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Regular and Chaotic Dynamic Analysis
for a Vibratically Vibrating and Rotating
Elliptic Tube Containing a Particle*

Zheng-Ming GE**, Jia-Haur LEU**
and Tsung-Nan LIN**

The paper is to present the detailed dynamic analysis of a vertically vibrating and
rotating elliptic tube containing a particle. By subjecting to an external periodic
excitation, it has shown that the system exhibits both regular and chaotic motions. By
using the Lyapunov direct method and Chetaev’s theorem, the stability and instability
of the relative equilibrium position of the particle in the tube can be determined. The
center manifold theorem is applied to verify the conditions of stability when system is
under the critical case. The effects of the changes of parameters in the system can be
found in the bifurcation and parametric diagrams. By applying various numerical
results such as phase plane, Poincaré map and power spectrum analysis, a variety of
the periodic solutions and the phenomena of the chaotic motion can be presented.
Further, chaotic behavior can be verified by using Lyapunov exponents and Lyapunov

dimensions.
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1. Introduction

The dynamic analysis of a particle moving in a
rotating elliptic tube is a widely known problem. In
the past, the study was focused on the stability of the
motion”, whereas the regular and chaotic dynamic
analysis for a vertically vibrating and rotating elliptic
tube containing a particle has not been studied, this
paper will give a detailed analysis on these topics.

A lot of mechanical dynamical systems are non-
linear in nature. It has been realized that responses of
many nonlinear dynamical systems do not follow
simple, regular and predictable trajectories® .
Many numerical techniques are developed for analyz-
ing the nonlinear system behavior. Both analytical
and computational methods are employed to obtain
the characteristics of the systems. By subjecting to an
external periodic excitation, it has shown that the
system exhibits both regular and chaotic motions. By
using the Lyapunov direct method and Chetaev’s theo-
rem, the stability and instability of the relative equi-
librium position of the particle in the tube can be
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determined. The center manifold theorem is applied
to verify the conditions of stability when system is
under the critical case. The effects of the changes of
parameters in the system can be found in the bifurca-
tion and parametric diagrams. By applying various
numerical results such as phase plane, Poincaré map
and power spectrum analysis, a variety of the periodic
solutions and the phenomena of the chaotic motion
can be presented. Further, chaotic hehavior can be
verified by using Lyapunov exponents and Lyapunov
dimensions.

2. Equations of Motion

The system considered here is depicted in Fig. 1.
It is a vertically vibrating and rotating elliptic tube
containing a particle with viscous damping where the
damping coefficient is k. Because of the vertical
vibration of the bearings, when the dynamic equations
are established for the reference frame fixed with the
bearings, the gravity acceleration appears as a con-

2
stant term plus a harmonic term g(l + ATwsin a)t) in

this noninertial frame. Since there is a non-conserva-
tive generalized force that is induced by damping,
there exists energy dissipation. Then the equations of
motion can be expressed as following :

me'd*§(1+ e cos ) *sin® 4
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Fig. 1 A schematic diagram of the vertically vibrating

and rotating elliptic tube containing a particle

+me?d?0(1+ e cos 4)72
+2me*d?6*(1+ e cos 6)°sin® 6
+me*d?G%(1+e cos 0)*sin 6 cos 6
+me*d?6%(1+ e cos 6)*sin
—med?¢*(1+ e cos ) 3sin® §
—metd?*$*(1+ e cos 6) 2sin 0 cos ¢

2
— mgezd<1 + A;)

X(1+e cos §)~2sin @ cos 0
2
+mged(1+ Agw sin wl)(H—e cos 0) 'sin 6

+ k=0 (1)

med*¢(1+ e cos 6)*sin’ 6

+2me’d*6¢(1+ e cos 6)*sin® §

+2med?*6¢(1+ ¢ cos ) 2sin 6 cos 0

+14=0 (2)
where

m : the mass of the particle,

¢ : the eccentricity of the elliptic tube,

d : the length from the focus to the directrix,

0 : the angle between y-axis and the radius
vector 7 through the particle,

¢ : the angular velocity of the rotation of the

elliptic tube about the vertical semiaxis y-axis,
I : the moment of inertia of elliptic tube with
respect to y-axis.

Set state variables m1=0, x.:=0, x:=¢ and
change to dimensionless time r=w{, the state equa-
tions can be written as:

T1=X2

Zo=[—2me*d*w’x} sin® x

—me'd?w?x¥(1+ e cos x1) sin x1 cos 11
—me*d*w?x¥(1+ e cos x1)* sin x
+ me*d*w*xi(1+ e cos x1)* sin® 1
+ me’d*w*x3(1+ e cos x1)* sin &1 cos I

sin cut)
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2
+ mgezd<1+ Aow sin r>

g

X (14 e cos x1)* sin &1 cos 1

- mgea’(l + A;U
— kwxz(1+ e cos x1)°]

/[me*d?w* (1+ e cos x1) sin® 11
+meld?*w 1+ e cos x1)°]

Zs=[ —2me’*d*w*x22s sin® 1,
—2metd*w’rx(1+ e cos 1) sin x1 cos 1]
/[me*d*w*(1+ e cos x11) sin® x
+ Io*(1+ e cos x1)°] (3)

2
sin r)(l + e cos x1)' sin @

3. Stability Analysis by Lyapunov Direct Method

The stability of the system will be investigated by
Lyapunov direct method in this section. The equilib-
rium points (a1, 2z, x3) in which we are interested, of
the system can be found from Eq.(3) with sin =0 as
(0,0, ¢) and (0, ¢), ¢ is arbitrary constant. The
generalized energy E*= T>— To+ 11 does not contain
7 explicity, therefore® :

*
dET _ _oR (4)

dt
(1) For the equilibrium point (0,0, ¢), with no
disturbance for ¢=c, take the generalized energy

dropping the constant terms as the Lyapunov function
1

V:‘gmezdz(l +e) 242
—me*d*(1+ e)‘2026'2+%1c2
+mged(1+e)20%+ -
Z%mezdz(l%—e)’zﬁ.z

+ med{g—edc?)(1+e)26%+-+- (5)
where the higher order terms are not presented but
not neglected.

V is the positive definite function for 4, g if ¢*’<

%, and the time derivative of V is

y_ dE* _ _ 12
V= a 2R=—Fk0 (6)
V' is negative semidefinite for 6, 6. By Lyapunov

theorem of stability'”, the conditional stability condi-

. 5 - 2 g9
t10n0f€and¢9156<ed.

(2) For the equilibrium point (7,0, ¢), let 6=
r+&, 6=§, ¢=c+&, take the generalized energy
dropping the constant terms as the Lyapunov function :

V:%mezd2(1+e)‘zfz
+meld* (1+e) A n+ ) c+ &)
—i—%](cﬁ-é)z—{— mged(1+e) X x+ L)+

=27ctme?d*(1+ e) 2t +2n%eme*d¥(1+e) &
+ IcE+2mmged(1+e) 2L+ (7)
where the higher order terms are not presented but
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not neglected.
The time derivative of V is
- dEi_ . N tn
V= -—2R=—Fk¢ (8)

dt
In this case, the Chetaev theorem fails. We take
another method to solve this problem. It is success-
fully to deal with the stability problem by using the
second Ge-Liu theorem of instabililty in Ref.(8).
After a rearrangement, the derivative V and V are
shown bellow :
V= -2kt
2 .2 2 3
:72k<edco ¢ +Z;wAw sin r>€,§~+_“ (9)

s 22 2 o1 .,
V:~2k<eda) c’+g+Aw’sin r>§z
edw
edw*c*+g-+ A’ sin r) 2
< edw gt
o 2.2 2 1 .
:_2k<c7da) c*+g+Aw sin T);’Z
edw
2 .2 2 1 2
*2/@( edw’c*+ g+ Aw’sin z"> e
edw
No matter what value of ¢ and & may be, V is always
negative if
edw*c*+ g— Aw*>0. (11D
The conditions of instability of the above theorem are
all satisfied, therefore the equilibrium point (7, 0, c)is
unstable in this case.

—2k

(10

4. Application of the Center Manifold Theorem

Using linearization to study stability of equilib-
rium points of a nonlinear dynamical system is a well
known method®. Linearization fails when the
Jacobian matrix, evaluated at the equilibrium point,
has some eigenvalues with zero real parts and no
Variation of
system parameters may cause this critical case. Here
we use the center manifold theorem to study the
conditions of stability of the equilibrium points in the
critical case when linearization fails.

We consider the state equations as

i‘1:.rz

Fo=[—2me d*xi sin® 1,

—metd?x3(1+ e cos 1) sin 21 cos X

—me*d?xi(1+ e cos x1)* sin 2

+me*d?xi(1+ e cos x1)* sin® &

+ me?d*x2(1+ e cos x1)? sin x1 cos X1

+ mge?d(1+ e cos x1)* sin x; cos

— mged(1+ e cos x1)* sin xi1]

/[metd* (1+ e cos a) sin® xi

+me?d*(1+ e cos x1)°]

Zs=[—2me*d*xoxs sin® 1,

—2meld?raxs(1+ e cos x1) sin x1 cos 1

— ks +M]

/[ me*d*(1+ e cos x1) sin® 21+ I(1+ e cos 11)*]
(12)

eigenvalues with positive real parts.
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where 4, is the viscous damping between the rotating
elliptic tube and y-axis, M is the moment acting on
the elliptic tube along the y-axis.

System has an equilibrium point (0, 0, %/ll) and

rewrite (12) in matrix form

X=GCX+F(X)+0@), XeR* (13)
where
X:[II,IZ,II%]T
0 1 0
2
G= ~ ed 0 0
—
0 0 Tater
0
M
[":—éi 4*klx113 (14)
_ymetd’M
T (1+ )2

Now the matrix has three eigenvalues A1, A2 and A

One of the eigenvalues has no positive real part and
the others are pure imaginary pair. This is a critical
case, the eigenvalues of matrix G fails to determine
the stability of the equilibrium point and it becomes
necessary to consider the higher order terms.

So one employs the center manifold theorem to
reduce the dimension of the state space at the critical

parameter®. A transformation matrix P is used to
transform our state equation (13) :
1 1 0
P=2 —2 0 (15)
0 0 1
which is formed by eigenvectors of G.
Let
X1 qdi
x| =P qz (16)
X3 q3
then Eq.(13) is transformed into
i 0 -8 0 "
[ L 0 0
qz q2
ki
q3 0 0 77(1‘1’7 g3
M
zl“!’j(lhfh*(hqs)
+ ﬂ’((IIQS'F G23) +H.0.T an
k2
GmetdP M, .
- me%?-(qf —q3)

By the center manifold theorem, we can reduce
the system to two dimensional system with the center
manifold
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qgs=h(q1, q2)= aqt+ bgé+ cqq: (18)
where
_ 20Qme*d*M(1+e) _ 20me*d*M(1+e)
=R Ter 0T R+4rR(+e)
8IQ*me*d*M(1+e)*

= T TRkt e) (19)

then the reduced system becomes

Gi|_|0 —Qfa| | A
e Ll mor
o )
N Q 0 q2
M (aqt+ b+ (b+ ) anad+(a+ )atar)

i}%{aqi“r b3+ (b+c)qgi+(a+c)giqs)

+H.O.T (20)
The stability criterion for a general two dimen-
sional system of the Eq.(20) is"?
azL( Fh i 1 3t )
16\ 9gi ' 0qi0q3 ' 0qidq:  0g3

1

1 [ PA /32ﬁ+32f1>

62| 0g10g:\ 0qF ' 0q3

P /52f2+32fz>
0q:10¢:\ Ot ' 0q3

A PR PN aZfz]
oqt gt ' 0gf 043
- M
= oh0 a<0 (21
For this case, parameters
M2
'*kired—g< 0 (22)

will cause @< 0, the equilibrium point (0, 0, %) in the

critical situation is stable.

5. Phase Portraits, Poincaré Map and
Power Spectrum

In previous section, we have given the equations
of motion. Now, we can set some parameters and use
fourth order Runge-Kutta numerical integration
method to simulate our system, then plot the results
for three different amplitudes of external vertical
excitation (displacement). In Eq.(3), we set the
parameters /=2, m=1, ¢=0.5 d=10, k=10, w=1,
and ¢=9.8. Phase diagrams and Poincaré map are
plotted in Fig.2(a) - (¢) for A=10.85 11.0 and
11.185. Clearly, the motion is periodic for A=10.85,
11.0, and the Fig.2(c) for A=11.185 shows the
chaotic state.

Any function x(¢) may be represented as a super-
position of different periodic components. If it is
periodic, the spectrum may be a linear combination of
oscillations whose frequencies are integer multiples of
basic frequency. The linear combination is called a
Fourier series. If it is not periodic, the spectrum then
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must be in terms of oscillations with a continuum of
frequencies. Such a representation of the spectrum is
called Fourier integral of x(¢). The representation is
useful for dynamical analysis. The nonautonomous
system are observed by the portraits of power spec-
trum in Fig.3(a) - (¢) for A=10.85, 11.0 and
11.185. In Fig.3(a) - (b), period-1 and period-2
oscillations present respectively. Sz is the amplitude
of the component in Fourier series expansion for .
In Fig. 3( ¢ ), the noise-like shape appears and the peak
is still presented at the fundamental frequencies, it is
the characteristic of the chaotic dynamical system.

6. Bifurcation Diagram, Lyapunov Exponent,
Lyapunov Dimension and Parametric Diagram

The information about the dynamics of the non-
linear system for specific values of the parameters is
provided. The dynamics may be viewed more com-
pletely over a range of parameter value. Let us vary
one of the parameters in the system, and record the
data of Poincaré map corresponding to every different
parameter values. Then the steady state behavior of
the system versus the range of parameter will be
plotted. This is a well-known technique to describe a
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Fig. 2 Phase portraits and corresponding Poincaré maps

of for (a) A=10.85 of period-1, (b) A=11.0 of
period-2, (¢) A=11.185 of chaos where =4,
Lzzg
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Fig. 3 The power spectra for (a) A=10.85 of period-1,
(b) A=11.0 of period-2, (¢ ) A=11.185 of chaos
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Lyapunov exponent diagram

transition from periodic motion to chaotic motion for
a dynamical system. This is called as a bifurcation
diagram.

In order to determine chaos existing in nonlinear
system, how to detect chaos becomes very important.
Here, Lyapunov exponent is an index for chaotic
behavior. It has proven to be the most useful dynami-
cal diagnostic tool for examining chaotic motion. For
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Table 1 The Lyapunov dimension and the Lyapunov

exponent of the nonlinear system

r A 10.85 11.0 11.15 1117 11.185
A -0.0061122 | -0.0026641 | -0.001778 | -0.0013303 | 0.0146802
A, -0.0157942 | -0.1001171 | -0.1499486 | -0.0477297 | -0.0133249
Ay -0.3607489 | -0.2840784 | -0.2410326 | -0.3439619 | -0.3947034
i 0 0 0 0 0
d, 1 1 1 1 2.0034
Period-1 Period-2 Period-4 Period-8 Chaos

a three-dimensional dynamical system, the calcula-
tion of Lyapunov exponent is described briefly"?.
Positive value of Lyapunov exponent indicates chaos,
negative value of Lyapunov exponent indicates stable
orbit. The criterion is

A>0 (chaotic)

AZ0 (regular motion)

The periodic and chaotic motions can be distin-
guished by the bifurcation diagram and Lyapunov
exponent shown in Fig. 4.

The Lyapunov dimension is a measure of the
complexity of the attractor. It has been developed by
Kaplan and Yorke"?, that the Lyapunov dimension d.
is introduced as

d. =) +m (23)
where j is defined by the condition that

J it

ZI/L‘>O and §Ai<0

The Lyapunov dimension for a strange attractor is a
noninteger number. The Lyapunov dimension and the
Lyapunov exponent of the nonlinear system are listed
in Table 1.

Further, the parameter values, such as damping
coefficient k, vibrating frequency « and vibrating
amplitude A, may also be varied together to observe
the behaviors of bifurcation of the system. By varying
any two of these three parameters, the enriched infor-
mation of the behaviors of the system can be de-
scribed and shown as Fig.5, in which a region of
period-three response is found.

7. Conclusions

The dynamical system of the vertically vibrating
and rotating elliptic tube containing a particle has a
rich variety of nonlinear behaviors as the parameters
varied. Due to the effect of nonlinearity, regular and
chaotic motions appear. In this paper, analytical and
computational methods have been employed to study
the dynamical behaviors of the nonlinear system. In
Section 3, the stability for the mechanical system with
vertical vibration and viscous damping has been found
by using the Lyapunov direct method. The condition
of stability in critical case has also found by using
center manifold theorem.
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Fig. 5 (a) Parametric diagram of amplitude versus
damping coefficient for w=1, (b) Parametric
diagram of amplitude versus vibration frequency
for £=10

The computational analyses have also been stud-
ied. The periodic and chaotic phenomena are de-
scribed by phase portraits, Poincaré map, bifurcation
diagram and power spectrum. The occurrence of
chaotic attractor has been verified by evaluating
Lyapunov exponents and Lyapunov dimension.
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