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Abstract

We study the localized deep electronic level within the bandgap of conjugated polymers in the presence of structure or
oxygen (carbonyl group) defects. The structure defect is modeled as a chain twist, including the chain ends as a special
case. Analytic expressions for both the energy and the wavefunction of the deep levels and the itinerant levels are
obtained and supplemented by clear intuitive pictures. Carbonyl group is treated numerically within the tight-binding

models. The rates of free carrier capture and exciton dissociation through the defect level via multi-phonon emission are
calculated. We conclude that the defect dissociation dominates the intrinsic dissociation through thermal activation,
and is the primary carrier generation mechanism in photoconductivity. Our results explain the photoconductivity

enhancement due to oxidation, as well as the recent observation on the temperature-independent photocurrent in the
sweep-out regime. # 2001 Elsevier Science B.V. All rights reserved.

PACS: 72.80.Le; 73.50.Pz
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1. Introduction

One of the major differences between conjugated
polymers and inorganic semiconductors is the
possibility of a large exciton binding energy [1–
3]. There have been controversies on how the
tightly bound excitons dissociate into free carriers

[1,4–7]. The carbonyl group introduced by oxida-
tion is found to enhance the photoconductivity
(PC) efficiency of poly (p-phenylene vinylene)
(PPV) by a factor of 40 [8,9], suggesting that the
excitons are dissociated by the carbonyl group
through its defect levels. Besides, excitons can also
dissociate through the surface levels at the poly-
mer=metal junction. Barth and B.aassler measured
the intrinsic PC by eliminating the oxidation and
junction exciton quenching [6], and concluded
that in such conditions the excitons have to
overcome a binding energy of 0:34 eV through
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thermal activation or electric field tunneling in
order to dissociate into free carriers. The tempera-
ture and field dependence of the PC quantum yield
was shown to be consistent with the Onsager
model [10,6]. This picture is, however, inconsistent
with the PC measurement in the sweep-out regime
by Moses et al. [4] which shows that the effective
activation energy decreases with the film thickness,
contrary to the constant value (exciton binding
energy) as the Onsager model would predict.
Moses et al. thus propose that the temperature
dependence of PC is mainly due to thermal
activation out of the deep levels (traps) into which
the carriers fall along their passage to the
electrode, and the carrier generation process itself
is temperature independent. This behavior is
interpreted as the evidence of a small exciton
binding energy [4], similar to the situation of
inorganic semiconductors. Such a small binding
energy is, however, difficult to reconcile with the
absorption spectrum [11], as well as the recent
work on the electron injection by the STM [2]. The
fundamental question is then how the carriers are
generated through exciton dissociation in the
absence of oxidation, and why it has only a weak
temperature dependence. It is well known that
exciton dissociation can be mediated by the deep
levels, which can be caused by not only the
carbonyl group but also the unavoidable structure
defects. It is generally believed that the perfect p-
conjugation lasts for no more than 10 monomers
[12] in conjugated polymers, while the polymer
chain is as long as 1000 monomers. The p-bonding
must be weakened in the conjugation interruption
some way or the other, e.g. twist, by the structure
defect. In addition, the chain end should also be
considered as a kind of defect. Large binding
energy and weak temperature dependence can be
reconciled if the predominant carrier generation
channel for photoconductivity is not intrinsic
but mediated by such defects. The purpose of
this work is to confirm this possibility by
theoretical studies.

In this paper we study the properties of the
electronic states in the presence of the defects,
including the chain twist [13] and the carbonyl
group [14], as well as the exciton dissociation
process through the defect levels via multi-phonon

emission. We found that the defects do introduce
deep localized levels within the energy gap. For the
twist case, analytical expressions are obtained for
both the energy and wavefunction of the deep
levels. The scattering of the itinerant states by the
defect is also considered. In practice, whether the
defect is actually a rotation or other fault is not
critical because such bond weakening is the sole
assumption in our calculation on the deep level.
Such deep level is strongly coupled to the local
phonon mode centered around the defect because
of the large wavefunction overlap. The local
phonon mode is displaced to a new equilibrium
position once the electron drops into the deep level
from the conduction band. When the level is
initially empty, the electron of the exciton can be
captured by the deep level while releasing the hole
into a free carrier, assuming the defect binding
energy is larger than the exciton binding energy.
The reversed process happens when the level
is initially empty. This is a relaxation instead
of activation process. Carriers can therefore
be generated almost independent of the temp-
erature.

The dissociation through structure defects is
found to be the predominant carrier generation
process at a typical density level of the structure
defects. The temperature independence of the
photocurrent is not due to the smallness of exciton
binding energy, but the high quenching efficiency
of the deep levels. From the exciton capture rate
we calculate the steady state PC quantum yield, i.e.
the number of carriers per absorbed photon. As
expected, the quantum yield decreases with the
light intensity because the carrier generation
process is blocked when the defect levels are
saturated by high photoexcitation. Similar beha-
vior has been, in fact, suggested by the two-pump
experiments [15]. These results provide a unifying
picture for the PC experiments [4,6] and clarify the
controversy on the origin of the photocarrier
generation process.

In Section 2, we introduce the model Hamilto-
nian with a single twisted bond (structure defect),
and derive the expressions for the energy and
wavefunction of the electronic states. In Section 3,
we calculate the energy and wavefunctions of
the localized states around the oxygen defect
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numerically. In Section 4, we calculate the free
carrier capture rate through the defect. In Section
5, we generalize the case of exciton dissociation
(carrier generation). In Section 6, the PC quantum
yield is calculated as a function of photon flux and
defect density. Finally, Section 7 is devoted to
discussion and conclusion.

2. Structure defects

2.1. Perfect chain

The p-electrons in one chain of conjugated
polymer is described by the many-body Hamilto-
nian H ¼ Hf þHc, where Hf is the free part
including the kinetic energy and the periodic
potential, and Hc is the Coulomb interaction
among the p-electrons. In the Hartree–Fock
(HF) self-consistent field (SCF) approximation,
the ground state jgi is a Slater determinant made
up of the single-particle wavefunctions determined
by the self-consistent Hartree–Fock operatorHSCF

[16]. On the basis of the 2pz orbitals cmðrÞ at the
carbon sites labeled by m; HSCF is further
approximated by the Su–Schrieffer–Heeger model
[17] as a one-dimensional infinite lattice with
alternating values of hopping integrals t1 and t2
between the neighboring 2pz orbitals:

H0 � HSCF ¼
X
n

t1c
y
2n	1c2n þ t2c

y
2nc2nþ1;

where t1ðt2Þ denotes the hopping matrix element
on a single (double) bond and jt2j is bigger than
jt1j: cym and cm are the creation and annihilation
operators of the 2pz orbitals, respectively. n labels
the repeat unit which contains two carbon atoms.
Spin indices are neglected for simplicity. For
conjugated polymers with more complicated re-
peat unit like PPV, t1 and t2 can be taken as
parameters which reproduce the conduction and
valence band structures. Even though the Hamil-
tonianH0 is for single-particle states, the Coulomb
interaction among the p-electrons have been
included self-consistently by choosing the renor-
malized values for the hopping integrals. The
single-particle energy spectrum of H0 is denoted
by E0

i with corresponding wavefunction fi, whose

component at site m is fim, i ¼ 1; 2; . . . ;N, where N
is the total number of carbon atoms in the chain.
The ground state energy Eg of the many-body
system is given by Eg ¼ hgjHjgi ¼ 2

P
E0
i
5EF

E0
i .

The Fermi level EF is controlled by the total
number of p-electrons. For the perfect chain it is
equal to N, so half of the levels are filled due to
spin degeneracy. This approximation applies to
chains with defects as well for which the number of
electrons may be different from the number of
carbon atoms as discussed below. An electron–
hole pair state is created when one electron below
EF is promoted above EF. Configuration interac-
tion (CI) among such states due to Coulomb
interaction must be considered in order to obtain
the excited state of the many-body system. This
will be the subject of Section 5 where exciton dis-
sociation is discussed. The electron–phonon coupl-
ing is introduced in Section 6 in order to study the
carrier capture through multi-phonon emission.

For convenience, the components fk;m of the
eigenfunction with crystal momentum k at the
even and odd sites will be denoted, respectively, by
Veikð2nþ1Þ for m ¼ 2nþ 1 and un ¼ Ueik2n for m ¼
2n (see Fig. 1). It is easy to show that the spectrum
consists of two bands.

E�
k ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t21 þ t

2
2 þ 2t1t2 cos 2k

q
� �%ttk ð1Þ

and

U=V ¼ e�iy where tan y ¼
ðt1 	 t2Þ
ðt1 þ t2Þ

tan k: ð2Þ

k is in the unit of inverse lattice constant. The
valence band is between 	jt1 þ t2j and 	jt1 	 t2j,
while the conduction band between jt1 	 t2j and
jt1 þ t2j. The direct bandgap is located at Brillouin
zone boundary k ¼ p=2. Therefore E0

i ! E	
k ; fim

! f	
k;m below EF; and E

0
i ! Eþ

k ; fim ! fþ
k;m above

Fig. 1. A perfect chain consists of alternating bonds t1 and t2. n

labels the unit cell with two pz orbitals. un and vn are the

components of the wavefunction at the two orbitals.
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EF. The real-space wavefunction for the eigen-
states of the electrons are cc;kðrÞ ¼

P
m f

þ
k;mcmðrÞ

and cv;kðrÞ ¼
P

m f
	
k;mcmðrÞ  cðvÞ indicates conduc-

tion (valence) band.
We are interested in how defects affect the

energy levels and, in particular, searching for new
localized states within the bandgap. For this
reason, it is important to note first that an open
boundary condition can introduce localized states
centering about any weak bond in the chain end.
This result is independent of the size of the
polymer, i.e., it exists even in the thermodynamic
limit. When only one end belongs to the weak
bond, this localized state has zero energy. This is
expected for a Hamiltonian with electron–hole
symmetry when there are odd number of sites
(and degrees of freedom). It is less obvious, but
can be easily confirmed numerically, that when
both ends are weak bonds they give rise to two
localized states with energies �E * where E * is
nonzero but much less than the bandgap, 2jt2 	 t1j.
Since real polymers are open in boundary, these
localized states will be relevant to our studies of
the optical properties. However, to avoid confu-
sion, periodic boundary condition will be used
when we analyze the effects of other defects from
now on, and chain boundary is included by
studying a periodic chain with one bond broken
as below.

2.2. Chain with one defect

The structure defect is introduced by changing
the value of one of the hopping integrals, which we
call t1 without the loss of generality, by Dt.
Physically a negative Dt can be caused by chain
twist or distortion, which reduces the pz orbital
overlap. Our consideration applies, however, to a
positive Dt as well. Chain boundary can also be
included by setting Dt ¼ 	t1, in such case the
hopping is zero and the p-electron conjugation is
completely interrupted. Assume the defect occurs
at the bond between site p and pþ 1. One common
defect is the twisting of polymers such that the
local hopping amplitude gets decreased. As will be
shown in the next section, the consequence is very
different depending on whether it is a single or
double bond that gets modified. But the general

approach is to first express the Schr .oodinger
equation for the perfect chain in the matrix form:P

n Lmnf
i
n � E0

i f
i
m 	

P
nH

0
mnf

i
n ¼ 0 where n is the

site label and i distinguishes the different unper-
turbed eigenfunctions fi and eigenvalues E0

i . It is
easy to show that

H0
mn ¼

1

N

X
i

E0
i f

i *
m fin ð3Þ

from the completeness relation
P

i f
i *
m fin ¼ Ndmn.

The Schr .oodinger equation can be abbreviated as
Lf ¼ 0. With defects, the equation becomes ðLþ
dLÞc ¼ 0 where Lmn � Edmn 	H0

mn ¼ ð1=NÞ
P

i ðE
	E0

i Þf
i *
m fin because of Eq. (3). c is the new

wavefunction with the defect, whose component
at site n is indicated by cn below. One crucial step
here is to rewrite [18]1 it as

ð1þ L	1dLÞc ¼ 0; ð4Þ

where L	1 plays the role of bare electron
propagator and can be read off from the expres-
sion for Lmn as

L	1
mn ¼

1

N

X
i

1

E 	 E0
i

f
i *
m fin: ð5Þ

Note that this approach and the transfer
matrix formulation are common in considering
L	1 ¼ ðE 	H0Þ

	1 as the Green’s function, where
H0 is the Hamiltonian without the defect. The
Schr .oodinger equation with the defect 	dL is then
written as ð1þ L	1dLÞc ¼ 0 in our approach,
while it is written as c ¼ 	L	1dLcþ f in
transfer-matrix formulation, where f is the
eigenstate of H0. They differ in that c is usually
solved perturbatively in dL in the transfermatrix
formulation by taking L	1 as the integral
kernel, while we happen to be able to solve
the problem exactly without the infinite series
expansion.

Let the twist in a polymer change the hopping
amplitude t1 to t1 þ Dt between sites p and pþ 1,
then

dLmn ¼ Dt½dm;pdn;pþ1 þ dm;pþ1dn;p�: ð6Þ

1Same procedures are found in the discussions of eigenmodes

for a series of springs with defects in Ref. [18].
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The pth and ðpþ 1Þth components of Eq. (4) are

cp þ DtL	1
p;pcpþ1 þ DtL	1

p;pþ1cp ¼ 0;

cpþ1 þ DtL	1
pþ1;pcpþ1 þ DtL	1

pþ1;pþ1cp ¼ 0: ð7Þ

The existence of nontrivial cp and cpþ1

requires the determinant composed by their
coefficients in Eq. (7) to equal zero, by which
equation the new eigenenergies can then be
determined:

1

Dt
¼
X
k

1

E 	 %ttk
ðeiyeipkÞðeiðpþ1ÞkÞ*

�

þ
1

E þ %ttk
ðeiyeipkÞð	eiðpþ1ÞkÞ*

�

�
X
k

1

E 	 %ttk
ðeiyeipkÞðeiyeipkÞ *

�

þ
1

E þ %ttk
ðeiyeipkÞðeiyeipkÞ*

�

¼
X
k

2%ttk cosðy	 kÞ � 2E

E2 	 ð%ttkÞ
2

; ð8Þ

where %ttk and yk are defined in Eqs. (1) and (2).
If it is t2 that gets modified, all we need to do is to
interchange the label of t1 and t2. The electron–
hole symmetry is indeed exhibited in Eq. (8) that
	E will be a solution if E is a solution. For
simplicity, we shall limit ourselves to the discus-
sion of the plus case in Eq. (8).

2.3. Localized states

All states with energy not falling into the
existing two bands are localized. Let us first study
the special case of E ¼ 0. This is of particular
interest since the conjugated polymers are semi-
conducting and their Fermi level lies close to the
middle of the bandgap at low temperatures.
Setting E ¼ 0, Eq. (8) reduces to

1

Dt
¼

1

2t1

t21 	 t
2
2

jt22 	 t
2
1j
þ 1

� �
¼

0 if t215t
2
2;

	
1

t1
if t21 > t

2
2:

8<
: ð9Þ

This tells us that the zero-energy modes occur at
Dt! �1 when it is a weak bond that gets
twisted. The second case is expected from the
boundary effects discussed in the previous section

because Dt ¼ 	t1 cuts the polymer into two
separate segments and expose two new ends with
weak bonds. In general, if E lies either above the
conduction band or below the valence band,
Eq. (8) can be simplified to

1

Dt
¼ 	

1

2t1

� 1	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½E þ ðt1 þ t2Þ�½E 	 ðt2 	 t1Þ�
½E 	 ðt1 þ t2Þ�½E þ ðt2 	 t1Þ�

s( )
:

ð10Þ

This equation also applies when E lies within
the bandgap if t215t

2
2. But for t21 > t

2
2, the minus

sign before the square root needs to be changed
into plus. It is easy to check that Eq. (9) is
consistent with the general formula above. The
relation between 1=Dt and E is shown in Fig. 2.
Localized states within the bandgap are intro-
duced by the defect when 	2t1=Dt51 for t2 > t1,
and 	2t1=Dt > 1 for t25t1. This relation can be
converted to obtain E as a function of Dt. The
result is that the defect level energy Ed , appearing
in pairs of the same magnitude but opposite sign,
is given by

E�
d ¼ �

t1ð1þ AÞ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t21Aþ t22ðA	 1Þ2

q
ðA	 1Þ

; ð11Þ

where A � ðð2t1=DtÞ þ 1Þ2. For the localized states
outside the energy bands, the expression becomes

E�
d;out¼�½t1ð1þAÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t21Aþ t22ðA	 1Þ2�

q
=ðA	 1Þ

.

The amplitudes of these localized states can
be obtained by solving Eq. (4) for a general
q-component:

cq
cp

¼Dt
X
k

2E

E2 	 ð%ttkÞ
2
eiðq	pÞk

�

þ
2%ttk

E2 	 ð%ttkÞ
2
eiyeiðq	p	1Þk

�
ð12Þ

when q belongs to the u sites (denoted in Fig. 1),
and

cq
cp

¼Dt
X
k

2E

E2 	 ð%ttkÞ
2
eiðq	p	1Þk

�

þ
2%ttk

E2 	 ð%ttkÞ
2
e	iyeiðq	pÞk

�
ð13Þ
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for the v sites. The exponentially decaying
behaviour of cq is due to the cancellation of
the rapidly oscillating function eiðq	pÞk. For
completeness, their final expressions after the
summation are

cq
cp

¼
Dt

E2 	 t21 	 t
2
2

Effiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 B2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 B2

p
	 1

B

" #q	p=28<
:

þ
t1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1	 B2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 B2

p
	 1

B

" #q	p=2

þ
t2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1	 B2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 B2

p
	 1

B

" #ðq	p=2Þ	1
9=
; ð14Þ

for q in the u sites where B � 	2t1t2=E 	 t21 	 t
2
2,

and

cq
cp

¼
	Dt

	E2 þ t21 þ t
2
2

�
Effiffiffiffiffiffiffiffiffiffiffiffiffiffi

1	 B2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 B2

p
	 1

B

" #q	p	1=2
8<
:

þ
t1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1	 B2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 B2

p
	 1

B

" #q	p	1=2

þ
t2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1	 B2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 B2

p
	 1

B

" #q	pþ1=2
9=
; ð15Þ

for the v sites.

2.4. Physical pictures

We shall now provide simple physical pictures
for the seemingly complicated results in Eq. (10).
Using the language of renormalization group,
t1 ¼ t2 is expected to mark a dramatic change of
fixed points when approached from either t1 > t2
or t15t2 (when there is a bandgap). Of course, it
is not known a priori whether there is any
further phase transition before hitting t1 ¼ t2.
But, this has been checked and ruled out by our
calculations. So, it is safe to turn off the weak
hoping t1 first, which leaves us with independent
double bonds whose eigenenergies are simply �t2
for the bonding and antibonding states. Consider

the twisting to occur in a weak bond, and denote
the resulting hopping amplitude t1 þ Dt1 by t01.
It connects two neighboring double bonds
(Fig. 3) and gives four new states (Fig. 4) with
energy E satisfying

det

	E t2 0 0

t2 	E t01 0

0 t01 	E t2

0 0 t2 	E

���������

���������
¼ 0:

When t1 is turned on, it broadens the �t2 levels
into bands with width � 2jt1j and turns all the
levels within its range into itinerant states (see
Fig. 4). It becomes clear from the figure why
Eq. (9) requires the zero-energy states to occur at
Dt1 ¼ �1. Since twisting tends to decrease the
electron hopping amplitude, i.e. jt01j4jt1j, there will
be no localized states either close to the Fermi level
in the gap or outside of the two bands.

Let us now consider the twisting to be at a
double bond (with a new hopping t02). In the
absence of t1, we have two bonding and two
antibonding states at energies �t2 and �t02
(Fig. 5). Turning on t1 again broadens the �t2
levels into bands, and turns parts of the�t02 within
its range into itinerant states (Fig. 5). The number
of states and their dependence on the defect
hopping amplitude are very different in Figs. 5
and 6. The twisting causes jt02j4jt2j and now allows
for two mid-gap states. In contrast to the t01 case,
this is relevant to the optical properties of
conjugated polymers.

2.5. Itinerant states

It is worth mentioning that we need to put in the
unperturbed part, fðkÞ, when calculating the
wavefunction amplitudes of an itinerant state from
Eq. (4). That is,

cqðkÞ ¼fqðkÞ 	 L
	1
q;pdLp;pþ1cpþ1ðkÞ

	 L	1
q;pþ1dLpþ1;pcpðkÞ: ð16Þ

This is a standard procedure in the perturbation
theory. The correction to fqðkÞ can be worked
out to all orders of Dt by self-consistently
substituting the right-hand side into cpþ1ðkÞ and
cpðkÞ. When Dt modifies the weak bond, we obtain
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to the first order in Dt

cqðkÞ ¼ eiyeikq þ
Dt

E2 	 t21 	 t
2
2

eikpffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 	 1

p
�
�
� eikE sin

q	 p
2

Z
� �

:

þ eiy
�
t1 sin

q	 p
2

Z
� �

:

þt2 sin
q	 p	 2

2
Z

� ���
ð17Þ

for q in the u sites. The plus (minus) sign is for the
conduction (valence) band, B � 	2t1t2=
ðE 	 t21 	 t

2
2Þ, and cos Z � 	1=B and sin Z �ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 	 1
p

=B. When q is in the v sites,

cqðkÞ ¼ � eikq þ
Dt

E2 	 t21 	 t
2
2

eikpffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 	 1

p
� �eikE sin

q	 p	 1

2
Z

� ��

þ eiy t1 sin
q	 p	 1

2
Z

� ��

þt2 sin
q	 p	 1

2
Z

� ���
: ð18Þ

As before, interchange the labels of t1 and t2 when
Dt occurs at a double bond.

3. Oxygen defect (carbonyl group)

Another common type of defect is the substitu-
tion of an oxygen for a hydrogen atom (the
carbonyl group), resulting from oxidation. The
oxygen atom is attached to one of the carbon
atoms with a double bond. That carbon atom has
therefore a single bond on each of the two sides. In
order to keep the difference between the bonding
structure of oxidized chain and perfect chain local,
an extra hydrogen atom is usually attached to the
carbon atom right next to the one bonded to the
oxygen, such that it is bonded to four neighboring
atoms (two hydrogens and two carbons) with sp3

hybridization. The structure of the oxidized chain
is shown in Fig. 6. Each of the atomic orbitals
contributing to the p-conjugation is labeled by a
number. Note that the bonding beyond site 1 and
8 is exactly the same as the unoxidized case.

Among the four sp3 orbitals of carbon, only two of
them (sites 4,5) are roughly perpendicular to the
sp2 plan (x–y plane) and participate in the p-
electron wavefunction. Each of them are bonded
to the 1s orbital of an hydrogen atom. In addition,
they also overlap with the pz orbitals of the
neighboring carbon atoms. Such overlap is some-
times termed hyperconjugation [22], because the
resulting wavefunction is a mixture of sp3 and sp2

þpz hybridization. The off-diagonal matrix ele-
ments of the Hamiltonian among the atomic
orbitals around the oxygen defect are summarized
by t23 ¼ tO; t24 ¼ t48 ¼ 	t25 ¼ 	t58 ¼ th; t57 ¼
t46 ¼ tH, where tO is the hopping between carbon
2 and the oxygen (site 3), th is the hopping for
hyperconjugation, and tH is the hopping between
hydrogen 1s to the carbon sp3 orbital (sites 4,5).
We choose th ¼ 1

2 cosðfÞt2, where t2 is the single
bond hopping same as the structure defect
considered above. f ¼ 25:168 is the angle between
the tetrahedral sp3 bonds and the neighboring pz
orbital. tij is equal to tji by symmetry. As for the
diagonal matrix element of the Hamiltonian, i.e.,
the on-site energy, we choose eH ¼ 0 for hydrogen
because the hydrocarbon bond is known to be
covalent. The negative chemical potential eO
describes the tendency for the oxygen defect (site
3) attract electrons, but whether this is strong
enough to induce localized states within the
bandgap is our primary concern. The block of
the matrix Hamiltonian H around the oxygen (site
3) becomes

H ¼

0 t1 0 0 0 0 0 0

t1 0 tO th 	th 0 0 0

0 tO eO 0 0 0 0 0

0 th 0 0 0 tH 0 th

0 	th 0 0 0 0 tH 	th
0 0 0 tH 0 0 0 0

0 0 0 0 tH 0 0 0

0 0 0 th 	th 0 0 0

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

:

ð19Þ

Outside this 8� 8 block, the matrix is the same as
a perfect chain of alternating bonds. The para-
meters for PPV are used here [22]: tO ¼ 	2:9 eV;
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t1 ¼ 	1:5 eV; t2 ¼ 	2:9 eV; tH ¼ 	4 eV; th ¼
	1:2 eV, and eO ¼ 2t1. Analytic expressions
energies and wavefunctions of the localized states
for an infinite chain in this case are quite involved,

and so we proceed with the numerical diagonaliza-
tion of a finite matrix containing the carbonyl
group. It turns out that the results remain the same
as long as the chain contains more than about 40
carbon atoms. We found that there are two
localized states. One is below the valence band
with predominant weighting on the oxygen atom
(oxygen level). Another one is inside the gap (deep
level), which is responsible for the carrier capture.
Since each of the atomic orbitals contributes one

Fig. 2. The relation between the inverse change 1=Dt of one t1 bond and the deep level energy E in Eq. (10) is plotted for t1 ¼ 1; t2 ¼ 2

(a); and t1 ¼ 2; t2 ¼ 1 (b). We take t1;2 to be positive integers temporarily for simplicity.

Fig. 3. All the single bonds t1 are turned off, except for the

twisted bond t01.
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p-electron, the Fermi level can be obtained by
filling the states from below. It turns out to be
between the valence band and the deep level. The
energy of the deep level is located at ed ¼ 0:78 eV
(the bandgap is from 	1:4 to 1:4 eV) whose
wavefunction, as shown in Fig. 7, is localized
around the oxygen and spreads out to about five
sites on each side.

4. Electron–phonon coupling and free carrier

capture

Now we consider the capture of free carriers by
the deep level through multi-phonon emission. The
structure defect can produce both localized elec-
tronic state and localized phonon mode, repre-
sented as a simple harmonic oscillator, with strong
coupling between them due to the large wavefunc-
tion overlap. In other words, the electronic energy
is a function of the lattice displacement. The total
energy of the system is then the electronic energy

plus the lattice distortion energy. The position of
the harmonic oscillator that minimizes the total
energy therefore depends on whether the electronic
level is filled or empty. The harmonic oscillator is
displaced when the electron drops from a free
state, with a negligible electron–phonon coupling,
to the deep level. The capture rate Pk for a free
electron with momentum k is determined by the
nonadiabatic (NA) part of the Hamiltonian [20,21]

Pk ¼
2p

h2o
AvmjhCk; wk;mjH

NAjCd ; wk;mþpij
2

¼ 2po hCkj
q
qQ

jCdiQ *

����
����
2

IkðpÞ; ð20Þ

where Ck;d and wk;d are the wavefunctions for the
electronic and the lattice parts, respectively. k and
d each labels the free and defect states. o is the
angular frequency of the local phonon mode, and
Q is the dimensionless normal coordinate of the
local phonon mode. ‘‘Avm’’ denotes thermal
average over the initial phonon number m. The
minimum of total energy is at Q ¼ 0 when the

Fig. 4. The situation of a twisted single bond is illustrated.

When all the single bonds t1 are turned off, the energy �t2
(denoted as 1 and 2) are infinitely degenerate. When the defect

bond t01 is turned on, four extra nondegenerate states (denoted

as 3, 4, 5 and 6) occur. When all the rest of the single bonds t1
are turned on, 1 and 2 are broadened into bands of width 2jt1j
(gray area). When t01 is too weak, the nondegenerate states are

covered by the bands and absorbed into the continuum of

itinerant states. Localized state exists only when t01 is large

enough such that the nondegenerate state remain outside the

gray area.

Fig. 5. The situation of a twisted double bond is illustrated.

When all the single bond t1 is turned off and the defect double

bond t02 is turned on, two extra nondegenerate states (denoted

as 3, and 4) occur, in addition to the infinitely degenerate states

1 and 2. When all the single bonds t1 are turned on, 1 and 2 are

broadened into bands of width 2jt1j (gray area). Since jt1j is
smaller than jt2j, the nondegerate state near E ¼ 0 will never be

absorbed into the gray area to become an itinerant state. So two

localized states always occur in this situation.
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electron is free, and at Q* when the electron is
captured. p � ðEk 	 Ed Þ=ho is the number of
phonons emitted, where Ek and Ed are the total
energy for the initial (free) and final (captured)
states, In the low temperature limit where hob41,
the lattice factor IkðpÞ is given by

IkðpÞ ¼

ffiffiffi
p

2

r
F0;p	1 þ

ffiffiffiffiffiffiffiffiffiffiffi
pþ 1

2

r
F0;pþ1

 !2

: ð21Þ

Fm;mþp is the overlap between two displaced
harmonic oscillators with quantum numbers m
and mþ p. Explicitly we have [20,21] F0;p ¼
ð	

ffiffiffiffi
S

p
Þpe	S=2=

ffiffiffiffi
p!

p
where S � 1

2Q*2 is the
Huang–Rys factor. In order to calculate the
capture rate, we need to know the Q-dependence
of both the localized electron energy ed ðQÞ and
wavefunction CdðQÞ. In the following we make an
approximation by assuming that the coupling of
the local phonon mode to the electron is mostly
through the modulation of the defect bond, i.e. the
bond between sites p and pþ 1. Even though the
local phonon mode may extend for several lattice
constants, this is a reasonable approximation
because both the electron and phonon wavefunc-
tions are highly localized around the same defect
bond. We therefore write DtðQÞ ¼ Dt0 þ ZQ, where
Dt0 is due to the permanent bond twist at the
defect, and ZQ is due to the bond oscillation. The
constant Z depends on the nature of the defect and
will be specified later. The Hamiltonian can be
expressed as HðQÞ ¼ H0 þ VQ with Vm;n ¼
Zðdm;pdn;pþ1 þ dn;pdm;pþ1Þ. To the first order in Q,

Fig. 6. The atomic orbitals included in the tight binding

calculation are labeled by their site numbers.

Fig. 7. The normalized wavefunction of the localized deep level within the bandgap caused by the carbonyl group is shown. The site of

the oxygen atom is highlighted. The wavefunction extends for about five unit cells.

H.F. Meng, T.M. Hong / Physica B 304 (2001) 119–136128



the energy of the defect level EdðQÞ is

EdðQÞ ¼Edð0Þ þ hCdð0ÞjVQjCdð0Þi

¼Edð0Þ þ ZQðc*
d;pcd;pþ1 þ c*

d ;pþ1cd ;pÞ; ð22Þ

where cd ;p is the component of the localized
electronic state Cd at site p for Q ¼ 0. The total
energy of the system is then

EtðQÞ ¼ EdðQÞ þ 1
2 hoQ2: ð23Þ

The harmonic oscillator is displaced to the new
minimum E *

t of EtðQÞ at Q* . Similarly the
wavefunction can be expanded to the first order
in Q by

jCdðQÞi ¼ Q
X
m

hmjV jCdi
Ed 	 Em

jmi; ð24Þ

where jmi is the other eigenstate of H0. The
nonadiabatic matrix element is

hCkj
q
qQ

jCdiQ * ¼
Zðc*

k;pcd ;pþ1 þ c*
k;pþ1cd;pÞ

Ed 	 Ek
: ð25Þ

For the conduction band stateCk, the components
ck;p and ck;pþ1 are always equal due to the
inversion symmetry. So we approximate them by
1=

ffiffiffiffi
N

p
, where N is the total number of sites. The

matrix element becomes

hCkj
q
qQ

jCdiQ * ¼
1ffiffiffiffi
N

p Z
ðcd;pþ1 þ cd ;pÞ

Ed 	 Ek
: ð26Þ

Note that the factor 1=
ffiffiffiffi
N

p
ensures Pk � 1=N as

N ! 1 for one single defect as it should be. In
practice, the number of defects is also proportional
to N such that the capture rate is finite as N ! 1.

4.1. Chain twist

If the bond t1 is twisted by an angle y perma-
nently, the parameters above are given by

Dt0 ¼ t1½1	 cosðyÞ�; Z ¼ 2cpa cosðyÞ

ffiffiffiffiffiffiffiffiffi
h

Mo

r
:

ð27Þ

M is the atom mass of carbon and a ¼ dt1=dl,
where l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h=Mo

p
cd ;pQ is the change of bond

length due to the normal mode coordinate Q. Here
we have assumed that the local mode profile
follows the electronic wavefunction. The reason is
that the very existence of the local phonon mode

itself is due to the localization of electron and the
electron–lattice coupling, while neglecting any
local change in the force constant for the bond
oscillation.

4.2. Chain end

Let us consider another kind of structure defect:
the end of a semi-infinite chain composed of sites
with index smaller or equal to p. Localized
electronic and phonon mode occur simultaneously
at the end. For the electronic part, we can set Dt
equal to 	t1, such that the hopping is zero between
sites p and pþ 1. The deep level is then located at
E ¼ 0. The local phonon mode is still assumed to
follow the electron wavefunction. The coupling
between the local mode and the electron is
approximated to be through the modulation of
the last bond between sites p	 1 and p. The Q-
dependent part of the Hamiltonian is then
Vm;nQ ¼ QZðdm;pdn;p	1 þ dn;pdm;p	1Þ. Again the con-
duction band state is always in phase at the last
two sites of the chain. So we have

EdðQÞ ¼ Z2Qcd;pcd;pþ1;

hCkj
q
qQ

jCdiQ * ¼
1ffiffiffiffi
N

p Z
ðcd;p	1 þ cd ;pÞ

Ed 	 Ek
; ð28Þ

with Z ¼ 2cpa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h=Mo

p
.

4.3. Oxygen

The obvious local phonon mode strongly
coupled to the localized electron level is the
oscillation of the C ¼¼ O double bond. The energy
EdðQÞ of the deep level is calculated numerically by
assuming DtO ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h=MroO

p
Q, where Mr is the

reduced mass and oO is the angular frequency of
the oscillation.

4.4. Result

We define for convenience the capture rate
1=tf � PfNc, where Nc ¼ N=2 is the number of
unit cells. tf is the carrier capture lifetime when
there is on average one defect per unit cell. It has
the advantage of being independent of the system
size. For a chain with Nd defects, the capture rate
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is PkNd ¼ nd=t1, where nd ¼ Nd=Nc is the number
of defect per cell, or the defect density.

For the twist case, the empty defect energy Ed in
Eq. (11) (‘‘+’’ is omitted) and the defect wave-
function cd;pðpþ1Þ in Eq. (14) are inserted into
Eq. (25) to obtain the NA matrix element. For
the oxygen case, the defect energy and the
wavefunction are obtained from the numerical
results in Figs. 8 and 7, respectively. After
numerical differentiation q=qQjCdiQ * of the wa-
vefunction, we calculate its inner product with the
free state jCki to get the NA matrix element
hCkjq=qQjCdiQ * . The result is shown in Fig. 9.
The Huang–Rys factor S ¼ Q*2=2 is obtained
from Eqs. (22) and (23). S is then inserted into
Eq. (21) to get the lattice factor Ip. The NA matrix
element and the lattice factor are then inserted into
Eq. (20) to get the final result of the capture rate
Pk, which is shown in Fig. 10. As in Section 3, we
choose t1 ¼ 	2:9 eV [11] and t2 ¼ 	1:5 eV, suita-
ble for PPV with bandgap believed to be near

2:8 eV [23]. The values of a and ho0 are 4:1 eV= (AA
[17] and 0:18 eV for the C¼¼C bond, and 3:5 eV=
(AA and 0:17 eV for the C¼¼O bond [9], respec-
tively. The reduced mass for C¼¼C bond is used
for local mode around the twisted bond, while the
reduced mass for C¼¼O is used for the oxygen
case.

5. Coulomb interaction and exciton dissociation

Excitons, i.e. bound states of one electron and
one hold, are the elementary excited states of
semiconductors created by either optical or electric
excitation. Excitons can recombine nonradiatively
through the deep level defects discussed above. In
the Hartree–Fock approximation considered in
Section 2, we obtained the self-consistent single-
particle states with energy E�

k for the valence and
conduction bands, respectively. In the ground
state jgi the valence band is filled and the

Fig. 8. The total energy Et is the sum of lattice energy of the C ¼¼ O bond and the electron energy is plotted as a function of the lattice

displacement Q. The C ¼¼ O bond is displaced to a new equilibrium position at Q* ¼ 0:35 (indicated by a dot), with new minimum

total energy E *
t ¼ 0:77 eV, when the deep level is occupied by the electron.
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conduction band is empty. The electron–hole pair
excited states jk;	ki with zero total momentum
is related to the ground state jgi by
jk;	ki ¼ ayc;kav;kjgi, where k and 	k are
the electron and hole momentum, respectively.
aycðvÞ;k and acðvÞ;k are the creation and annihilation
operators for the corresponding states. Such
electron–hole pair states are however not
the elementary excitation because the Hamilt-
onian has off-diagonal matrix elements among
them [16]:

Hkk0 � hk0;	k0jHjk;	ki

¼ ½Eg þ ðEþ
k 	 E	

k Þ�dk;k0 þ Vkk0 : ð29Þ

The Coulomb matrix element is given by

Vkk0 ¼
1

2

Z
dr dr0c*

c;k0 ðrÞc
*
v;kðr

0Þ
e2

kjr	 r0j
� cv;k0 ðr

0Þcc;kðrÞ; ð30Þ

where k is the background dielectric constant for
the p-electrons, and e is the electron charge. The

exciton state jexi with zero total momentum is
obtained by diagonalizing the matrix representa-
tion Hkk0 of H in the electron–hole pair subspace
spanned by jk;	ki. The exciton energy Eex is the
lowest eigenvalue of Hkk0 , the corresponding
eigenvector fexðkÞ is the exciton wavefunction.
jexi is expanded by the electron–hole pair states

jexi ¼
X
k

fexðkÞjk;	ki: ð31Þ

Eex is usually written as Eg þ 2Ec 	 EB, where Ec

¼ Eþ
p=2 ¼ 	Eþ

p=2 ¼ jt1 	 t2j is the conduction band
edge and 2Ec is the bandgap. EB is the exciton
binding energy. The Coulomb matrix element Vkk0

in Eq. (30) is difficult to evaluate accurately.
Besides, the suitable value for k due to core level
and s-electron screening remain somewhat uncer-
tain. The spin index and the exchange effect are
also neglected here by considering only the singlet
excitons. Even though intensive works have been
devoted to the calculation of EB and f1

ex, the
results remain controversial. Since the main

Fig. 9. The non adiabatic matrix element hCkjd=dQjCdi, obtained by numerical differentiation of the defect wavefunction Cd , is

shown as a function of the wavenumber k of the band state Ck.
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purpose of this work is on the deep level defect
within the SCF single-particle approximation, we
do not calculate Vkk0 ; EB and fex here but use the
results quoted from both the experimental and
theoretical literature [2,6,24,25] for the calculation
below.

Exciton in unstable against electron–hole dis-
sociation when its energy Eex is larger than the
energy Edis of the dissociated state with the
electron in the deep level and the hole at top of
the valence band. So we need to compare the two
energies Eex ¼ Eg þ 2Ec 	 EB and Edis ¼ Egþ
ðEd þ EcÞ. Ed is the deep level energy at the
relaxed lattice position Q* calculated in Sections
2 and 3, measured from the middle of the bandgap
which is Ec above the valence band top. The
difference Eex 	 Edis is ðEc 	 EdÞ 	 EB, where Ec 	
Ed is the deep level binding energy. In other words,
when the binding energy of the exciton is smaller
than the binding energy of the deep level, the
electron may drop into the level and the hole is
released to the valence band to become a free
charge carrier. The excess energy is carried away

by the hole kinetic energy and the multi-phonon
emission, as depicted in Fig. 11. This is similar to
the capture process considered in Section 4, but
now the initial state of the transition is jex; mi and

Fig. 10. The free electron capture rate 1=tf when there is one defect per unit cell is shown as a function of the free electron wavenumber

k. The result has to be multiplied by the defect density if it is not one.

Fig. 11. When the deep trap level binding energy Et ¼ Ec 	 Ed

is larger than the exciton binding energy EB, the exciton can

dissociate into a trapped electron and a free hole with kinetic

energy KðqÞ. The excess energy is carried away by the multi-

phonon emission.
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the final state is jd; q; ni, where ‘‘ex’’ denotes
exciton, d means defect for the electron and q is
the Bloch state wavenumber of the hole. m; n are
the occupation numbers of the local phonon
mode. The total energy of the initial state is
Eex þ hoðmþ 1=2Þ, while the total energy of the
final state is Edis þ KðqÞ þ hoðnþ 1=2Þ: K �
ðqÞ ¼ E	

p=2 	 E
	
q is the hole kinetic energy, where

E	
q is defined in Eq. (1). From energy conservation

we have ðEc 	 EdÞ 	 EB 	 KðqÞ ¼ pho, with p ¼
n	m: pho is the excess energy of the local lattice
mode after the capture, which will be rapidly
dissipated through the anharmonic coupling to the
bulk phonon modes. The exciton capture rate Pex

is given by:

Pex ¼Avm
X
q;n

jhd; q; njHNAjex; mij2

� d½Ec 	 Ed 	 EB 	 KðqÞ 	 ðn	mÞ ho�;
ð32Þ

where the nonadiabatic matrix element is

hd; q; njHNAjex; mi

¼ hCd; wnjH
NAjC	q; wmifexðqÞ: ð33Þ

This is because the local phonon mode is only
coupled to the electron, which is localized in the
final state. The NA matrix element for the electron
part is exactly the same as the free electron case
calculated above. So the exciton quenching rate
Pex can be expressed as

Pex ¼
X
q;n

jfexðqÞj
2Avmjhd; njHNAj 	 q; mij2

� d½Ec 	 Ed 	 EB 	 KðqÞ 	 ðn	mÞho�

¼
X
q

jfexðqÞj
2Pq½pðqÞ�y½pðqÞ�: ð34Þ

Now the number of phonons p emitted is a
function of the hole momentum q : pðqÞ ¼
½Ec 	 Ed 	 EB 	 KðqÞ�=ho. The step function in
Pex guarantees that the quenching occurs only
when the final state is indeed lower than the initial
state in energy. In practice we take the exciton
wavefunction fexðqÞ to be a Lorentzian with width
1=aB, where aB is the exciton Bohr radius. Similar
to the case of free electron capture, we define the
capture rate 1=tex � PexNc. Pex is in general larger
than Pp=2, i.e. free carrier capture at the band edge,

because of the exciton binding energy reduces the
electronic energy difference Ec 	 EB 	 EdðQ* Þ ¼
pho, resulting in a smaller p.

Combining Eqs. (20) and (34) and using the
results in Fig. 10, we find 1=tex is equal to 4:5 ns	1

for chain end, 3:6� 102 ns	1 for oxygen. For
chain twist, the defect energy Ed is below the
exciton energy Eex only when the twist angle y is
larger than 608. For 6085y5758, the exciton
quenching rate is larger than that of the oxygen
defect [19]. For y > 758, the twist quenching rate is
smaller than the oxygen defect. In particular, 1=tex
is equal to 3:2� 103 ns	1 for y ¼ 67:58. We choose
EB ¼ 0:3 eV [2,6] and aB ¼ 5a [24,25], where a is
the lattice constant.

6. Photoconductivity quantum yield

Under an incident photon flux Ip, the steady
state exciton number per unit cell nex and the
defect filling fraction f satisfy the equilibrium
conditions [19]

apvIp 	
1

tr
nex 	

1

tex
ndð1	 f Þnex ¼ 0;

1

tex
nexð1	 f Þ 	

1

t2
f 2nd ¼ 0; ð35Þ

where ap is the absorption coefficient, v is the unit
cell volume, and tr is the radiative lifetime of the
exciton. The free hole capture rate 1=t2 is taken as
an adjustable parameter. The first equation is
obviously the condition that the exciton genera-
tion and decay rate must be equal in equilibrium.
The second equation will be more transparent
if it is written as ð1=texÞnex½ð1	 f Þnd�	
ð1=t2Þð fndÞð fndÞ ¼ 0. The first term on the left-
hand side is the free hole generation rate through
exciton quenching, which is proportional to both
the exciton density nex and the empty defect
density ð1	 f Þnd. The second term is the free
hole capture rate, which is proportional to the
filled defect density and the free hole density.
Both of them are equal to fnd in our model,
because all holes come from the filling of defects
by exciton quenching. In equilibrium these
two terms must be equal. The steady state carrier
generation quantum yield z is defined as the
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ratio between the photon absorption rate and the
carrier generation rate:

z ¼
ndð1	 f Þnex=tex

apIpv
¼

ð1	 f Þnd=tex
ð1	 f Þnd=tex þ 1=tr

; ð36Þ

which is, of course, equal to the ratio between the
exciton quenching rate and the total decay rate.
The quantum yield decreases with the pumping
intensity due to the deep level saturation by the
pump. The results are shown in Fig. 12. When the
pumping is so low that the filling of the defect level
becomes negligible, the quantum yield z becomes
ðnd=texÞ=ðnd=tex þ 1=trÞ.

7. Discussion and conclusion

Based on the above results, we predict that the
photoluminescence quantum yield is reduced to
about one-half when there is one oxygen defect per
400 unit cells. Moreover, the PC quantum yield z
caused by the structure defects (chain ends) is

predicted to be 8:9� 10	4 when the average
number of unit cells Nc in a chain is at a typical
value of 5� 103. Our predictions on the relation
between the PC quantum yields with the oxygen
density (for oxidized samples) and with the chain
length (for pristine samples) have been quantita-
tively compared with experiments [19], and the
results are reasonable. The interpretation of the
temperature ðTÞ and electric field ðEÞ dependence
of the steady state photocurrent density jðT ;EÞ is
now clear. Assuming that singlet excitons are
generated with quantum yield close to one [26], j
can be expressed as jðE;TÞ ¼ IpapdztðT ;EÞkðE;TÞ.
zt is the total carrier generation quantum yield,
including activation and the defect dissociation. k
is the collection efficiency by the electrode, and d is
the film thickness. zt can be written as zþ be	bEb ,
where z is the defect part and be	bEb is the
activated dissociation part. The T-dependence of
zt comes mainly from the activation part, while the
T-dependence of k comes from the activation from
the traps along the passage to the electrodes. For

Fig. 12. The steady state quantum yield z is shown as function of ns, which is proportional to the photon flux, for three defect levels. v

is the unit cell volume. ns would be the number of excitons per unit cell under photon flux Ip if there were no nonradiative channels.
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thin films in the sweep-out region, the collection
efficiency k is close to one [26], so we have j ¼
Ipapzt and j should be proportional to zþ be	bEb .
The weak T-dependence in this situation implies
that be	bEb5z. This is no surprise because z has
been estimated to be about 10	3 even without
oxygen, while the factor e	bEb is only 1:24� 10	6

at 300 K. The ‘‘intrinsic’’ photocurrent of pure
samples is therefore not mainly determined by the
intrinsic properties of a perfect chain-like exciton
binding energy, but by extrinsic factors including
the defect density and the strength of the coupling
between the lattice and the deep level. In thicker
films the T-dependence of j is dominated by the
transport factor k instead of the generation factor
zt, as suggested by Moses et al. [4].

The multi-phonon exciton quenching rate de-
pends on the exciton creation energy Eex and the
bandgap Eg. Unfortunately the value for Eg

remains widely controversial, ranging from 2.8 to
3:4 eV [1–3]. In order for the quenching process to
happen, the deep level energy Ed must lie below
the exciton energy Eex, which is experimentally
determined to be 2:4 eV. For the case of chain end,
Ed is fixed at the mid-gap value of Eg=2. So the
energy requirement is always satisfied for all the
above range of Eg. On the other hand, the deep
level for the carbonyl group is found to be 0:6 eV
(Fig. 8) below the conduction band edge, so the
quenching process is possible only when Eg is
below 3:0 eV. The carbonyl group has been
observed to significantly increase the photocon-
ductivity, so it can be considered as an experi-
mental constraint that the defect level associated
with oxygen must be deep enough to lie below the
exciton energy, which is the situation we consid-
ered in this work.

Certain factors are not considered here, includ-
ing, for example, the exciton quenching via the
Auger process, the accurate account of the
coupling between the local phonon mode and the
electron level through the modulation of more
than one bond, the scattering and cascade re-
capture of free holes by the trapped electron, and
the interaction among the defects. Besides, in the
rate equation we assumed that there is only one
kind of deep level simultaneously responsible for
the exciton quenching and free hole capture after

generation. In practice, they may result from
different traps with different energies. The many-
body Coulomb interaction is believed to be strong
in conjugated polymers [27]. It is, however, not
included in our calculation explicitly, but taken
into account by using the renormalized hoping
integrals and other parameters to reproduce the
self-consistent single particle spectrum. For the
ground state, single particle levels below the Fermi
level are filled. For the excited state (exciton), the
Coulomb interaction has been included by prop-
erly choosing the exciton binding energy and
wavefunction.

In conclusion, the exciton dissociation rates
through deep levels due to oxidation and structure
defects are calculated. The results agree with the
experiments on the PC enhancement and PL
quenching by oxidation. Moreover, even without
oxygen the mid-gap level at the chain end causes a
carrier generation rate larger than the thermal
dissociation rate. So the main carrier generation
process is not the thermal activation or field
dissociation, but the relaxation through deep level
traps. The ‘‘intrinsic’’ photocurrent is therefore
disorder sensitive and not primarily determined by
the intrinsic properties of a perfect chain. Our
study clarifies the molecular exciton vs. semicon-
ductor band controversy on the origin of photo-
conductivity in conjugated polymers.
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