;;// N

+ RRMiss- - -
Py
o

Fig. 4. Transition diagram of the Berkeley protocol.

D.-L. Pean et al. | The Journal of Systems and Software 58 (2001) 135152 139

P1 P2 P3

el @

BUS D)

Memory

P2 issues request of block
@ replacement
@

PO replies to the request and changes the state to Dirty-
Exclusive if other processors do not have the cache copy

() P2 receives the ack of block replacement

Fig. 5. Block replacement of Clean-Shared state in the Berkeley
protocol.

copy, the cache state of PO changes to Dirty-Exclusive
instantaneously. P2 will finally receive an acknowl-
edgement that replacement is successful. If the target
block is Dirty-Exclusive, it can be written immediately.
Table 1 collects the total number of write requests from
different states. The Dirty-Exclusive state is further di-
vided into Pure Dirty-Exclusive and Impure Dirty-Ex-
clusive. A state is set to Impure Dirty-Exclusive if the
Dirty Exclusive state is originally in the Dirty-Shared
state; otherwise it is the Pure Dirty-Exclusive state. As
illustrated in Table 1, changes from Dirty-Shared to
Dirty-Exclusive are far more common than write re-
quests from Dirty-Exclusive states. As a result of the
Effective Replacement Scheme, it will definitely elimi-
nate the overhead of changing Dirty-Shared to Dirty-
Exclusive states, as shown later.

In the Berkeley protocol, if some blocks of the Clean-
Shared state are to be replaced, the cache controller
must issue a block replacement request. The situation is
identical in our replacement policy. Hence, replacement
transactions of a Clean-Shared block are the same as in
the previous discussion. However, our evaluation, based
on the SPLASH benchmarks, shows that total number
of write requests from the Dirty-Exclusive state is less
than the number of block replacements from the Clean-
Shared state as shown in Table 1, so that it is unneces-
sary to change Dirty-Shared to Dirty-Exclusive. Fig. 6
shows the new transition diagram of the Berkeley
protocol.

Table 1
Total number of write requests from different states

T ‘RR Miss.

LTS
Invalid) - -RW Miss, Invalidatien:
LD-
L4

W
O 1,
R

Local Read
Local Write
Remote Read
Remote Write
LD: Local Delete
Remote Delete
—* BusTrans.

“. . - » Processor Trans.
LW Hit Dirty-
....... RR Miss- - »\ Shared

e

+ RRMiss+ + -
Py
o

Fig. 6. The effective block replacement in the Berkeley protocol.

3.4. Mechanism to reduce migratory-sharing access

Gupta and Weber (1992) classified data structures
based on the invalidation patterns they exhibit. Ac-
cording to their definition, migratory data structures are
manipulated by many processors, but only by a single
processor at any given time. In parallel programs, data
structures are modified within a critical section, and
high-level language statements such as / := 7 + 1 exhibit
migratory patterns. Because the modification of migra-
tory objects usually executes the tight Read-Modify-
Write operation, Dahlgren and Stenstrom (1995) have
formally defined the reference pattern of migratory
blocks using the following regular expression

- Ri(Ri) (W) (Re/ W) (R (Ry) (W) (Ry/ W)™, (1)

where R; and W, represent a read reference and a write
reference, respectively, by processor i; “*’ denotes zero or
more occurrences of the preceding string; and ‘| denotes
the logical OR-operation. By (1), the corresponding
access action of migratory data must be that there is at
least one R; followed by at least one W; by the same
processor, i, before the next processor, j, starts accessing
the block in the same way. Different mechanisms use the
same idea to detect the migratory-sharing reference
patterns. After the migratory-sharing block has been
detected, the subsequent read reference to the block is
replaced by a read-exclusive one to prevent the need of

Benchmark Write from pure Write from impure Write from Delete from
Dirty-Exclusive Dirty-Exclusive Dirty-Shared Clean-Shared

MP3D 2.8 (M) 0 13760 676

FFT 5.6 (M) 624 13358 118906

Ocean 142 (M) 42432 603722 107 581

PTHOR 643344 108 12900 209274

Water 2.5 (M) 0 3093 3093

140 D.-L. Pean et al. | The Journal of Systems and Software 58 (2001) 135-152

invalidation or update messages incurred by the subse-
quent write references.

We have implemented both the software and hard-
ware approaches to handle migratory accesses on our
system with linked-based cache coherence protocol. Our
software schemes (Pean et al., 1998b) extend our previ-
ously presented mechanism (Su et al., 1996) to cluster-
ing-based systems. The extended method is proposed to
reduce the overhead of migratory-sharing references for
linked-based cache coherence protocols. As migratory-
sharing references have a special access pattern, we can
use read-exclusive access to avoid the necessity of sub-
sequent explicit invalidation requests. The read penalty
is thus reduced. To keep the detection mechanism sim-
ple, we identify the migratory-sharing memory blocks in
run time through labels specified at compile time. Such a
detection mechanism can be scalable to various archi-
tectures and protocols. Therefore, the software scheme
combines both compiler labelling and run-time detection
techniques using the following four steps.

(1) Categorization and labelling. This is done at com-
pile time with compiler aided. Memory access is cat-
egorized in Fig. 7.

(i1) Maintenance. New cache and memory states are
added to maintain the migratory-sharing blocks.
(iii) Detection. By using the information of labelling
and categorization, the memory subsystem is able to
detect the access pattern easily.

(iv) Handling. The labelled migratory-sharing access
is handled as read-exclusive.

On the other hand, for the hardware approach, a
block is classified as migratory if the following two
conditions are satisfied.

(i) The processor that issues the write access request
is not the same as the processor that most recently
issued a write access request to the block.

(i1) The number of block copies is exactly two.

The hardware approach involves only two steps: de-
tection and handling. A memory controller has been
added with two new states to identify migratory-sharing
blocks. A detailed description can be found in (Pean
et al., 1998D).

Memory Access

N

Synchronization Ordinary
/ Access Access
Ordinary Ordinary
Acquire Release Write Read
MS-Write NMS-Write MS-Read NMS-Write

Fig. 7. Categorization of shared references for the software method.

The advantage of our hardware mechanism is that it
can properly detect migratory accesses. The cost of the
hardware scheme is only two extra memory states but
without any extra cache state. On the other hand, our
mechanism can also reduce the migratory-sharing
overhead by degrading the state from the migratory to
the shared mode. With extra cache bits, our scheme can
avoid interference of non-migratory words named as
false sharing in the migratory blocks. Meanwhile, our
scheme induces less hardware cost than that imple-
mented in the centralized directory protocols.

3.5. Two-level cache with write cache

Processors simulated on SEECMA are blocked on
read misses (Dahlgren and Stenstrom, 1995). The PE
with WC is shown in Fig. 8. Read accesses are handled
as follows. When a read reference hits the FLC, it re-
turns the requested words to the processor. When a read
miss occurs on the FLC, the FLWB is examined to de-
termine whether the requested block is buffered. If such
is the case, the read miss request cannot be sent to the
SLC until the entire write references buffered in the
FLWB have been issued to the SLC. This handling
procedure enables the FLC to support single-cycle ac-
cess, simply and quickly. If the requested block is not in
the FLWB, the read miss is sent directly to the SLC. The
requested words are returned either from the SLWB, if
they are found there; or from the SLC if they hit the
SLC. Otherwise, a global action will take place. Re-
placement prior to the global action may be necessary.

Write accesses are handled as below. A write request
from a processor is blocked when the FLWB is full.
Once the FLWB has a free entry, the write request is
pushed onto the FLWB. Meanwhile the word contents
of the FLC are updated if the write request hits the
FLC. Since the FLWB is a FIFO queue, the write re-
quest cannot be issued to SLC until all of the prior write
accesses have been forwarded to the SLC. Whenever a
write reference accesses the SLC, it will issue a global
memory action (e.g., write-invalidate request) and buffer
itself in the SLWB. When the local bus is available, the
global action will proceed. Here, we assume that the
default access times of the FLC and the SLC are one
and three processor cycle times, respectively (Dahlgren
and Stenstrom, 1995). However, the penalty is not
constant, and depends on some other factors, such as

Second level
write buffer

First level
write buffer write

Write
Cache

write

First |/ ‘| Second
level level
cache Read miss cache

Fig. 8. Processor environment with a write cache.

Local bus

Read miss

D.-L. Pean et al. | The Journal of Systems and Software 58 (2001) 135152 141

state of cache block, location of memory copy, inter-
connection network routing time, and so forth.

The WC (Dahlgren and Stenstrom, 1995) serves as an
optional simulation component. Whenever a write ref-
erence accesses the SLC, it will issue a global memory
action and the transaction will be buffered on the WC
instead of the SLWB. Transactions belonging to the
same cache block will be merged into a single entry in
the WC. Transactions in the WC will be forwarded to
the SLWB when block replacement occurs on the WC.

Memory access ordering requirements must be en-
forced by the underlying memory consistencies model.
Sequential and processor consistency require that, before
any processor can perform a write access, all of the pre-
vious program order write accesses must have been per-
formed. Consequently, WCs are not supported in these
two models. For the weak consistency model, the WC can
only be flushed upon arrival of a synchronization refer-
ence, and the WC can only be flushed upon the arrival of
a release reference in the released consistency model.

3.6. Cache coherence protocols and directory structure

Fully mapped centralized, limited centralized and
distributed directories (Stenstrom, 1990) are the three
cache directory structures supported in our system. The
centralized directory-based cache coherence protocols
are similar to those described by Dahlgren and Sten-
strom (1995). However, the distributed directory-based
protocol is an extension of the IEEE SCI standard (Su,
1996). The four cache coherence protocols are write-
invalidate, write-update, clean and competitive-update
(Dahlgren and Stenstrom, 1995).

4. Overview of SEECMA
4.1. Basic Structure of SEECMA

SEECMA is programmed in C and implemented on a
SUN workstation running under UNIX System V. To
facilitate future extensions, the whole program is de-
veloped in a modular structure. The front-end of SEE-
CMA is a memory reference generator supported by
MINT, and the back-end is a memory subsystem sim-
ulator. As a general tool, SEECMA allows the user to
specify and simulate his/her own designs by linking in
his/her specific modules. Fig. 9 gives an overview of
SEECMA.

The memory reference generator consists of a simula-
tion controller and processor simulator. The simulation
controller monitors the execution of the simulation en-
vironment, provides the functions of debugging, moni-
toring, event generation and management, task
management and scheduling, timing control and thread
management. The processor simulator simulates instruc-
tion interpretation and execution. The memory subsys-
tem simulator includes a node simulator and a global
interconnection simulator. The node simulator is re-
sponsible for the simulation of the two-level cache hier-
archy, the doubly linked directory cache coherence
protocols, the memory consistency models, local inter-
connection, the replacement policy and inter-cluster
cache prefetching. The global interconnection simulator
controls simulation on the interconnection network. De-
tailed simulation functions are presented in Fig. 10, and
each of them is stated in the corresponding architectural
component. The simulator’s primary functions are:

PE Memory reference Generator
X (Front End)
Simulator
Simulation Controller
PE
Simulator . Debug
. Monitor
. Event generating
. Timing control
. Task Scheduling
PE . Thread management
Simulator
A ik
Cluster Node Cluster Node
PE PE PE PE
CPU CPU CcPU CcPU
FLC FLC FLC FLC
FLWB FLWB FLWB A FLWB
SLC SLC SLC SLC
SLwWB SLWB SLWB SLWB
[[[
| Local Bus | | Local Bus |
LSM COﬂ"O"ﬁ—% InterCluster Cachﬁ LSM Controller
|
Inter- Intra-
LSM || Irltercluster Cluster | | Cluster LSM
Fr | C f | Controllef
77 — —— _
I
(Inter-Cluster Interconnection Network)

Fig. 9. Overview of SEECMA.

142

D.-L. Pean et al. | The Journal of Systems and Software 58 (2001) 135-152

Graphic

Inout/Outout Benchmark
npu utpu
p P Program
Interface
A4 Y
i MINT
% Node Eveny Memory Reference
Generator
Processor
First Level Cache .
- cache size, block size Environment (F ront E nd)
- access time (clocks)
- direct-mapped placement (PE)
First Level Write Buffer Process
- blocksize S C
- mumber of enties E E MA Control
Memory Subsystem
Second Level Cache Second Level Cache Controller .
- cache size, block size - Coherence Protocol Simulator
- access time (clocks) W o - write-invalidate
- direct-mapped placement Vrite Cache | - write-update
s || R o] (Back End)
- block size - clean
N ent policy
Second Level Write Buffer 000
- block size
- number of entries Local Bus
- Simple Bus
- Bus Bandwidth Cluster Node
y - Policy
Local Shared-Memory (LSM) ® 0 o o (PE) (PE)
« Coherence Directory Structure Inter Cluster Cache 00
ﬂ:ﬂ:ﬁ g‘(‘[?"m"“d' fimited i - Inter Cluster Prefetching
« Memory Consistency Model schemes
- sequential, processor, weak, release, PSC
« Memory size, Page size
« Optimization for migratory-sharing accesses
|
Interconnection Network
- K-ary, N-cube topology - flit size - link width - wire delay - Switch delay

Fig. 10. The complete structure of SEECMA.

(1) two CPU types — Reduced Instruction Set Com-
puter (RISC) and Parallel Multithreaded Processor
(PMP) (Hirata et al., 1992; Wu, 1998);
(i) four memory consistency models sequential
(Lamport, 1979), processor (Goodman, 1989), weak
(Dubois et al., 1986), and release (Gharachorloo
et al., 1990);
(ii1) two-level cache hierarchy with FLWB, SLWB,
and WC (Dahlgren and Stenstrom, 1995);
(iv) three cache directory structures — centralized
fully mapped, centralized limited (Stenstrom,
1990), and distributed SCI (Scalable Coherence In-
terface) structures (Gjessing et al., 1991);
(v) five cache coherence protocols — SCI, write-inval-
idate, write-update, competitive-update, and clean
(Grahn et al., 1995);
(vi) k-ary, n-cube interconnection network (Dally,
1990);
(vil) optimization for migratory-sharing accesses by
software and hardware mechanisms (Su et al., 1996;
Pean et al., 1998b); and
(viii) effective replacement and prefetching schemes
(Pean et al., 1998a).

The designer can use any combination of these to

simulate and evaluate his/her target machine.

After the back-end is constructed, the whole sys-

tem is linked on a SUN workstation as shown in

Fig. 11. Following success in linking both the
memory reference generator and libraries we obtain
an executable simulator. The target benchmark pro-
grams must be statically linked Irix-executable files,
specially designed for the MIPS R3000 processor. At
run time, the simulation options of interest ought to
be specified completely, otherwise default values will
be used.
SEECMA is capable of providing the following

considerable evaluation information:

(i) parallel execution time, including busy time,

stalled time for read miss, acquire-stall time, stalled

time for write-buffer-full, and contention time for

accessing FLC;

(i1) memory accesses for FLC and SLC, including

number of read and write requests;

(iii) miss ratios for read and write requests;

(iv) cold and coherence misses;

(v) distribution of invalidation/update count;

(vi) write run distribution;

(vii) hit ratios in WC;

(viii) write run distribution in WC;

(ix) number of read and write misses to invalid

memory copies;

(x) amount of network traffic;

(xi) number of LOCK and Barrier operations; and

(xii) delayed time for acquire and release accesses.

D.-L. Pean et al. | The Journal of Systems and Software 58 (2001) 135-152 143

Memory subsystem
simulator source

Compiled memory
subsystem simulator

MINT’s compiled
memory reference
generator and libraries

/

I link

link
Fully linked
executable
input
Compiled f~---""""""- >
application <
run

Options controlling
and architectural
parameters

Simulator
output

Fig. 11. Construction of MINT-based simulator.

4.2. Simulation correctness

Correctness is a key issue for any simulator devel-
opment. For small, or even medium input domains,
correctness verification is often not a difficult task.
However, for large input domains it is much more dif-
ficult, and perhaps impossible. However, we have ap-
plied the system proposed in Pong (1995) to verify cache
coherence protocols in our system. The SSM system is
based on a symbolic state model, which exploits the
symmetry and homogeneity of cache protocols to reduce
the size of the state space. SSM has the general advan-
tage of verifying cache protocols independently of model
size. We need to adapt the method for our clustering
architecture because it is difficult to abstract the linked
list (Pong et al., 1995).

We have also compared the execution result obtained
from SEECMA with reported data. For instance,
Dahlgren and Stenstrom have studied the impact of
WCs on several cache coherence protocols for shared-
memory multiprocessors (Dahlgren and Stenstrom,
1995), and we have adopted this evaluation for our
PMP-MP (processor-based multiprocessor) system. The
result on the PMP-MP system with one thread per
processing element is identical to the result reported by
Dahlgren and Stenstrom. However, an exception was
found on the Ocean benchmark. This is due to Dahlgren
and Stenstrom using the benchmark from the SPLASH
suite (Singh et al.,, 1992), while ours is from the
SPLASH-2 suite (Woo et al., 1995).

Our architecture provides two processor types: RISC
(Culler et al., 1999) and PMPs (Hirata et al., 1992).
PMPs allow multiple threads to be executed simulta-

neously, and parallel running threads share a single
cache in each PE. It therefore shows superior utilization
of resources. Users can choose either processor archi-
tecture based on their research interests (Wu, 1998). The
memory subsystem supported in SEECMA is a cache-
coherent non-uniform architecture (CC-NUMA) (Culler
et al., 1999). It comprises a variety of important design
issues to be explored and then evaluated.

4.3. Graphic interface capabilities

SEECMA supports a user-friendly GUI that enables
users to operate in the simulation and evaluation envi-
ronment easily and efficiently. The GUI consists of two
portions: input and output interfaces.

As we enter the simulation environment, we have the
window shown in Fig. 12. There is a menu bar, ar-
chitecture graph and status region ready to communi-
cate with the user. Menu bars collect five major
selection items; each item carries a menu hierarchy
based on functionality attributes. The architecture
graph shows the corresponding architecture outlook,
and it is updated according to the architectural pa-
rameter setting. For instance, if we incorporate a WC
into the system, there will be a connection between WC
and the cache hierarchy. At the bottom left of the
window, there is a status region that summarizes
the characteristics of the architecture component at the
cursor position. In Fig. 12, for example, the cursor is
currently located at the cluster node; the status region
therefore lists all of the related information. The status
region is helpful for double-checking and reconfirming
the parameters.

144 D.-L. Pean et al. | The Journal of Systems and Software 58 (2001) 135152

Shared
Memory

Processor £ Processor
Environment od Environment
H
I |

Becond
Lavel
Wirite:
Buffer

Processor
Environment

Fig. 12. Graphical user interface of SEECMA.

The two input interfaces are menu-based and
graphic-based. With menu-based input, the selection
items are collated as a pull-down menu and the dialogue
window of each item pops up when the mouse is clicked.
With the graphic-based input interface, when users click
on any architecture block, they will be directed to a
dialogue window without going through the pull-down
menu.

Each simulation outcome is either shown in text
mode or directed to an output file. Normally, we are
interesting in several different comparison issues, pa-
rameter types or quantity adjustments. SEECMA pro-
vides a robust output function that is capable of
collecting numerical results from different runs, and
presents the final result as a bar or line chart according
to the user’s specification.

5. Preliminary performance evaluations of our architec-
ture on SEECMA

In this section, we give a complete illustration of how
to use SEECMA to evaluate several design issues of
cluster-based multiprocessor systems, including ICP,
effective replacement schemes and migratory sharing
with both software and hardware approaches. Some
reasonable assumptions about the evaluation environ-
ment are summarized in Table 2. The memory page size
is 4 Kbytes and is mapped to the local memories in a
round-robin fashion.

Some benchmarks were chosen from SPLASH for
experimental evaluation and others from the SPLASH-2
suite (Singh et al., 1992; Woo et al., 1995). These pro-
grams are written in C using the Argonne National
Laboratory (ANL) macros (Boyle et al., 1987) and
compiled using CC under IRIS version 3, optimization
level 2, on a SGI workstation. Table 3 lists a series of

Table 2

Architecture parameters
Parameter Value
Number of cluster nodes 16
Number of processors in a cluster node 4
Size of FLC 32 Kbytes
Size of SLC 256 Kbytes
Size of inter-cluster cache 2 Mbytes
Block size of FLC and SLC 32 bytes
Number of entries in FLWB 16
Number of entries in SLWB 32

selected benchmark programs, together with their brief
description and data sets. Note that only the parallel
portions of the benchmarks are used here, and therefore
only the statistical graphs show this result. The perfor-
mance metric is execution time. And the execution time
is further broken into five sections: busy time, read-stall
time (i.e., time consumed for servicing cache misses),
acquire-stall time (i.e., time spent on waiting locks to be
acquired), contention time (i.e., waiting time to access
FLC) and buffer-stall time (i.e., processor stall time due
to FLWB full).

5.1. Scalability of our architecture

The scalability of our architecture is shown in Fig.
13. The related performance data of non-cluster and
DASH systems can be obtained by selecting appropri-
ate simulation parameters in the SEECMA simulation
and evaluation environment. In the water benchmark,
our architecture always scales better than the non-
cluster multiprocessor environment. Our architecture
also scales better than the DASH cluster system be-
cause our architecture has speedup 41 while DASH has
speedup 37 when the number of processors is 48. In the
MP3D benchmark, our architecture scales better than

D.-L. Pean et al. | The Journal of Systems and Software 58 (2001) 135-152 145

Table 3
Benchmark programs
Benchmark Description Data sets
MP3D Particle-based wind-tunnel simulator 5 K particles, 10 time steps
Ocean Simulate eddy currents in an ocean basin 128 by 128 grid, tolerance 1077
FFT Blocked 1D FFT 64 K complex poins
Water Water molecule dynamics simulation 343 molecules
Barnes N-body gravitation simulation 8192 bodies, 6 steps
Radix Integer Radix sort algorithm 1 M integers, Radix 1024
Cholesky Cholesky factorize a sparse matrix tk14.0
Lu Factors a dense matrix 128 x 128 matrix, 32 x 32 blocks
Pthor Simulate a digital circuit risc
120 30
= 80 —* Cluster E 20 I — Cluster o .
g_ 60 515 r o)
T 40 Z10 [= "
F o L H
1 8 16 32 64 128 1 8 16 32 64 128

Number of Processor .

Number of Processors .

Fig. 13. Scalability of our architecture compared with non-cluster multiprocessor.

non-cluster multiprocessor environments when the
number of processors is greater than 40. Our archi-
tecture also scales better than the DASH cluster system

Close View

(Leno et. al., 1989) because our architecture has
speedup 20 while DASH has speedup 7 when the
number of processors is 48.

AWl] WOI}Noaxy PIZI]ewIoy

80%

60%

20%

0%

s | 2 = (2B o} =
3 -] g T 1)
W o 0 aQ
| =] — a
- o a0 3
=] = [
b =] F
] L 'ﬁ
—
[=]
b

dDI-ueaag

=
I
o+
1]
3

Buffer full
| acquire
[write

[read miss
B Busy time

e Benchmarks

ny
011 ||
ey [T

do1—eyen ||
dor-xrpey ||

Fig. 14. Performance evaluation of the ICP scheme.

146

5.2. Performance evaluation of ICP

Fig. 14 shows the execution time of several benchmark
programs running with and without the ICP scheme. We
find that the performance gain of having ICP is about 3—
33%, as a result of the traffic overhead reduction, as long
as prefetching offers a sharp drop in read miss counts,
and thus decreases the miss stall time. Among them, LU
is the most outstanding, since it takes full advantage of
reducing inter-cluster traffic overhead. The acquire-stall
time of the LU with ICP is far less than LU without ICP.
Meanwhile Ocean is an exceptional case, ICP causing
execution time to become worse than the original, due to
serious false sharing miss. In summary, having an inter-
cluster traffic overhead penalty and the number of read
misses sharply been reduced, the ICP scheme is superior
to the conventional hardware prefetching method.

5.3. Performance evaluation of effective block replace-
ment scheme

The effective block replacement scheme improves total
execution time substantially, by up to 25% as shown in
Fig. 15, when FLC size is 1 K and SLC size is 8 K. The
major performance gain comes from both read stall time

D.-L. Pean et al. | The Journal of Systems and Software 58 (2001) 135152

and acquire-stall time. Furthermore, when the released
memory consistency model fails to hide all of the write
stall time, the effective block replacement scheme will
further improve the final performance. Table 4 illustrates
the percentage of read stall time against total execution
time, and number of Clean-Shared block replacement
counts. Compared to Fig. 15, the higher the read stall
time and replacement counts on Clean-Shared block, the
greater the performance improvement. Radix, Barnes,
FFT, Pthor, Cholesky and Ocean are cited to show this.

To verify the cost effectiveness of the replacement
policy, we varied the FLC size from 8K to 1K, and the
SLC size was decreased from 256K to 8K. Figs. 16(a) and
(b) shows that, if the replacement scheme is not imple-
mented, total execution time increases substantially as the
cache size decreases. Thus, the effective replacement
scheme has not only reduced the execution time, but also
reduced the cost for the cluster-based multiprocessor
system.

5.4. Performance evaluation on optimization of migrato-
ry-sharing data

In the software scheme, since program codes that
are protected by the critical sections but which do not

Close View

|

188, 82
188, 8x
188.8x
188, 8x

99.4x

100%

a0%

60%

40%

BUWI] UOIINIIXY PIZI | CWXON

20%

0%

b Bl | = = = o= L] £
33 - o o & & &
P 86 33 f§ &
= ? @ m "5"1 kel
=] erf
= <}
o =
=]
=

i —a@3en

=l 188, B

xTpey

HI-—*TPey

188.8x
180.8x

Ll 186, B

[0 puffer full
B 2oquire
R vwrite

[re2d miss
Busy time

Benchnarks

ni
HA-T
FSaToHD
ueasg

HI-Msatoy)
dg-ueaog

Fi

—_

g. 15. Performance evaluation of effective block replacement mechanism.

Table 4
Percentage of read stall time compared to total execution time
FFT MP3D Barnes Pthor Water Radix Lu Cholesky Ocean
Read stall time % 53.2 60.9 18.4 41.2 8.8 71.2 1.9 20.2 18.4
Replacement # 335K 13K 1.2 M 1.7 M 0.78 M 25M 44 K 0.36 M 2.7 M

147

D.-L. Pean et al. | The Journal of Systems and Software 58 (2001) 135-152

Close View

76621

Time

=N

120%

¥ o o ¢
o o o o
=] =) e -
-

Normalized Exectution Time

20%

0%

Benchmarks

MP3D Water Lu

FFT

(a)

Normalized Exectution Tine

Fig. 16. (a) and (b) Total execution time without and with the effective block replacement scheme on different cache sizes.

148 D.-L. Pean et al. | The Journal of Systems and Software 58 (2001) 135-152
Close View
& x & & S x xx & x
g 288 g s gder g ya
S o o =1 5] <] g]
100% S = —
80%
=z
o
3
- [Buffer full
N 60% |)
2 BEA 2cquire
2 [uwrite
E [read miss
-+
g a0% |E= pusy time
-
g
o
20%
0% E [[=
o] g 3 3 2 e 9 8 8 £ £ £ ¢ I Benchmarks
- T L - - a 0 6 0 4 o oo W a4 o9 9 9
TTT gggyg §§§8 FRa e SE2E
e @ | Tl | = i) % 3;
E g8 =0 » 14 7 11 | 3
i22 585 g 88 g 88 g8 8
€ £ € B & o 5 ™ =™ K M B M
a & o S S £ é‘ o o g‘ & o & o o
bR T] 2 £ £ £ £ € £ £
999 i q g 5 55 o5 & 5 5 %
g 7 % 9 LA %9
™ & T2 g -]
) S — — T
- L] 5= - 5=
Fig. 17. Performance evaluation of hardware and software migratory optimisation schemes.
Table 5

The statistics and characteristics of references for the benchmark programs

Benchmark Shared reads (M) Shared writes (M) R/W ratio MS-access in locks MS-access in barriers
MP3D 5.11 3.40 1.5 19 168 11400
Ocean 64.99 15.22 4.27 57572 354920
FFT 6.85 5.74 1.19 256 2660
Water 37.23 2.78 13.39 117735 4940
Barnes 7.8 0.26 30 169193 6460
Radix 11.5 6.5 1.77 426240 3040

belong to Barrier codes are typically large, many non-
migratory-sharing memory blocks will be detected as
migratory blocks. Due to incorrect labelling and the
Read-and-Self-invalidate policy for NMS-Reads, the
read penalty becomes larger and degrades system
performance. The effect is obvious for MP3D, but is
slight in FFT and Water, as shown in Fig. 17. How-
ever, Ocean is an exception because it has a lower
percentage of critical sections for implementing non-
Barrier codes, as depicted in Table 5. On the other
hand, software mechanisms with all critical sections
perform better than those with only barrier sections,
particularly in the Barnes and Radix benchmarks. The
scheme increases the system performance by up to 7.5-
and 3.2-fold in the Barnes and Radix benchmarks,
respectively, compared to the barrier code mechanism.
Hence, the software schemes can always improve sys-

tem performance in terms of execution time, for all
benchmarks.

If the hardware mechanism is implemented, a dy-
namic detection scheme will solve the problem of in-
correct labelling, as shown in Fig. 17. For FFT and
MP3D, the read miss penalty with the hardware

Name: | . /beriah . mark/modd]

Browse

Parameter:ISDlJDD 6d Lest.geom I

cancel | Help |

OK

==

Fig. 18. Input name and parameters of the benchmark program.

D.-L. Pean et al. | The Journal of Systems and Software 58 (2001) 135152 149

-iPammm.-r‘ '

Filter

| extra{seecm/bench_mark/*:_

Directories Files
S [FET

m/benchimark a6

/ £
=] . S

Salecticn

| .rafsascma/banch_mark/mpad

| ok | Filter| cancel]

Fig. 19. Input name and parameters of the benchmark program using
browsing.

Number of node: |16£

Processcr per node: |4;

lData Allocation

o Bicetk 2ilauabicn
Inter Cluster Cache fize
| 2097152

- PMP moda

Type of Provessor Environment
’]_ Clustering

i OK cancel | Help |

Fig. 20. Input parameters of a node architecture.

scheme is always less than for that with software
schemes. These benchmarks also perform better with
the hardware scheme than with the software schemes.
However, migratory-sharing blocks may contain mi-
gratory and non-migratory words in the same block.

The software mechanism uses a non-cache method to
avoid the interference overhead of these non-migrato-
ry-sharing accesses, caused by false sharing. As illus-
trated in Fig. 17, conflicting accesses of false sharing
make the software mechanism more efficient than the
hardware mechanism for the Ocean, Barnes and Radix
benchmarks.

In summary, both the software and hardware
schemes can substantially improve the performance of
the system, by up to 20% and 15%, respectively. The
performance of the system can be improved even more if
the architecture of the system has more coherence de-
lays.

6. Conclusion and future work

System designers usually rely on simulation to verify
their conceptual designs and to understand the interac-
tion among the system components. We have con-
structed a simulation and evaluation environment called
SEECMA for research and education, derived from
cluster-based multiprocessor systems. It provides ver-
satile simulation functions in an integrated environment
with a user-friendly graphical interface. The primary
simulation options include:

(1) two CPU types — RISC and PMP architecture;
(2) cluster-based multiprocessors with arbitrary
number of cluster nodes and processors per node;
(3) k-ary n-cube interconnection networks;

(4) inter-cluster prefetching;

(5) an effective block replacement scheme;

(6) migratory sharing with software and hardware
approaches;

(7) four memory consistency models — sequential,
processor, weak, and released models;

(8) a two-level cache hierarchy with FLWB, SLWB
and WCs;

First level cache
First level write buffer
Second level cache
Second level write buffer

Line { Block)

size: |32?8E§

size: |1Ef

gize:| 32

size: I232

(0]:4 |

Bytes
Entries
size: i2E2144§ Bytes
Entries
Bytes
Help |

Cancel I

Fig. 21. Input the two-level cache and write buffer sizes.

150 D.-L. Pean et al. | The Journal of Systems and Software 58 (2001) 135-152

(9) four cache coherence protocols — write-invali-
date, write-update, competitive-update and clean
protocol; and

(10) three cache directory structure — scentralized
fully mapped, centralized limited, and distributed
SCI structures.

We can specify the target system architecture through
a menu-based or a graph-based input interface. The
simulation results are dumped to a file. Optionally, we
can set up the simulation parameters to view the speci-
fied evaluation results through statistical graphs. SEE-
CMA also allows users to input their own designs by
linking in specific modules and then evaluating them. In
conclusion, SEECMA serves as a convenient and
friendly research environment for those who are inter-
ested in system designs for cluster-based multiprocessor
architectures.

In the future, we will continue to explore several new
design issues to improve the total performance of our
architecture, such as more relaxed memory consistency
models or software optimization mechanisms for par-
allelization. Subsequently, related enhanced mechanisms
will also be developed to enhance these architectures.
We can thus provide a more powerful simulation plat-
form of multiprocessor architecture design for research
and educational purposes.

Acknowledgements

This research was supported by the National Science
Council of the Republic of China under contract num-
ber NSC 87-2213-E009-049.

Appendix A. An illustrative example of manipulating
SEECMA

This is a guide for how to use the GUI to specify the
simulation parameters and output statistics graph on

Fig. 22. Menu of “Back_End” item.

SEECMA. The Adhere, ICP scheme is examined, and
our target architecture parameters are shown in Table 3.
We assume that users are familiar with the window as
shown in Fig. 12.

Step 1. Click the “Bench_Mark” button on the menu
bar.

Step 2. Key in the name and parameters of the
benchmark program from the window as shown in Fig.
18, or by using the “Browse” function via the window as
in Fig. 19. In this example, we choose MP3D as our
benchmark program.

Optimization

Fig. 23. Optimization options.

D.-L. Pean et al. | The Journal of Systems and Software 58 (2001) 135-152 151

qﬁé.fkﬂﬁuﬂ.. - J

—Statistics File:

7 Enable statictis file

gtatictis File | similaticnl.bar

Browse

The label of X axis : |Eenchmarl{_

The label of ¥ azis : |ormalized Brecution Time

The label of group/line : |I

The label of bar/point : I

I Parallel Exacution Time

7 Parallel Execution Time
{Busy+Readtiequire+Buffer+Contention)

7 Read miss stall time
7 Bequire stall time
7 FLC contention time
[7 Buffer stall time

J FLC read mizs ratio

J FLC write miss ratio

_| BLC read miss ratio
I BLC write miss ratio

- Total Network Traffic

—Output File:
_| Enable output

—Other parameter:

fank it
LR B

Other Parameter : ‘

OK |

Cancel

Help .

Fig. 24. Input parameter of statistical graph.

Step 3. Position the mouse on cluster node and click
once; the pop-up window is shown in Fig. 20. We choose
clustering architecture with four nodes and 16 proces-
sors per node. At the same time, we are required to
provide appropriate inter-cluster cache size.

Step 4. Click “First-Level Cache” and input the
two-level cache and write buffer size as shown in
Fig. 21.

Step 5. Click the “Back_End” item from the menu
bar, and select “Optimization” from the pull-down
menu, as shown in Fig. 22. When you find the window
shown in Fig. 23, click the “Prefetch” option, and then
“Use cluster-prefetch”.

Step 6. Working with the “Back_End” item again,
this time we specify the “Output” item, as shown in Fig.
24. The parameters are set according to the expected
statistical graph. In this example, we would like to
create the graph shown in Fig. 12, and therefore the
parameters must be consistent for each benchmark
program.

Parameters that are not specified above are given a
default value; for example, memory consistency model is
the Released Consistency Model.

References

Boyle, J., Bulter, R., Disz, R., Glickfeld, B., Luck, E., Overbeek, R.,
Patterson, J., Stevens, R., 1987. Portable Programs for Parallel
Processors. Holt, Rinehart & Winston, New York, USA.

CONVEX, 1994. Computer Corporation, CONVEX Exemplar Ar-
chitecture, 2nd ed. CONVEX Press, Texas, USA.

Culler, D.E., Jaswinder, P.S., Gupta, A., 1999. Parallel Computer
Architecture: A Hardware/Software Approach. Morgan Kauf-
mann, Los Altos.

Dahlgren, F., Stenstrom, P., 1995. Using write caches to improve
performance of cache coherence protocols in shared-memory
multiprocessors. Journal of Parallel and Distributed Computing 2
(26), 193-210.

Dally, W.J., 1990. Performance analysis of k-ary n-cube intercon-
nection networks. IEEE Transactions on Computers 39 (6), 775-
785.

David, B.G., 1995. Design and analysis of updated-based cache
coherence protocols for scalable shared-memory multiprocessors.
Technical Report No. CSL-TR-95-670, Computer Systems Labo-
ratory Department of Electrical Engineering and Computer Science
Stanford University, Stanford, California, USA.

Dubois, M., Scheurich, C., Briggs, F., 1986. Memory access buffering
in multiprocessors. In: Proceedings of the 13th Annual Interna-
tional Symposium on Computer Architecture. Tokyo, Japan,
pp. 434-442.

Gharachorloo, K., Lenoski, D., Laudon, J., Gibbons, P., Gupta, A.,
Hennessy, J., 1990. Memory Consistency and event ordering in
scalable shared-memory multiprocessors. In: Proceedings of the
17th Annual International Symposium on Computer Architectures.
Seattle, WA, USA.

Gjessing, S., Gustavson, D.B., Goodman, J.R., James, D.V., Kris-
tiansen, E.H., 1991. The SCI cache coherence protocol. In: Dubois,
M., Thakkar, S. (Eds.), Scalable Shared Memory ultiprocessor.
Kluwer Academic Publishers, Norwell, MA, USA, pp. 1991.

Goodman, J.R., 1989. Cache consistency and sequential consistency.
Computer Sciences Technical Report #1006, Computer Sciences
Department, University of Wisconsin, Madison, WI, USA.

Grahn, H., Stenstrom, P., Dubois, M., 1995. Implementation and
evaluation of update-based cache protocols under relaxed memory
consistency models. Future Generation Computer Systems 11 (3),
247-271.

Gupta, A., Weber, W.D., 1992. Cache invalidation patterns in shared-
memory multiprocessors. IEEE Transaction on Computers 41 (7),
794-810.

Hirata, H., Kimura, K., Nagamine, S., Mochizuki, Y., 1992. An
elementary processor architecture with simultaneous instruction
issuing from multiple threads. In: Proceedings of the 19th Inter-
national Symposium on Computer Architecture. Gold Coast, Qld.,
Australia, pp. 136-145.

IEEE SCI, 1992. IEEE SCI draft 2.00: SCI Scalable Coherence
Interface, Draft Document for the IEEE SCI standard.

152 D.-L. Pean et al. | The Journal of Systems and Software 58 (2001) 135152

Lamport, L., 1979. How to make a multiprocessor computer that
correctly executes multiprocessor programs. IEEE Transactions on
Computers C 28 (9), 241-248.

Lenoski, D., Laudon, J., 1989. Stanford DASH multiprocessor.
Technical Report No. CS-TR-89-403.

Mazin, S., Yousif, M.J., Thazhuthaveetil, Das C.R., 1995. Cache
coherence in multiprocessors: a survey. Advances in Computers,
40.

Pean, D.L., Huang, HW., Wu, J.R., Chen, C., 1998a. Effective
prefetching and replacement policies in the scalable clustering-
based multiprocessor system design. In: Proceedings of 1998
International Computer Symposium, Tainan, Taiwan, ROC.

Pean, D.L., Wu, J.R., Chen, C., 1998b. Effective mechanism to reduce
the overhead of migratory sharing for linked-based cache coher-
ence protocols in clustering multiprocessor architecture. In: Pro-
ceedings of 1998 International Conference on Parallel and
Distributed Systems. Tainan, Taiwan, ROC.

Pong, F., 1995. Symbolic state model: a new approach for the
verification of cache coherence protocols. Ph.D. Dissertation.
University of Southern California.

Pong F., Nowatzyk A., Aybay, G., Dubois, M., 1995. Verifying
distributed directory-based cache coherence protocols: s3.mp, a
case study. In: First International EURO-PAR Conference.

Stenstrom, P., 1990. A survey of cache coherence schemes for
multiprocessors. IEEE Computer 23 (6), 12-24.

Singh, J.P., Weber, W.D., Gupta, A., 1992. SPLASH: Stanford
parallel applications for shared-memory. Computer Architecture
News 20 (1), 5-44.

Su, J.P., 1996. A study of memory subsystem design for multiprocessor
system and implementation of its simulation and evaluation
environment. Master Thesis, National Chiao Tung University,
Hsinchu, Taiwan, ROC.

Su, J.P., Wu, C.C., Chen, C., 1996. Reducing the overhead of
migratory-sharing access for the linked-based directory coherence
protocols in shared-memory multiprocessor systems. In: Proceed-
ings of International Computer Symposium. Taiwan, ROC,
pp. 160-167.

Veenstra, J.E., Fowler, R.J., 1994. MINT Tutorial and User Manual.
Technical Report No. 452, The University of Rochester, New
York, USA.

Woo, S.C., Ohara, M., Rorrie, E., Singh, J.P. and Gupta, A., 1995.
The SPLASH-2 programs: characterization and methodological
considerations. In: Proceedings of the 22nd Annual International
Symposium on Computer Architecture. Santa Margherita Ligure,
Italy, pp. 24-36.

Wu, C.C., 1998a. PMP Memory consistency models. Ph.D.
Dissertation, National Chiao Tung University, Hsinchu, Taiwan
ROC.

Wu, C.C., Chen, C., 1998b. A new relaxed memory consistency model
for shared-memory multiprocessors with parallel multithreaded
processing elements. Journal of Information Science and Engineer-
ing, accepted.

Wu, C.C., Pean, D.L., Su, J.P., Wu, J.R., Huang, H.W., Huang, J.L.,
Lee, J.L., Chua, H.T., Chen, C., 1998c. SEESMA: a simulation and
evaluation environment for shared-memory multiprocessor archi-
tecture. In: Proceedings of the National Science Council, Republic
of China, Part A: Physical Science and Engineering, vol. 22(4).
pp. 524-538.

Cheng Chen is a professor in the Department of Computer Science and
Information Engineering at National Chiao Tung University, Taiwan,
ROC. He received his B.S. degree from the Tatung Institute of Tech-
nology, Taiwan, ROC in 1969 and M.S. degree from the National
Chiao Tung University, Taiwan, ROC in 1971, both in electrical en-
gineering. Since 1972, he has been on the faculty of National Chiao
Tung University, Taiwan, ROC. From 1980 to 1987, he was a visiting
scholar at the University of Illinois at Urbana Champaign. During
1987 and 1988, he served as the chairman of the Department of
Computer Science and Information Engineering at the National Chiao
Tung University. From 1988 to 1989, he was a visiting scholar of the
Carnegie Mellon University (CMU). Between 1990 and 1994, he served
as the deputy director of the Microelectronics and Information Sys-
tems Research Center (MIRC) in National Chiao Tung University. His
current research interests include computer architecture, parallel pro-
cessing system design, parallelizing compiler techniques, and high
performance video server design.

Der-Lin Pean is a Ph.D. candidate in Computer Science and Infor-
mation Engineering at the National Chiao Tung University, Taiwan,
ROC. He received his B.S. degree in Information and Computer En-
gineering at Chung Yuan Christian University, Taiwan, ROC. He
served as a lecturer in the Department of Computer and Information
Engineering, as well as Employment and Vocational Training Ad-
ministration, Council of Labor Ministry, Taiwan, ROC. His current
research interests include computer architecture, personal computer
system architecture design, parallel processing system design, paralle-
lizing compiler techniques, and microprocessor system design.

Chao-Chin Wu was born on 26 February 1968 in Taichung County,
Taiwan, Republic of China. He received the B.S. degree in Computer
Science and Engineering from Tatung Institute of Technology,
Taiwan, in 1990, and the M.S. degree in Computer Science and Infor-
mation Engineering from National Chiao Tung University, Taiwan,
1992. He received the Ph.D. degree in Electrical Engineering and Com-
puter Science from National Chiao Tung University, Taiwan, 1998. His
research interests include computer architecture and parallel processing.

Huey-Ting Chua received the B.S. and M.S. degrees in 1997 and 1999,
respectively, both in Computer Science and Information Engineering
from National Chiao Tung University, Taiwan. Her major research
interest is parallel compiler.

