WIRELESS COMMUNICATIONS AND MOBILE COMPUTING
Wirel. Commun. Mob. Comput. 2008; 8:673-686

Published online 29 January 2007 in Wiley InterScience
(www.interscience.wiley.com) DOI: 10.1002/wcm.496

NTP-PoCT: A conformance test tool for push-to-talk over
cellular network

Yi-Bing Lin!?*, Chun-Chieh Wang?, Chih-Hung Lu® and Miao-Ru Hsu?

' Department of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu,
Taiwan

2Institute of Information Science, Academia Sinica, Nankang, Taipei, Taiwan

3Information and Communications Research Laboratories, Industrial Technology Research Institute, Taiwan

Summary

This paper describes a conformance test tool for push-to-talk over cellular network developed on an Open Mobile
Alliance Service Interoperability Test Platform. Based on the TTCN-3 specifications, we show how PoC test cases
can be efficiently implemented on the test platform. Copyright © 2007 John Wiley & Sons, Ltd.

KEY WORDS: conformance test; Open Mobile Alliance (OMA); Push-to-talk over Cellular (PoC); Testing and
Test Control Notation version 3 (TTCN-3)

1. Introduction negotiation functionalities. The Presence Server
(Figure 1 (3)) accepts, stores, and distributes presence
information about the PoC Clients (Figure 1 (1)). The

XML Document Management (XDM) Server (Figure 1

Push-to-talk over Cellular (PoC) provides walkie—
talkie like service in the cellular telecommunications

network [9]. In this service, several predefined PoC
group members participate in one PoC session. Since
the PoC session is half-duplex, only one group member
speaks at a time, and the others listen. Therefore, a
user must ask for the permission to speak by pressing
the push-to-talk button. In the PoC architecture, the

(2)) manages the databases to store PoC Clients’
contact lists, pre-arranged groups, and other personal
information. A PoC Client connects to the PoC Server
and the Presence Server through Session Initiation
Protocol (SIP)-based Core Network (Figure 1 (4)) such
as IP Multimedia Core Network Subsystem (IMS) [4].

The PoC Client utilizes the XML Configuration Access
Protocol (XCAP) to interact with the XDM Servers.

PoC Server (Figure 1 (5)) provides the PoC session
handling, media distribution, and talk burst control

*Correspondence to: Yi-Bing Lin, Department of Computer Science and Information Engineering, National Chiao Tung
University, Hsinchu, Taiwan.

"E-mail: liny @csie.nctu.edu.tw

Abbreviations used: CD, Coding and Decoding; CH, Component Handling; EDS, Encoding/Decoding System; ETS, Executable
Test Suite; IMPS, Instant Message and Presence Service; IOT, Interoperability Test; MMS, Multimedia Messaging Service;
OMA, Open Mobile Alliance; PA, Platform Adapter; PoC, Push to talk over Cellular; SA, SUT Adapter; SIP, Session Initiation
Protocol; SUT, Systems Under Test; TE, TTCN-3 Executable; TM, Test Management; TMC, Test Management and Control; TL,
Test Logging; T3RTS, TTCN-3 Runtime System; TCI, TTCN-3 Control Interface; TRI, TTCN-3 Runtime Interface; TSI, Test
System Interface; TTCN-3, Testing and Test Control Notation version 3; XCAP, XML Configuration Access Protocol; XDMS,
XML Document Management Server; XML, Extensible Mark-up Language.

Copyright © 2007 John Wiley & Sons, Ltd.

674 Y.-B.LIN ET AL.

PoC
Chent
(1)

-
—
S
g

=z
w
7]
8

<<

5

=
=

(24

SIPSIMPLE

Presence PoC

Server

SIP/SIMPLE

T Server
& 5)

SIP/SIMPLE

SIP/IP Core

SIPFSIMPLE

v mgy~ Network (IM3S) Sy

@

Fig. 1. The PoC architecture.

The Real Time Protocol (RTP) is utilized to deliver
voice media between the PoC Client and Server.

Before the PoC application can be launched for
service, it is essential to conduct testing to ensure that
the PoC mechanism is correctly implemented. We have
developed an Open Mobile Alliance (OMA) service
interoperability test platform [8] based on the TTCN-
3 specifications [1,2,5]. Several OMA Multimedia
Messaging Service (MMS) [3,4] and Instant Message
and Presence Service (IMPS) [6] test cases have been
deployed in this platform.

Under Taiwan’s National Telecommunication Pro-
gram (NTP), we have implemented a PoC conformance
test tool (called NTP-PoCT) on this platform. This test
tool verifies the adherence to normative requirements
described in the OMA PoC technical specifications
[7]. The PoC service conformance tests include three
types of tests. The Control Plane (CP) test cases verify
SIP signals for PoC session control. The User Plane
(UP) test cases verify the Talk Burst Control Protocol
(TBCP) and the media distribution. The XDM test
cases verify whether the XCAP messages used to
access the XDM Server are correct. Figure 2 shows the
conformance test environment for PoC. In this figure,
NTP-PoCT (Figure 2 (4)) acts as the PoC network
entities (including XDM Server, Presence Server and
PoC Server) in all conformance test procedures. It
connects to the handset under test (i.e., the PoC Client;
see Figure 2 (2)) through the real mobile network or a
network emulator such as Anritsu MD8470A (Figure 2
(3)) [10]. In the PoC CP and UP test procedures for the
origination cases (where the PoC Client is the calling
party), NTP-PoCT waits for the tested handset to
initiate a PoC session. For the termination cases (where

Copyright © 2007 John Wiley & Sons, Ltd.

the PoC Client is the called party), NTP-PoCT initiates
a PoC session to the tested handset, and waits for the
responses form the handset. NTP-PoCT verifies if the
sequence and the formats of the received messages
are correct. In the XDM test procedure, NTP-PoCT
receives and verifies the XCAP messages sent from
the handset.

In this paper, we describe the NTP-PoCT
architecture. Then we use examples to show how the
PoC test cases are implemented in this test tool.

2. TTCN-3 Test System

NTP-PoCT is a Testing and Test Control Notation
version 3 (TTCN-3) test system. This system manages
PoC test execution, interprets or executes compiled
TTCN-3 code, and implements proper communication
with the systems under test (SUT). As illustrated in
Figure 3, NTP-PoCT consists of the following parts.
The Test Management and Control (TMC; Figure 3
(1)) is responsible for test execution control and test
event logging. The TTCN-3 Executable (TE; Figure 3
(2)) is responsible for the interpretation or execution
of the PoC modules (to be described in Figure 6). The
SUT Adapter (SA; Figure 3 (3)) adapts the TTCN-3
communication operations (of the TE) with the SUT
(Figure 3 (5)). The Platform Adapter (PA; Figure 3
(4)) adapts the TE to a particular execution platform
(i.e., Windows OS) by creating a single notion of
time for a TTCN-3 test system (i.e., NTP-PoCT), and
implementing external functions as well as timers.
Two interfaces are defined in a TTCN-3 test system.
The TTCN-3 Control Interface (TCI; Figure 3 (a))

Wirel. Commun. Mob. Comput. 2008; 8:673—-686
DOI: 10.1002/wcm

A CONFORMANCE TEST TOOL FOR PoC

ch
p

PoC Client
(2)

Tester
(1)

BS & Cellular
Core Network
Emulator

675

-

_.. n Ethernet
—

—

NTP - PoCT
(4)

(3)

Fig. 2. Conformance test environment for PoC.

specifies the interface between TMC and TE. The
TTCN-3 Runtime Interface (TRI; Figure 3 (b)) defines
the interface between TE and SA/PA.

2.1. PoC Test Management and Control (TMC)

We briefly re-iterate the TMC descriptions in
Reference [8] for the reader’s benefit. The TMC
consists of four entities [2]. The Test Management
entity (TM; Figure 3 (6)) is responsible for overall
management of the test system. After initiation the TM
will invoke PoC TTCN-3 modules (e.g., tc_CPOrg
module and PoC Control Plane Originating test
cases).

The Test Logging entity (TL; Figure 3 (7)) is
responsible for test component creation, start and
termination, and data delivery to/from the SUT. The
logging requests to the TL are posted externally from
the TE or internally from the TM. Figure 4 shows a
PoC graphical test log where the MTC (Figure 4 (1))
and the SUT (SYSTEM; Figure 4 (2)) is executing the
3GPP IMS registration test case. The PoC registration
procedure is illustrated in Figure 5. The SUT first
sends the SIP REGISTER (Figures 4 (3) and 5 (1)).

(4)), and replies 200 OK (Figure 4 (5)). The SUT
then sends SIP PUBLISH (Figure 5 (2) and Figure 4
(6)) to update its PoC service setting. NTP-PoCT
verifies the PUBLISH message (Figure 4 (7)), and
replies 200 OK (Figure 4 (8)). Every ‘match’ box
in Figure 4 indicates that the received SIP message
matches a pass criteria described in the conformance
test specification [7] and the final ‘pass’ box (Figure 4
(9)) indicates that this test case is passed for
the SUT.

The External CoDecs (ECD; Figure 3 (8)) are
invoked by the TE for encoding and decoding of TTCN-
3 values into bitstrings to be sent to the SUT. The
TE passes the TTCN-3 data to an appropriate encoder
to produce the encoded data. The messages received
from the SUT are passed to an appropriate decoder
that translates the received data into TTCN-3 values. In
NTP-PoCT, there are four external codecs: SIP, XDM,
RTP, and RTCP. These codecs are implemented in the
JAVA language, which can be easily ported to different
test systems.

The Component Handling entity (CH; Figure 3 (9))
is responsible for distributing parallel test components.
This entity is not implemented in the current version of

NTP-PoCT verifies the REGISTER message (Figure 4 NTP-PoCT.
TCL(a) TRI(b) T&I (c)
* Test Management ' =) MMSTE l.s___:{,'f, = —“S.H E
d Control sy R | e i
an ol (TMC) =2 Poc TE 2) e PoCSA(3) ¢ ;:} System
Tester) : o fe— PoC PA (4) : Under Test
: : P(SUT)(S)
. Test Management (TM) (6) . Executable Test Suite TE : TTCN-3 Executable
+ Test Logging (TL) (7} (ETS) (10)]
+ External Codecs (ECD) {(8) + Encoding/ Dacoding System SA: SUT Adaples
+ Component Handler {CH) (9) (EDS) (171) PA : Platform Adapter
* TTCN-3 Runtime Systems
(TAIRTS) (12)
Fig. 3. The TTCN-3 system.

Copyright © 2007 John Wiley & Sons, Ltd.

Wirel. Commun. Mob. Comput. 2008; 8:673—-686
DOI: 10.1002/wcm

Y.-B. LIN ET AL.

tc_CPOrg PoC_con_C_0001
Stat : 20060918 11:39:53.349
End : 20060218 11:40.04.443

Fig. 5. PoC registration procedure.

Copyright © 2007 John Wiley & Sons, Ltd.

MTC (1) system (2)
fypeGeness. | frpeGenen.]
11:39:53 458 s Achon Required: "Flease pows: om UE and send SIF REGISTER, equest’
113953552 3 timex1GO.0)
fvel3
. IECElTE
11:40.00.208 ok sip e -
11:40:00.224 [tk PocSiphtsg
11:40:00.255 > el (6.687)
11:40:00.255 (4) :
11:40:00.255
11:40:00.255
11:40:00.271 | wakch |)
; send FooSiphisg .
11:40.00.271 e A
11:40.00 302 57 timex1GO.0)
A0 receive(6)
11:4008.271 psipte s
11400828 (7) match | PosSipMsg
11:40:08 380 —— timexl G 078)
4 send FoeSiphisg (8
11:40:08 380 o L O
11:40:08 3% E
11:40.04 443 > (9)
[— =
Fig. 4. PoC graphical test log for PoC registration.
2.2. PoC TTCN-3 Executable (TE)
PoC Client SIP/IP Core PoC Server The TE consists of three interacting entities to execute
Network ([MS) the TTCN3 test cases. The Encoding/Decoding System
(EDS; Figure 3 (11)) is responsible for encoding and
REGISTER(1) decoding of test data. NTP-PoCT does not utilize this
S built-in EDS. The TTCN-3 Runtime System (T3RTS;
200 0K Figure 3 (12)) interacts with TM, SA and PA, and
manages the Executable Test Suite (ETS; Figure 3
— PUBLISH (2) —» (10)) and the EDS entities. The T3RTS starts the
——PUBLISH —* execution of test cases in the ETS entity. Figure 6
illustrates the PoC ETS structure that classifies the
+——200 OK—— PoC test cases into three groups: CP, UP, and XDM.
——200 OK——— For example, the Registration per 3GPP IMS test case
PoC_con_C_0001 is implemented in the tc_CPOrg

module. This test case is invoked by the T3RTS when
NTP-PoCT receives a REGISTER message.

Wirel. Commun. Mob. Comput. 2008; 8:673—-686
DOI: 10.1002/wcm

A CONFORMANCE TEST TOOL FOR PoC 677

poc_Main
CP (Control Plane) UP (User Plane) X*DM
o -
5 oy g 8
= e ®
g E - m (] > o
48 a|la3 |l =|2F 2|25zl zla2s5|a0F|255|22
o = ol Eolo gl omoe |0 - o | o |] 1 [| b =
w 5| [@@ | u | w =1 w =1 @ O l=lun Xlvw o x| » O
@& nl—T = al™ 3 = - ; cl|l= w |~ E cl—™ o = o ol s o -~ = a
O 5 o|Q |02 F|0oLI|0oaI|0og V|02 0|20 B
¥ S gl Tyl T gl oSz o=l s |2 |2 3ol E S| 5F
wo Qe 3 I|asg w w35 e w 5|e S Flag W ooz
»ag|e g 3| s|m e Zln 2 @ m m 6 eln =aln B
- v o w = w & lw Sl = d|mae 3l 2 /le =
o 3 =4 = S g ° 3 g 2
a 0
g 3 = g @ & c
w H o w] w
o a o
R W ﬁ
L2
Fig. 6. PoC ETS structure.
2.3. PoC SUT Adapter (SA) mapped to the following sockets in SA: STPSocket

(Figure 7 (9)), RtpSocket (Figure 7 (10)), Rtcp-
The SA adapts the communication between the TE and Socket (Figure 7 (11)), and XdmSocket (Figure 7

the SUT. (12)). The SA binds these sockets to Test System Inter-
Through TRI, the TTCN-3 test component ports face (TSI; Figure 3 (c)) Ports 5060, 9000, 9001,
pt_sip (Figure 7 (5)), pt_rtp (Figure 7 (6)), and 8080, which are the default port numbers of SIP,

pt_rtcp (Figure 7 (7)), and pt _xdm (Figure 7 (8)) are RTP, RTCP, and XDM in NTP-PoCT. To correctly

-

gk v SA ¥ 4

SIPSocket(©@) | | RtpSocket(10) | |RtepSocket(11)] | XdmSocket(12)

bind i i bind bind bind

Fig. 7. Interaction between the SA and the TE in NTP-PoCT.

%

Copyright © 2007 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2008; 8:673—-686
DOI: 10.1002/wem

678 Y.-B.LIN ET AL.

deliver SIP, RTP, RTCP, and XDM messages from and
to the SUT, the TE calls the TRI functions that associate
the component ports to the TSI ports, and uses the ECDs
(Figure 7 (1)—(4)) for packet encoding/decoding.

The SA is responsible for propagating the PoC
requests (e.g., sending a SIP response to the SUT
through the pt _sip.send function) and the SUT action
operations from the TE to the SUT, and notifying the
TE of any received test events form the SUT (e.g.,
receiving a SIP request from the SUT through the
pt_sip.receive function) by buffering them in the
TE’s port queues (Figure 7 (13)).

The extension function (Lines 3-6) shows the
descriptions of the parameters to the tester and reminds
the tester that these parameters should be set. They can
be set dynamically by the tester and are provided to the
test system as module parameters through the TCI-TM
Interface.

The TCI Test Logging Interface (TCI-TL) includes
operations for retrieving test execution information.
The following TCI-TL program segment checks
whether the SIP User-Agent header exists and logs the
error if the header is missed in the received SIP request.

1. if (ispresent (p_reqg.req.userAgent)) {
. //take appropriate action
} else {
2. log("no User-Agent header is found in the SIP request");

return RC_FAIL ;

3. TTCN-3 Interfaces for PoC

This section describes the TTCN-3 control and runtime
interfaces for PoC.

3.1. The TTCN-3 Control Interface (TCI) for
PoC

The TCI interfaces the TE with the TMC through
four sub-interfaces [2]. The TCI Test Management
Interface (TCI-TM) supports operations for managing
test execution, providing module parameters and
external constants, and offering test event logs. The
following TCI-TM program segment illustrates some
NTP-PoCT parameters such as the user identity (Line
1) and the domain (Line 2) for the SUT.

group SysParameters {
modulepar {
1. charstring SIP_UID
2. charstring DN_HOME
charstring DN_OTHER
float POC_SYS_WAIT

"Poc-Userl";
"networkA.com";
"networkB.com";
:=30.0;

with {
3. extension (SIP_UID)

By invoking the log function in Line 2, the TL
retrieves the error information through the TCI-TL
interface and shows the error message in the test log.

The TCI Component Handling Interface (TCI-CH)
consists of operations that implement the management
and communication between the PoC test components
in a distributed system. Since NTP-PoCT is a
centralized system, this interface is not used.

The TCI Coding/Decoding Interface (TCI-CD)
provides operations to access codecs. In NTP-
PoCT, TCI-CD is implemented in a JAVA program
PoC_Codec.java. In this program, the PoC
encode operation is invoked by the TE to encode a
TTCN value into a binary packet data unit based on the
encoding rules. Parts of the program are listed in Fig-
ure 8. In this operation, if no encoding rule in Figure 8
(2)—(5) is matched, then Figure 8 (6) is executed for
exception handling. In Figure 8 (3), an RTP message

"Description: SIP public user ID for default user of the SUT";

4. extension (DN_HOME)

"Description: Domain Name of the home network";

5. extension (DN_OTHER)

"Description: Domain Name of another PoC Service provider";

6. extension (POC_SYS_WAIT)

"Description: Maximum time between two received packets";

}

Copyright © 2007 John Wiley & Sons, Ltd.

Wirel. Commun. Mob. Comput. 2008; 8:673—-686
DOI: 10.1002/wcm

A CONFORMANCE TEST TOOL FOR PoC

679

public TriMessage encode (Value value) {
1. try {
2. if (value.getType () .getName () .equals ("PocSipMsg")) {
//SIP message encoding
}
3. else if(value.getType().getName().equals ("PocRtpMsg")) {
3.1. RecordValue rv = (RecordvValue)value;
3.2. RtpPacket pkt = new RtpPacket();
3.3. int cc¢ = ttcn.IntegerkEncode(rv, "cc");
3.4. pkt.setCc(cc);
3.5. pkt.setMarker (ttcn.BooleankEncode (rv, "marker™));
3.6. pkt.setPt (ttcen.IntegerEncode(rv, "pt"));
3.7. //£ill other parts of the RTP packet
3.8. RtpProducer pdr = new RtpProducer (pkt);
3.9. byte[] ret = new byte[pdr.getRtpBytes().length];
3.10. System.arraycopy (pdr.getBytes(),0,ret, 0, pdr.getRtpBytes () .length);
3.11. return new TriMessageImpl (ret);
}
4. else if(value.getType () .getName().equals ("PocRtcpMsg")) {
//RTCP message encoding
}
5. else if(value.getType () .getName().equals ("PocXcapMsg")) |
//XCAP message encoding
}
6. } catch(IOException e) {
RB.tciTMProvided.tciError ("Encoding error "te.getMessage());
}
return new TriMessageImpl (tmpbuf.toString().getBytes()):
}

Fig. 8. PoC encode operation.

is encoded as follows. Figure 8 (3.1)—(3.7) constructs a
RtpPacket structure from the given TTCN-3 value.
Figure 8 (3.8)—(3.10) then generate a byte string from
this RtpPacket structure.

The PoC decode operation invoked by the TE
decodes a message according to the decoding rules
and returns a TTCN-3 value. Parts of the program are
listed in Figure 9. The message is decoded as a SIP,
a RTP, a RTCP, or a XCAP message according to its

Copyright © 2007 John Wiley & Sons, Ltd.

type name, which matches the record type structure
specified in the PoC TTCN-3 ETS. For example, in
Figure 9 (2), a RTP message is decoded as follows.
Figure 9 (2.1) retrieves an encoded byte string from
the given message message. Figure 9 (2.2)-(2.4)
uses RtpParser to check and parse the format
of the given message. Then, Figure 9 (2.5)—(2.10)
decodes the parsed RTP packet into a TTCN-3
value.

Wirel. Commun. Mob. Comput. 2008; 8:673—-686
DOI: 10.1002/wcm

680

Y.-B. LIN ET AL

public Value decode(TriMessage message, Type decodingHypothesis) {
1. if (decodingHypothesis.getName ().equals ("PocSipMsg")) {
//SIP message decoding

}
2. else if (decodingHypothesis.getName ().equals("PocRtpMsg") {
2.1. byte[] encodedMsg = message.getEncodedMessage();
2.2. RtpParser rtpParser = new RtpParser (encodedMsqg);
2.3. if (!rtpParser.parse())
2.4. return null;
2.5. RecordValue ret = (RecordvValue)decodingHypothesis.newInstance();
2.6. RtpPacket pkt = rtpParser.getRtpPacket():
2.7. ttcn. IntegerDecode (returnValue, "cc", pkt.getlCc()):
2.8. ttcen.BooleanDecode (returnvalue, "marker"”, pkt.isMarker());
2.9. ttcn. IntegerDecode (returnvalue, "pt", pkt.getPt());
2.10. //decode other parts of the RTP packet
2.11. return returnvValue

}
3. else if (decodingHypothesis.getName () .equals ("PocRtcpMsg") {

//RTCP message decoding

}

4. else if (decodingHypothesis.getName ().equals ("PocXcapMsg")) {
//XCAP message decoding

}

return null;
}

Fig. 9. The PoC decode operation.

3.2. The TTCN-3 Runtime Interface (TRI) for
PoC

The TRI supports the communication of a
TTCN-3 ETS with the SUT [1]. The NTP-
PoCT TRI is implemented in a JAVA program
PoC_TestAdapter.java consisting of the
connection and communication operations shown in
Figure 10.

Through the connection operations, the TSI ports
are mapped to the test component ports. An example
is triMap (Figure 10 (1)) called by the TE
when it executes a TTCN-3 map operation. This
operation instructs the SA to establish a dynamic

Copyright © 2007 John Wiley & Sons, Ltd.

connection to the SUT for the referenced TSI
port.

TRI also supports the communication operations. An
example is triEnqueueMsg (Figure 10 (2)) called
by the SA after it has received a message from the SUT.
This operation passes the message to the TE indicating
the component where the TSI port is mapped. Another
example is triSend (Figure 10 (4)) called by the TE
when it executes a TTCN-3 unicast send operation on
a component port mapped to a TSI port. This operation
instructs the SA to send a message to the SUT. For PoC
testing, four types of messages are sent by triSend:
PocSipMsg for SIP, PocRtpMsg for RTP, PocRtcpMsg
for RTCP, and PocXcapMsg for XCAP.

Wirel. Commun. Mob. Comput. 2008; 8:673—-686
DOI: 10.1002/wcm

A CONFORMANCE TEST TOOL FOR PoC 681

Puklic class PoC_TestAdapter extends TestAdapter |

1. public TriStatus triMap{final TriPortId compPortId, final TriPeortId
tsiPortld) {

CsaDef.triMap{compPortId, tsiPortId):

{tsiPortId.getPortName () .equals("pt sip")) {
and wait for SIP packets

if
//hind SIPSocket to port 5060,
new TriAddressImpl (new byte[]l{}),

B

b Cte.triEncueueMsgitsiPortId,

compPortld.getComponent (), new TriMessageImpl (SIPdp.getData()));:

//other map functicons

return new TriStatusImpl();

t

3. public TriStatus triUnmap(TriPortld compPortld, TriPortId tsiPortId) {

TriStatus mapStatus=CsaDef.trilnmap|compPortId, tsiPortId);

. //unmap functions

return super.triUnmap{compPortId, tsiPortld);

}

4, public TriStatus triSend(TriComponentId compld, TriPortId tsiPeortId,

Trihddress address, TriMessage message) |
if (tsiPortld.getPortName (}.equals("pt sip")} |

{//send a SIP packet

}
else if (tsiPortId.getPortMName().equals{"pt_rtp")} |

byte[] buf = message.getEncodedMessagel();

/ferror check

e w

DatagramPacket rtpPkt =

new DatagramPackeb (msg, msg.length,
Inet2ddress.getByName {ip), PoTrt);

EtpSocket.send{rtpPkt);

return new TriStatusImpl();

//send a RTCP, XDM packet

Fig. 10. PoC Adapter Program.

Copyright © 2007 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2008; 8:673—-686
DOI: 10.1002/wem

682 Y.-B.LIN ET AL.

4. A PoC Conformance Test Scenario

We use a Control Plane (CP) test case in Figure 11 to
show how PoC test suits are implemented. This test case
verifies the PoC Client’s SIP registration procedure
through 3GPP IMS [4]. The TE first maps the four test
component ports to the system server ports (Figure 11
(1); the triMap operation at the TRI is invoked).
Then it pops up an action window (Figure 11 (2))
that instructs the tester (Figure 2 (1)) to send a SIP
REGISTER message from the Client (Figure 2 (2)).
The TE initializes the registration state machine at
State 1 (Figure 12) and invokes function £ mainloop
(Figure 11 (4)). In State 1 (WAITING for REGISTER),
if a correct SIP REGISTER message is received from

the SUT, the TE sends 200 OK to the SUT and changes
to State 2 (WAITING for PUBLISH). If incorrect SIP
REGISTER or other SIP messages are received at
State 2, NTP-PoCT sets test result to fail and stops
the state machine at State 3 (TEST FAIL). The TE
sets verdict (Figure 11 (5)—(7)) according to the testing
result returned from the £_mainLoop function. After
the test result is returned, the TE removes the bindings
between the four test component ports and the system
server ports (Figure 11 (8)) using the triUnmap
operation at the TRI.

In the £ _mainloop function, the t_mainLoop
timer starts at the PA (Figure 13 (1)) and the TE enters
the main loop. When a SIP request from the SUT is
received, the pt_sip.receive function is executed

testcase PoC _con C 0001() runs on PoCCompconent system PoCComponent

{

//initialize state, timers,

1. map(mtc:pt sip, system:pt sip):

map (mtec:pt_rtp, system:pt rtp):

and necessary variables

map (mtc:pt_rtcp, system:pt rtcp):

map (mtc:pt xdm, system:pt xdm):

2. £ action("Please power on Handset and send SIP REGISTER request"™);

3. f nxtStat({ST 1, omit}); // moves to State 1

Lo Fyore = f_mainLoopl:l];

if (v_rc == RC_PASS) {

L setverdict (pass); //moves to State 5
} else if (v _rc == RC TIMEQUT) ({

6. setverdict (inconec); // moves to State 4
} else {

T setverdict (fail); // moves to State 3

t

B. unmap{mtc:pt sip, system:pt sip};:

unmap (mtc:pt rtp, system:pt rtp);:

unmap (mtc:pt rtep, system:pt rtep):

unmap (mtc:pt xdm, system:pt xdm);

Fig. 11. PoC CP test case.

Copyright © 2007 John Wiley & Sons, Ltd.

Wirel. Commun. Mob. Comput. 2008; 8:673—-686
DOI: 10.1002/wcm

A CONFORMANCE TEST TOOL FOR PoC

WAITING for REGISTER

Srd SIP 200 Ok
STATEA

683
WAITIMG for PUBLISH TESTPASS
® = - STATE S

TEST INCOMCLUSIVE

TEST FAIL

Snd Dumimy Raspanse (a9 403 Farbiddan)

Snd Dumy Resporss (8 g, 403 Forbiddan)

Fig. 12. PoC registration test case state diagram.

(Figure 13 (2)), and the TE invokes the decode oper-
ation in Figure 9. After the message is decoded, the TE
stops the t_mainLoop timer at the PA (Figure 13 (3))
and the f_sipRegHandler function (Figure 13 (4))
verifies whether the received message is correct. When
the test result (RC_PASS or RC_FAIL)is returned
(Figure 13 (5)), £ mainloop exits. Otherwise, the
PA restarts the t_mainLoop timer again (Figure 13
(6)) and waits for another message from the SUT. If
the TE does not receive any message from the Client
after the t_mainLoop timer expires, the PA notifies
the TE of this timeout event (Figure 13 (11)), and
f_mainloop returns RC_TIMEOUT. The test case
sets verdict to inconc (Figure 11 (6); indicating that
an inconsistent exception occurs). Inthe £ mainloop
function, f_sipRspHandler, f_rtpHandler,
f_rtcpHandler, and £f_xdmHandler handle the
received SIP response messages (Figure 13 (7)),
RTP messages (Figure 13 (8)), RTCP messages

1. template PocSipMsg a-sipRspCmn

(Figure 13 (9)), and XDM messages (Figure 13 (10)),
respectively.

Function f_sipReqgHandler (Figure 13 (4))
invokes f_sipRegHandler0001 (Figure 14) to
handle the incoming SIP REGISTER request for
the test case PoC_con_C_0001. This function first
checks whether the SIP headers of the received
REGISTER are correct according to the pass criteria
[7]. For example, the f_sipHdrContactChk
function (Figure 14 (2)) checks if the Contact header
in the REGISTER contains the correct PoC feature-tag
‘+g.poc.talkburst.” If any pass criteria is not
satisfied, the f_sipRegHandler function returns
RC_FAIL to indicate the failure. If the received
REGISTER message is correct, SIP 200 OK response
is sent (Figure 14 (4)) to the PoC Client. This action
triggers the Client to send the PUBLISH message
(Figure 5 (2)). The SIP 200 OK response is generated
by the a_sipRspCmn template illustrated below.

(PocSipMsg p-req, integer p_sc) :=

{

2. srcIp = p_req.dstIp, // source address is the destination
srcPort := p_req.dstPort, // address of the request message
dstIp = p-req.srcIp, // destination address is the source
dstPort := p_req.srcPort, // address of the request message

3. msgType := PSMT_RSP, // SIP message type: SIP response
rsp = {

4. sc = p_sc,

5. callIld = p_-reqg.req.callld,

6. fromHdr = p_reqg.req.fromHdr,

7. toHdr = p_req.req.toHdr,

8. cseq = p_-req.reg.csedq,

9. via = p_reqg.req.via

}

}i

Copyright © 2007 John Wiley & Sons, Ltd.

Wirel. Commun. Mob. Comput. 2008; 8:673—-686
DOI: 10.1002/wcm

684 Y.-B.LIN ET AL.

function f mainloop(integer p tcId) runs on PoCComponent return PocRC

{
label MAIN LOOP;

1. t mainLoop.startiv sysWait):

alt {
2. [l pt_sip.receive(a_sipReq) -> value v_sipMsg {
h t mainLoop.stop;
4. v_rc := f sipRegHandler(p tclId, v_sipMsg) -
558 1E (wero = RC PASS
return RC PASS
} else if (v rc = RC FAIL){
return RC_FAIL
}
G. goto MAIN LOOP ;
}
A [lpt_sip.receive(a sipRsp) -> wvalue v _sipMsg { ... }
=i [lpt_rtp.receive(a allRtpMsg) -> value v_rtpMsg { ... }
G [lpt_rtcp.receive(a allRtcpMsg) -> walue v_rtcpMsg { ... }
10, [lpt_xdm.receive(a_allXcapMsg) -> value v_xcapMsg { ... }
15 [1t_mainLoop.timeout {
log ("timeout and nothing receiwved"):;
12, return RC TIMEOUT;

Fig. 13. The £ _mainloop function.

For 200 OK, the input parameter p_sc of the
a_sipRspCmn template is set to 200 (Lines 1 and 4)
and some SIP headers (Call-ID, From, To, CSeq, and
Via headers) should be set to the identical values as

those headers in the corresponding SIP request (Lines
5-9).

Copyright © 2007 John Wiley & Sons, Ltd.

After the SIP 200 OK response is sent in Figure 14
(4), the registration state machine moves to State
2 (WAITING for PUBLISH; Figures 12 and 14
(5)). When NTP-PoCT receives the correct PUBLISH
message in State 2, the test is passed (Figure 12), and
the state machine moves to State 5 (TEST PASS).

Wirel. Commun. Mob. Comput. 2008; 8:673—-686
DOI: 10.1002/wcm

A CONFORMANCE TEST TOOL FOR PoC 685

function f sipRegHandler(00l {PocSipMsg p_req) runs on PoCComponent

return PocRC

1. if (ispresent(p reg.reg.contactlst})) {

2 if (RC FATL == f sipHdrContactChk(p req.rsg.contactLst)) {

return RC FAIL ;

b

} else {

f error ("no Contact header in SIP request");

return RC FAIL ;

}

3. ..// Check other SIP headers in the received REGISTER message

4, £ sndSipRspz00(p req); // Send Response

5. £ nxtStat({ST 2, omit}):; // Change current state accordingly

6. return RC OE ¢

Fig. 14. The f_sipRegHandler0001 function.

5. Conclusions

This paper described the architecture and operations
of NTP-PoCT, a PoC test system developed based
on the TTCN-3 specifications. This system has been
jointly developed by the National Telecommunication
Program (NTP) and the Industrial Technology
Research Institute (ITRI) in Taiwan. We used the
PoC Control Plane procedures to illustrate how
conformance tests can be implemented and conducted
in NTP-PoCT. These test cases are conformed to the
OMA Enabler Test Specification (Conformance) for
PoC [7]. Currently, 52 PoC tests cases have been
developed in NTP-PoCT.

References

1. ETSI. Methods for Testing and Specification (MTS); The Testing
and Test Control Notation version 3; Part 5: TTCN-3 Runtime
Interface (TRI), ETSI ES 201 873-5 V3.1.1, 2005.

2. ETSI. Methods for Testing and Specification (MTS); The Testing
and Test Control Notation version 3; Part 6: TTCN-3 Control
Interface (TCI), ETSI ES 201 873-6, V3.1.1, 2005.

3. Open Mobile Alliance, Enabler Test Specification for MMS 1.2,
OMA-IOP-ETS-MMS-V1_2-20040409-A, 2004.

4. Lin Y-B, Pang A-C. Wireless and Mobile All-IP Networks,
Wiley, 2005.

Copyright © 2007 John Wiley & Sons, Ltd.

5. ETSI. Methods for Testing and Specification (MTS); The Testing
and Test Control Notation version 3; Part 1: TTCN-3 Core
Language, ES 201 873-1, V3.1.1, 2005.

6. Open Mobile Alliance, Enabler Test Specification for
OMA IMPS CSP, OMA-ETS-IMPS_CSP-V1_2_1-20051115-A,
2005.

7. Open Mobile Alliance, Enabler Test Specification (Con-
formance) for PoC, OMA-ETS-PoC_CON-V1_0-20051020-A,
2005.

8. Lin Y-B, Liang C-F, Chen K-H, Liao H-Y. NTP-SIOT: A
Test Tool for Advanced Mobile Services, IEEE Network,
November/December 2006, pp. 2-7.

9. Open Mobile Alliance, Push to talk Over Cellular Architecture,
OMA-AD-PoC -V1.0-20060609-A, 2006.

10. Anritsu Corporation, MD8470A Signaling Tester Product
Introduction, http://www.us.anritsu.com/products/ARO/North/
Eng/showProd.aspx?7ID=659

Authors’ Biographies

Yi-Bing Lin is Chair Professor and Vice
President of Research and Development,
National Chiao Tung University. His
current research interests include mobile
computing and cellular telecommunica-
tions services. Dr. Lin has published over
200 journal articles and more than 200
conference papers. He is the co-author of
the books Wireless and Mobile Network

Wirel. Commun. Mob. Comput. 2008; 8:673—-686
DOI: 10.1002/wcm

686 Y.-B.LIN ET AL.

Architecture (with Imrich Chlamtac; published by Wiley,
2001) and Wireless and Mobile All-IP Networks (with Ai-
Chun Pang; published by Wiley, 2005).

He is an IEEE Fellow, ACM Fellow, AAAS Fellow, and
IEE Fellow.

Chun-Chieh Wang is currently a
Software Engineer at the Department

VY= o of Mobile Internet, Information and
, b Communications Research Laborato-
e Y ries, Industrial Technology Research In-

stitute, R.O.C. He received his B.S. and

\‘V M.S. degrees in Computer Science and
Information Engineering from National

Chiao Tung University in 2000 and 2002,

respectively. His current research interests include wireless

Internet protocols and wireless Internet applications.

Copyright © 2007 John Wiley & Sons, Ltd.

Chih-Hung Lu is a Software Engineer
of Information and Communications
Research Labs, Industrial Technology
Research Institute. His specialties are
TTCN3 and JAVA language. His current
major job is writing OMA conformance
testcases including OMA IMPS, PoC,
and DRM.

Miao-Ru Hsu is a Section Manager
at the Department of Mobile Internet,
Information and Communications Re-
search Laboratories, Industrial Technol-
ogy Research Institute. She got her M..S.
degree in Computer Science and Engi-
neering from Yuan Ze University. Her
current research interests include mobile
services and wireless Internet protocols.

Wirel. Commun. Mob. Comput. 2008; 8:673—-686

DOI: 10.1002/wcm

