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Phase-Noise-Driven Instability in a Single-Mode
Microchip Nd:YVO4 Laser With Feedback

Tsong-Shin Lim, Tsung-Hsun Yang, Jyh-Long Chern, and Kenju Otsuka, Fellow, IEEE

Abstract—We report the instability behaviors of a single-mode
microchip solid-state laser subjected to external feedback. Two
kinds of instabilities, random chaotic burst generations and
random sinusoidal burst generations, were observed experimen-
tally in an LD-pumped microchip Nd:YVO 4 single-mode solid-
state laser with fiber feedback. These results are totally different
form those observed in laser diodes with delay feedback systems,
which have been widely studied in last decades. Main features
were reproduced numerically by utilizing the Lang–Kobayashi
equations with phase noise, indicating phase-noise-driven dynamic
instabilities.

Index Terms—Laser stability, neodymium, numerical analysis,
optical feedback, phase noise, solid lasers, stochastic differential
equations.

I. INTRODUCTION

I N HISTORY, the issue of instabilities in the output of lasers
that are subjected to external feedback was initiated by the

pioneering work of Lang and Kobayashi in 1980 [1]. They
demonstrated the dynamic instabilities in a laser diode with ex-
ternal feedback which feature sustaining relaxation oscillations
(ROs). They also confirmed theoretically that the dynamical
instabilities take place in the transition process where the lasing
frequency changes from one external cavity eigenmode to
another in a weak-coupling regime. Thereafter, three universal
transition routes to chaos, low-frequency fluctuations, and
coherence collapse have been observed in LDs with external
optical feedback for different feedback strength and/or delay
time [2].

Some recent studies on the influence of optical feedback
on LDs have focused on reducing or controlling the destabi-
lizing effects of feedback [3]–[7]. Very weak feedback from
short external cavities can significantly reduce both intensity
noise and lasing linewidth [8]. The emission frequency can also
be stabilized with phase-conjugate feedback [9]. On the other
hand, variation of the feedback within the range that leads to
chaotic operation can be used to encrypt information [10], [11].
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Furthermore, feedback into a broad-area laser can bias the se-
lection of a particular lateral mode, though this is sensitive to
very small variations of the external-cavity length [12], [13].
Meanwhile, pulse-to-pulse jitter in spontaneously pulsing or
externally switched LDs can be reduced with optical feedback,
but the reduction is also extremely sensitive to small variations
in cavity length [14], [15]. In contrast, studies on LD-pumped
solid-state lasers with external optical feedback are still scant.
Because LD-pumped solid-state lasers have been widely used
in practical applications, it is important to clarify their dynam-
ical behaviors both for academic and application reasons. Fiber
linking capability of microchip lasers could be an important
issue for practical applications. Thus, a characterization of the
dynamics behind fiber-feedback-induced instability is crucial.

The time scales of the intensity fluctuations of LDs are much
less convenient for precise dynamical measurements than those
of solid-state lasers. Because the characteristic frequencies of
solid-state lasers are sub-MHz, they are much more convenient
for measurement. They also exhibit extremely high-sensitive
responses to external feedback. The reason is that the cavity
round-trip time ( : photon lifetime) compared with the
fluorescent lifetimes is extremely short [16]. Generally, the
lifetime ratio of solid-state lasers ranges from
to , while in LDs. Hence solid-state lasers become
another promising laser systems for investigating the instabil-
ities in lasers with delay feedback. Because the time scales of
solid state lasers are dramatically different from those of LDs,
the dynamical behaviors are expected to be unique. In fact, in
the early experiment in which a microchip LNP (LiNdP )
solid-state laser was subjected to external feedback [17], feed-
back-induced random chaotic burst generations were observed.
However, the instability is only observed in the regime of two
lasing modes. Most recently, the random chaotic burst state has
been re-examined using an LD-pumped LNP laser coupled to a
single-mode optical fiber in a weakly-coupled regime, in which
only one of the external cavity modes interacts with the solitary
mode. It is conjectured that mode-partition noise in multimode
regimes plays an essential role for producing the random chaotic
burst state since phase fluctuation (FM) noise is extremely small
in single-mode LNP lasers [18].

The results of the solid-state laser experiments cannot be
interpreted in the context of low-frequency fluctuations in
LDs described by the single-mode Lang–Kobayashi equations.
Low-frequency fluctuations occur for moderate feedback
when the laser is biased near the solitary laser threshold
( ). In this regime, successively the laser
intensity suddenly drops toward zero and gradually recovers
with apparently random time length. The physical mechanism

0018–9197/01$10.00 ©2001 IEEE



1216 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 37, NO. 9, SEPTEMBER 2001

behind low-frequency fluctuations is still not fully understood,
though several different explanations have been proposed.
Mørk, Tromborg, and Christiansen explained low-frequency
fluctuations as the result of bistability among the steady-state
solutions introduced by the external cavity, i.e., external cavity
modes [19]. Hohl, van der Linden, and Roy showed that
spontaneous emission noise plays an important role in the
nature and the statistics of the dropouts [20]. The experimental
measurements agreed with those of Henry and Kazarinov, sug-
gesting that spontaneous emission noise induces the dropout
events [21]. On the other hand, Sano explained the dropouts
as a result of a self-induced switching among distinct regions
of phase space [22]. In Sano’s interpretation, the laser moves
toward the mode with maximum gain via chaotic itinerancy.
However, since in the neighborhood of the maximum gain mode
(stable external cavity mode) and antimodes (i.e., unstable
external cavity modes) are very close, when the trajectory
approaches an antimode, it is expelled into another region of
phase space, and then starts moving toward the maximum gain
mode again [23], [24]. Recent high-speed measurements on
low-frequency fluctuations indicated that “power dropout” are
seen as the envelope of a series of short pulse with 100 ps or
less pulsewidth [24]. Similar pulses have been found in the
Lang–Kobayashi model [23], [24]. In the meantime, temporally
resolved optical spectra reveal that there is enhanced power in
several longitudinal modes during the power dropout [25].

However, as will be shown below, the dynamical features
of the instability of LD-pumped solid-state lasers with optical
feedback are totally different from the instabilities (low-fre-
quency fluctuations) in LDs. The instabilities reported below
occur even in high pumping levels rather than near threshold
only. On the other hand, instability occurs even with very weak
feedback strength in which basically only one of the external
cavity modes interacts with the solitary laser mode.e precisely,
a variable attenuator was inserted.

In this paper, we report two kinds of random switching in
an LD-pumped microchip neodymium-doped yttrium orthvana-
date (Nd:YVO ) single-mode laser coupled to a single-mode
fiber. Two kinds of instabilities were observed in different feed-
back strength regimes, though the threshold reduction caused
by feedback is less than 1%. In the weaker feedback regime,
the laser output randomly switches between noise-driven relax-
ation oscillation and chaotic spike oscillation operations. In the
stronger feedback regime (but the threshold reduction is still less
than 1%), the laser output randomly switches between noise-
driven relaxation oscillation and large-amplitude sinusoidal os-
cillation operations. The distinct features which are different
from previous results are that the random burst generations were
observed in a single-mode regime while in LNP lasers they were
restricted to the multi-mode regime [17], [18] and the random
chaotic burst occurred independently of the pump power level in
weakly-coupled regimes in which only a single external cavity
mode exists while low-frequency fluctuations in LDs has been
observed only in the vicinity of solitary laser threshold in which
many external cavity modes were involved in the dynamics. This
paper is organized as follows. In Section II, the experimental
scheme is described. The coupling coefficient is provided based
on an estimate according to our experiment setup and main

characteristics of the solitary Nd:YVOlaser are first summa-
rized. The experimental results are presented in Section III. The
random chaotic burst and the random sinusoidal burst are re-
ported and their characteristic features are discussed. To explore
experimental results, we utilize the Lang–Kobayashi equations
including strong phase noise in numerical simulation and the ob-
served random chaotic burst instability can be well reproduced
as shown in Section IV. It is worthwhile to note that we em-
ployed time scales involving dynamics in microchip solid-state
lasers, i.e., fluorescent lifetime, photon lifetime, and delay time,
which are totally different from LDs. Section V describes the
conclusions of our work.

II. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 1. An LD-pumped
microchip Nd:YVO laser operated in thesingle-moderegime
was employed and a compound cavity was formed with a
single-mode fiber. The laser crystal (CASIX DPO3104; 1
mm thick, Nd doped, and output coupling at
1064 nm) was inserted into a 2-mm-thick copper mount and its
temperature was controlled at 25C by a temperature controller.
The pump beam of nm from the temperature-con-
trolled LD was focused onto the laser crystal with a GRIN
lens (0.22 pitch). The pumping threshold was around 40 mW
and single-mode operation ranged up to 100 mW. Above 100
mW, the laser operates in a multi-mode regime (two modes and
three modes were observed for different pumping powers). We
also used a noise filter to eliminate the pumping noise caused
by the LD controller and an interference filter to reduce the
influence of pumping light on detection. In the entire pumping
domain a linear -polarized TEM mode of laser output was
observed. The mode suppression ratio of the polarization mode
is about 1/300. The laser beam was divided into two by a
50%-50% beamsplitter plate following after the interference
filter. One was for measurement and the other was for feed-
back. We used a single-mode fiber (operating wavelength 1060
nm, core/cladding diameter 6.4/125m, cutoff wavelength

m, maximum attenuation 2.0 dB/km) as the feedback
reflector such that the laser light reflected back from the far end
of the fiber, in which the maximum field reflectivity is about
0.2. The coupling efficiency of the laser light into the fiber is
estimated to be about 50%. To control the feedback strength
more precisely, a variable attenuator was inserted.

Thefeedbackstrengthcanbeestimatedbythresholdreduction.
But to further quantify weak feedback, threshold reduction is
not significant. Thus, we use alternative to handle the issue. The
coupling coefficient can be estimated with the formula [26]

(1)

where
laser cavity round-trip time and is about s
for a 1-mm-thick Nd:YVO chip (the index of refrac-
tion: );
field reflectivity of the laser output mirror (about 0.975
for high-reflection coated);
total field reflectivity of external components.
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Fig. 1. Experimental setup. L1, L2: lens. BS1, BS2, BS3: beam splitter. GRIN: GRIN lens. IF: interference filter. VA: variable attenuator. Solid arrows indicate
the 808-nm pumping beam and the empty arrows indicate the 1064-nm laser light from the Nd:YVOlaser.

Referring to the experimental setup, can be estimated as
. Here , is the field

reflectivity of the beam splitter and is about 0.7 for a 50%–50%
beam splitter. is the transmission coefficient of the variable
attenuator and the value is variable from 0 to 0.95.is the
coupling efficiency into the fiber. is the field reflectivity
of the the fiber–air interface and the value is about 0.2. Hence,
the coupling coefficient is smaller than s . We will
use this parameter to quantify our experiment.

In measurement, a multi-wavelength meter (resolution of
20 GHz) was employed to monitor the variation of the lasing
mode. The single solitary mode operation was confirmed.
The lasing wavelength was 1064.245 nm. In the following
experiment, single mode operation was maintained. A high-res-
olution scanning Fabry–Perot interferometer (resolution of
0.185 MHz) was used to identify the detailed structure of
the oscillation spectrum of the laser output. The Nd:YVO
laser always emits a linearly polarized light due to the strong
fluorescence anisotropy. The beamsplitter plate we used did not
affect the polarization of laser light. The linear polarization was
confirmed to be maintained after passing through the optical
fiber because the fiber length was 10 m at most. Because
the system was very sensitive to optical feedback, a Faraday
isolator (isolation of 60 dB) was employed to isolate the
feedback light from measurement part. We utilized a low-noise
photodetector (typical rise time: ns) for detection and
connected it to a transient oscilloscope (bandwidth: 500 MHz)
for data acquisition. The GPIB interface was implemented to
catch data from the oscilloscope with PC. An RF spectrum
analyzer (bandwidth: 9 kHz–1.8 GHz) was used to monitor the
behavior of laser output in the RF spectrum domain.

For comparison, typical output characteristics of the solitary
Nd:YVO laser are shown in Fig. 2, where the pumping power
was 88 mW. In the absence of feedback, as shown in Fig. 2(a),
the laser output exhibits noise-driven relaxation oscillation. The

Fig. 2. Typical output characteristics of the solitary Nd:YVOlaser.
(a) Temporal waveform. (b) Power spectrum. (c) Oscillation spectrum.
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Fig. 3. Temporal waveform of random chaotic burst (� = 5:8 � 10 s ).
The insert shows the short temporal trace of the chaotic spike oscillation part.

corresponding power spectrum is shown in Fig. 2(b). The RO
frequency, , is around 1.7 MHz and its second harmonic is
at about 3.4 MHz. The oscillation characteristics were identi-
fied by utilizing the high-resolution scanning Fabry–Perot in-
terferometer. In Fig. 2(c), the corresponding oscillation spec-
trum is presented and the full-width at half-maximum (FWHM)
linewidth of the laser is estimated to be 2.2 MHz. Hereafter,
the linewidth is denoted based on FWHM. As the pumping
power was increased, the relaxation oscillation frequency in-
creased following the relation,
where and denote the pumping power and the threshold
pumping power, respectively.

Several of the other optical properties of the Nd:YVO
crystal we used in our experiments are: diode-pumped op-
tical-to-optical efficiency was ; fluorescent lifetime

s; absorption coefficient cm ; absorption
length mm; gain bandwidth nm (257 GHz);
intrinsic loss cm ; stimulated emission cross-section

cm .

III. GENERAL FEATURES OF THEEXPERIMENTAL RESULTS

A. Weaker Feedback Strength ( s )

We fixed the pumping power at 88 mW in all our experiments.
In the presence of fiber feedback and when s ,
the dynamic features are almost the same as those of the soli-
tary laser. When s , random chaotic burst oc-
curs. A typical temporal waveform of random chaotic burst is
shown in Fig. 3 for s with a 5-m fiber. The
laser output randomly switches between noise-driven relaxation
oscillation and chaotic spike oscillation. The duration time of
chaotic spike oscillation is also irregular. The insert shows the
short temporal trace of chaotic spike oscillation. Here, the ir-
regular spiking oscillation waveform can be seen and has been
identified to be chaos based on singular value decomposition
analysis [27]. The power spectrum of noise-driven relaxation
oscillation is shown in Fig. 4(a). This figure exhibits a typical
noise-driven relaxation oscillation power spectrum with
being also around 1.7 MHz. Fig. 4(b) shows the power spec-
trum of chaotic spike oscillation. One can see that the main fre-

Fig. 4. The corresponding power spectra and oscillation spectra of Fig. 3. (a),
(c) The noise-driven relaxation oscillation. (b), (d) The chaotic spike oscillation.
The arrows in (c) and (d) indicate the FWHM linewidth.

Fig. 5. Power spectra of chaotic spike oscillation with different feedback
strengths. (a)� = 1:1�10 s . (b)� = 5:2�10 s . (c)� = 6:8�10 s .

quency component shifts to a lower value (around 1.2 MHz) and
the spectrum broadens. In the transition region, which shows
the evolution from noise-driven relaxation oscillation to chaotic
spike oscillation, the power spectrum broadens and the main fre-
quency component shifts from to a lower frequency value
which partially reflects the nature of chaotic spike oscillation.

If we increase the feedback strength further, the of noise-
driven relaxation oscillation, together with the dominant fre-
quency of the chaotic spike oscillation, will shift to lower fre-
quency values. Fig. 5 shows the power spectra of chaotic spike
oscillation with different feedback strengths, s ,
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Fig. 6. Temporal waveform of random sinusoidal burst (� = 5:5� 10 s ).
The insert shows the short temporal trace of large-amplitude sinusoidal
oscillation.

s , and s . The main frequency compo-
nent shifts to lower values slightly due to the increase of the
feedback strength as indicated by the line crossing the figures.
The range of the frequency shift in this regime is about 0.2 MHz.
This feature differs from the previous results in LDs that
increases with a increase of feedback strength [28]. As will be
discussed below, this is due to the time scale difference between
LDs and solid-state lasers.

By utilizing a high-resolution scanning Fabry–Perot inter-
ferometer with suitable triggering, we can characterize the
linewidth of the laser output in different regions. As shown
by Fig. 4(c), the linewidth corresponding to noise-driven
relaxation oscillation in Fig. 3 is about 2 MHz which is close to
that of the solitary laser. On the other hand, Fig. 4(d) shows the
corresponding oscillation spectrum of chaotic spike oscillation
of Fig. 3, and the linewidth broadens to about 5 MHz. Because
the lasing linewidth is mainly due to the phase fluctuation, this
implies that the phase fluctuation becomes larger as chaotic
spike oscillation occurs.

B. Stronger Feedback Strength ( s )

For stronger feedback strength, i.e., s ,
another kind of burst was observed and the burst mentioned
in Section III–A disappeared. For s , these
two different bursts can coexist. In Fig. 6, the output waveform
observed at s is shown. Here, random sinu-
soidal burst is observed. The laser output randomly switches
between noise-driven relaxation oscillation and large-amplitude
sinusoidal oscillation, and the duration time of large-amplitude
sinusoidal oscillation is also irregular. The insert shows the
short temporal trace of large-amplitude sinusoidal oscillation.
The large-amplitude oscillation exhibits a sinusoidal waveform.
The corresponding power spectra of Fig. 6 are shown in Fig. 7.
Fig. 7(a) shows the power spectrum of noise-driven relaxation
oscillation. is shifted by 0.9 MHz to a lower frequency
value due to stronger optical feedback. In contrast, as shown in
Fig. 7(b), which is corresponds to large-amplitude sinusoidal
oscillation, a sharp peak which denotes the frequency of the

Fig. 7. The corresponding power spectra and oscillation spectra of Fig. 6.
(a), (c) The noise-driven relaxation oscillation. (b), (d) The large-amplitude
sinusoidal oscillation. In (d), the frequency difference between two modes is
indicated by the down arrows with a value of 12.8 MHz.

sinusoidal waveform is found at about 12.5 MHz. Its value
increases with an increase of the feedback strength and the
range of the frequency shifting will be discussed latter.

Next, we report the oscillation spectra in this regime. In con-
trast to weaker feedback strength (i.e., s ),
in which only linewidth broadening was observed, a random
switching between single-mode and two-mode operations was
observed. Figs. 7(c) and (d) show the corresponding oscillation
spectra of Fig. 6. Fig. 7(c) shows the single-mode operation with
a linewidth of 2.1 MHz, which approximates that of the solitary
laser. Fig. 7(d) shows the case of two-mode operation. The os-
cillation frequency difference between two modes is about 12.8
MHz, as indicated by the down arrows. This value also approxi-
mates the frequency of the sinusoidal waveform. In this regime,
the frequency of the sinusoidal waveform and the oscillation
frequency difference between two observed modes are approx-
imately equal and vary with the feedback strength.

To explore the influence of delay time (fiber length) on the
experimental results, we further used two additional fibers with
different lengths of 10 and 2 m. In the weaker feedback regime,

s , the dynamical features are almost the same
as those of the 5-m fiber. However, in the stronger feedback
regime, s , as the feedback strength was fixed,
both the frequency of the sinusoidal waveform and the oscil-
lation frequency difference between the two observed modes
varied with the delay time. Fig. 8 shows power spectra and os-
cillation spectra of the laser output for different delay times,
where s . Fig. 8(a) is the power spectrum
for a 10-m fiber with a delay time s and Fig. 8(c) is the
corresponding oscillation spectrum. Both the frequency of si-
nusoidal waveform and the oscillation frequency difference be-
tween two modes are 5.8 MHz. Fig. 8(b) shows the power spec-
trum for a 2-m fiber (corresponding delay time: s) and
Fig. 8(d) is the oscillation spectrum, while both the frequency
of sinusoidal waveform and the oscillation frequency difference
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Fig. 8. Power spectra and oscillation spectra of laser output with different
delay times, where� = 5:5�10 s . (a), (c) A 10-m fiber which corresponds
to a delay time of10 s. (b), (d) A 2-m fiber (2 � 10 s). The frequency
difference of the two oscillation modes is indicated by the down arrows.

between two modes are 20.3 MHz. The frequency of the sinu-
soidal waveform coincides with the oscillation frequency differ-
ence between two observed modes and they are vary inversely
with the delay time when the coupling coefficient is fixed. Be-
cause the scanning rate of the scanning Fabry–Perot is 30 Hz, the
oscillation spectra were measured in an average of 1/30 s; how
these two modes interact with each other could not be specified
by the measurements. However, these measurements strongly
suggest that these two observed modes are nothing other than
external cavity modes [which can be derived from (5)] of the
compound cavity to be discussed in the next section. Note that
the mode spacing does not coincide with the simple free-spectral
range of the external cavity. Furthermore, the nonlinear interac-
tion between the two stable external cavity modes is considered
to result in large-amplitude sinusoidal oscillations.

Although the results reported above were for a pumping
power at 88 mW, exactly the same dynamics were observed
independently of the pumping power levels in a single-mode
regime. In short, in LD-pumped Nd:YVO microchip
single-mode laser with fiber feedback, two different kinds
of instability, i.e., random switching between noise-driven
relaxation oscillation and chaotic spike oscillation (random
chaotic burst state) and random switching between noise-driven
relaxation oscillation and large-amplitude sinusoidal oscillation
(random sinusoidal burst state) were observed for different
feedback strengths. In the next section, we will explore the
observed dynamics based on the Lang–Kobayashi model.

IV. THEORETICAL EXPLORATION BASED ON THE

LANG–KOBAYASHI MODEL

A. General Characteristics of the Lang–Kobayashi Model

Since our system is essentially a single-mode laser with weak
feedback, we employed the Lang–Kobayashi model [1] to ex-

plore the dynamics. We used the normalized Lang–Kobayashi
equations with Langevin noise sources [20], [29], [30]

(2)

(3)

(4)

where and is the
optical angle frequency of the solitary laser, is the optical an-
gular frequency of solitary laser near threshold, and is the
optical angular frequency shift of the laser deviated from the
threshold. Equations (2)–(4) are the temporal evolution equa-
tions for the photon density , the slowly varying part of the
optical phase , and the population inversion density. In the
rate equations,has been normalized to . is the
normalized pumping rate, is the time ratio between and

, is linewidth enhancement factor, is the delay time, and
is the phase difference between the output and the feedback

beams [33]. , , and are the Langevin noise sources
which satisfy and .
The angle brackets denote a time average andis the diffu-
sion coefficient associated with the corresponding noise source.
Here, the subscripts . Their explicit expressions
are

where is the spontaneous emission coefficient. The stationary
solutions of (2)–(4) are external cavity modes. The stationary
optical angular frequency is the solution of

(5)

where is called effective feedback strength.
The linewidth enhancement factor in LDs stems from the
combined effect of free-carrier plasma effect and detuning ef-
fect of lasing frequency from the spontaneous emission peak,
i.e., the Kramers–Kronig relationship. In microchip solid-state
lasers, no one has determined its value experimentally. How-
ever, recent experimental demonstration of large phase-conju-
gate reflection from Nd:YVO lasers operating near gain peak
[32] indicates that the Nd:YVOlaser itself has a substantially
large nonlinearity which is directly related to a-nonlin-
earity in the form of where

small-signal gain;
saturation intensity

Therefore, we will use a nonzero in the simulation. The
steady-state characteristics can be characterized by. From
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Fig. 9. Typical numerical characteristics ofS(t) based on the
Lang–Kobayashi model with� = 0. (a) Temporal waveform. (b) Power
spectrum. (c) Oscillation frequency histogram.

(5), the number of steady-state solutions increases asor
increases. As or is increased, new external cavity modes
are created in pairs after saddle-node bifurcation. The results
are: if , there is only one external cavity mode such that
the laser cavity mode is minimally perturbed by the external
cavity. On the other hand, for , there are external
cavity modes in total, where is an integer. It can be verified
that the stability condition follows as

(6)

As (6) does not hold, the solution is intrinsically unstable
(i.e., a saddle point) and is called antimode [22]. However, it
should be noted that external cavity modes are not always dy-
namically stable even if this quantity is positive [33] and their
stabilities change depending on in (5). In short, dynam-
ical stability of an external cavity mode depends critically on
the solitary laser frequency in a large delay case as in our
present experiment.

The linewidth in the presence of external feedback is approx-
imately given by [34]

(7)

where is the solitary laser linewidth. Equation (7) shows
that, depending upon the feedback phase, the laser linewidth
can broaden or narrow. The maximum narrowing occurs when

, where is an integer, and the reduction
factor in that case is . Clearly the linewidth can be re-
duced considerably for a large value ofif the external cavity
length is fine-tuned to adjust . Reductions by more than three
orders of magnitude have been observed [35]. As discussed ear-
lier, when , there are multiple external cavity modes over
which the laser can be made to oscillate by changing the external
cavity length [36]. In the case of mode hopping, the linewidth
can vary by a large amount with little change in[37]. For

, only one external cavity mode oscillates for all values
of the phase. Considerable linewidth broadening can occur in
this case for certain range of phase values, as seen clearly by an
inspection of (7). However, (7) is very sensitive to the feedback
phase . For the parameters of our experimental condition,
i.e., nm, rad, where
is the effective external cavity length. Even a 1-m variation of
the effective external cavity length can vary for 7.7 rad. We
did not fine-tune this value in the experiments. Instead, we just
paid attention to the change of the lasing linewidth as instabili-
ties occurred. Nevertheless, we did not observe any significant
linewidth narrowing. On the other hand, linewidth broadening
with a maximum occurred only when chaotic
spike oscillation appeared.

The chief difference between solid-state lasers and LDs are
the time scales. The relevant time scales in our laser system are:

s, s, MHz, decay
time s, the internal round-trip time

s for a 1-mm-thick crystal, and the external round-trip
time s for a 5-m fiber. According to these pa-
rameters, it is worthwhile to note that there are two significant
differences between solid-state lasers and LDs. First, the life-
time ratio for a solid-state laser is about and
for LDs. Second, in solid-state laser, the round-trip time is usu-
ally larger than the reciprocal of whereas in LDs, in most
cases, it is smaller than the reciprocal of . It is conjectured
that these two differences are the primary reasons that result in
the different behaviors between solid-state lasers and LDs with
feedback.

We solved (2)–(4) numerically by the Heun method [38].
The parameters used here are: , ,

, rad , rad ,
, , rad

and . The corresponding fiber length is about
9 m. To explain the experimental results, such as feedback-in-
duced instabilities and linewidth broadening, we shall intro-
duce a relatively large phase (i.e., FM) noise. The large phase
noise derives from the spontaneous emission. Nd:YVOlasers
contain larger spontaneous emission noise so that they exhibit
larger linewidth than other solid state lasers. The linewidth of
the solitary Nd:YVO laser is about 2 MHz, whereas that of



1222 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 37, NO. 9, SEPTEMBER 2001

single-mode LNP lasers is only about few hundred kilohertz.
As a result, the following results could not be reproduced in a
single-mode domain of LNP lasers even if a corresponding feed-
back strength was included. The phase noise we use corresponds
to the linewidth of the Nd:YVO laser.

A typical temporal waveform, power spectrum, and oscilla-
tion frequency histogram for a solitary laser, i.e., , are
shown in Fig. 9. Here, the oscillation frequency histogram was
calculated based on (4), i.e., , by using the
numeric of simulated , , and . is the laser
optical angular frequency fluctuation as a function of time. The
probability distribution of is plotted. The histogram may
correspond to the oscillation spectrum qualitatively. The corre-
spondence between the experiment and the simulation is fine.
The numerical temporal waveform of of a solitary laser
shown in Fig. 9(a) indicates noise-driven relaxation oscillation
with amplitude fluctuations similar to the experimental results
reported in Fig. 2(a). In the power spectrum, shown in Fig. 9(b),

at and its high-order harmonic can be recognized.
When we increase , also increases. A typical oscillation
frequency histogram is shown in Fig. 9(c).

B. Weaker Feedback Strength ( )

Optical feedback was introduced with . When was
small, the temporal waveform, the power spectrum, and the os-
cillation frequency histogram were still similar to those of a
solitary laser. This parallels the experimental observation. When

s (assuming s) and by
tuning the value precisely, the sustained relaxation oscilla-
tion spiking appeared in the absence of phase noise as shown in
Fig. 10(a). Here, we assumed a negligibly small carrier density
noise and a photon density noise of .
Therefore, the resulting spiking oscillations are considered to be
a deterministic instability resulting from weak optical feedback.
However, this spike oscillation persists, and no bursting occurs
in the absence of phase noise.

When we introduced phase noise whose magnitude is rele-
vant to that of the linewidth of the Nd:YVOlaser, the random
chaotic burst state was reproduced quite well. An example is
shown in Fig. 10(b), assuming rad . The
output waveform switches randomly between noise-driven
relaxation oscillation and chaotic spike oscillation. The
corresponding power spectra and the oscillation frequency
histogram are shown in Fig. 11. As Fig. 11(a) shows, the
of noise-driven relaxation oscillation is about which is
equal to that of the solitary laser. For chaotic spike oscillation,
as shown in Fig. 11(b), the main frequency component shifts
to a lower value (around at ) and the broad-band char-
acteristic is also observed. The linewidth broadened to three
times as the chaotic burst occurred as shown in Fig. 11(c) and
(d). This is similar to the experimental results shown in Fig. 4.

Under the present setting of parameters, as well as the
main frequency component of chaotic spike oscillation also de-
creased as was increased. This result is different from that in
LDs with feedback. Because the main difference between the
LD and the solid-state laser are the dynamic time scales, we
used another set of time scales for the LD, i.e., and

s, and fixed all other parameters. For these new time

Fig. 10. Numerical temporal waveform ofS(t) with � = 10� . (a) Without
phase noise,D = 0. (b) With phase noise,D = 2� 10 rad � .

Fig. 11. Corresponding power spectra and oscillation frequency histogram of
Fig. 10(b). (a), (c) Noise-driven relaxation oscillation. (b), (d) Chaotic spike
oscillation.

scale settings, increases with a increase of. From these
results, the different trend of the dependence of on is due
to the different dynamical time scales.

From these quantitative agreements between the experiment
and the numerical results in all aspects, the chaotic bursting can
be concluded to appear due to phase fluctuation of the laser (i.e.,
FM noise), which corresponds to fluctuations of . In short,
random chaotic burst is thought to be random dynamic switch-
ings between the unstable state and the stable state driven by
FM noise [39].
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Fig. 12. (a) Numerical temporal waveform ofS(t) and (b) its power spectrum
for � = 2000� , where the phase noise is removed , i.e.,D = 0.

Let us evaluate the corresponding effective feedback param-
eter in the present system. For the condition of numerical sim-
ulation, and thus , which is smaller than
1. Therefore, only one external cavity mode interacts with the
solitary laser mode. In our experiment, for the case of weak feed-
back, i.e., s , , which is also smaller than 1.
According to the context of LDs with feedback described by
the single-mode Lang–Kobayashi equation, no low-frequency
fluctuations instability should happen in the regime whereis
smaller than 1. Nevertheless, in the case of microchip solid-state
lasers in a large delay limit, the instabilities can be excited due
to intrinsic phase noise in lasers.

C. Stronger Feedback Strength ( )

In the experiments, when the feedback strength is stronger,
random sinusoidal burst and two operation modes were ob-
served. The frequency of large-amplitude sinusoidal oscillation
and the frequency separation of the two observed modes
coincide.

We first increased the coupling strength to and
turned off the phase noise. A sinusoidal waveform was easily
obtained. An example is shown in Fig. 12. From the calculated
power spectrum of the sinusoidal waveform, the frequency is
determined to be about . Just as the large-amplitude
sinusoidal waveform observed in the experiment with stronger
feedback, the amplitude of the sinusoidal waveform is several
times larger than the fluctuation amplitude of the noise-driven
relaxation oscillation and the frequency of the sinusoidal
waveform is also several times larger than . When we
increased , the frequency of the sinusoidal waveform also
increased. This means that when coupling strength increases
another deterministic state appears, sustaining large-amplitude
sinusoidal oscillation and replacing the RO state.

Fig. 13. Determination of external cavity modes based on a graphical solution
of (5) assumingC = 3:65, ! = 1:77� 10 rad/s,� = 1, andT = 5:6�
10 s. The solid circles denote stable solutions and the empty circle denotes
the unstable solution. The frequency difference between the two stable solutions
is 13 MHz.

Apparently, the experimentally observed random sinusoidal
burst is a kind of random switch between the two states, i.e.,
the sustained large-amplitude sinusoidal oscillation and noise-
driven relaxation oscillation. However, in numerical simula-
tions, we cannot reproduce the observed bursts. To be more
specific, only the degradation of the sinusoidal waveforms
were numerically obtained and no switching was achieved even
with an increase of the phase noise. This behavior is totally
different from the numerical result of random chaotic burst
in the weakly-coupled regime, in which clear switching takes
place.

Although a direct numerical verification has not been
achieved, some analytical pictures provide the mechanism.
As mentioned above, when , there is only one external
cavity mode solution, while for multiple external cavity
mode solutions appear. In the experiments, in the case of
stronger feedback with s , .
Multiple solutions are expected in such a stronger feedback
condition. Since (5) is a transcendental equation, we solved
it graphically with the following parameters: ,

rad/s, , and s. Based on
the stability analysis of (6), the solutions of (5) are determined
graphically as shown in Fig. 13, in which is the optical
frequency shift. Referring to Fig. 13, the solid circles denote the
external cavity mode solutions while the empty ones denotes
the saddle (antimode). The oscillation frequency separation of
the two stable external cavity mode solutions is about 13 MHz,
which is close to the experimental result. This implies that the
two observed modes measured by the scanning Fabry–Perot
interferometer are nothing other than the external cavity modes
described above. From (5), it is also easy to show that the
frequency spacing of the two stable external cavity modes
increases with an increase of the coupling strength as well
as the delay time. The value ranges from 0, for single-mode
operation, to , for very strong coupling strength.

When multiple external cavity modes were allowed to exist
in the laser system, mode hopping between these external cavity
modes is expected to happen. Furthermore, complex nonlinear
dynamic behavior due to the interaction between these external
cavity modes was also expected. Therefore, large-amplitude
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sinusoidal wave generation is considered to arise through the
nonlinear interaction between these two external cavity modes.
There are two possibilities which may explain random switching
of this sinusoidal waveform observed in the experiment. One is
the noise-induced switching between a one-external cavity mode
state and a two-external cavity mode state, in which a sinusoidal
waveform appears. Another explanation is that the switching oc-
curs “deterministically,” reflecting the self-induced fluctuation
of the external cavity length through the intensity-dependent
self-phasemodulation in the fiber in the stronglycoupled regime,
which is not included in (2)–(4).

V. CONCLUSION

In our experiments, two kinds of instabilities were observed
in an LD-pumped microchip Nd:YVOsingle-mode laser with
fiber feedback in different feedback strength regimes. Random
switching between noise-driven relaxation oscillation and
chaotic spike oscillation was observed in the weaker feedback
regime, s – s . In this regime,
the main frequency component in the power spectrum was
shifted to a lower value and the lasing linewidth broadened
as chaotic spiking appeared. In LDs with external feedback,
linewidth broadening or narrowing were observed under certain
experimental conditions. However, this linewidth variation is
very sensitive to the effective cavity length. Here, we focused
only on what happened to the laser linewidth when instabil-
ities occurred and only linewidth broadening was observed
with a concurrent appearance of chaotic spike oscillation.
Employing the single-mode Lang–Kobayashi equations, the
random-switching waveform between noise-driven relaxation
oscillation and chaotic spike oscillation as well as the power
spectrum frequency shift and linewidth broadening have been
reproduced successfully by including a relevant phase noise in
the Nd:YVO laser.

In a stronger feedback regime, s –
s , the random switching between noise-driven relaxation

oscillation and large-amplitude sinusoidal oscillation was
observed. Two operational modes appear randomly in the
oscillation spectrum and the oscillation frequency difference
between the two observed modes almost coincide with the
frequency of large-amplitude sinusoidal oscillation. In contrast
to the weakly-coupled regime, we did not observe any signif-
icant linewidth broadening or narrowing in this regime. The
sinusoidal waveform with a frequency value approximately
equal to the oscillation frequency spacing between two stable
external cavity modes was confirmed by graphical solutions
of external cavity modes and numerical simulations of the
single-mode Lang–Kobayashi equations together with large
coupling coefficient and zero phase noise. However, with the
present parameter setting, we cannot reproduce the sinusoidal
burst. Further investigations over a wider region of parameters
and the effect of intensity-dependent self-phase modulation in
the optical fiber are under progress.

The linewidth enhancement factor,, is an important param-
eter here. Although there is no experimental measurement to
determine the values in microchip solid-state lasers, due to the

substantially large nonlinearity of Nd:YVO itself, as shown
in [31], we assumed a nonzero value in simulations and obtained
good agreement with the experiment.

Finally, we would like to emphasize that the observed insta-
bilities are totally different from the instabilities in LDs. The
phase-noise-driven chaotic spiking instability occurred in a very
weak feedback strength regime, which is thought to be stable in
LDs. In this regime, phase noise plays an important role. In the
stronger feedback regime, random sinusoidal burst, which as to
our knowledge, has also not been observed in LDs. It is worth-
while to note that the delay time due to optical feedback is larger
than the characteristic time scale of microchip solid-state lasers.
However, for the case of LDs, the delay time is usually smaller
than the characteristic time scale of LDs. The peculiar differ-
ences in time scales bring out unique dynamical features for
solid-state lasers with optical feedback which are significantly
different from that of LDs with optical feedback.
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