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For CISC microprocessors, the proportion of memory access instructions is rela-
tively high, and a specific address is likely to be accessed repeatedly in a short period of
time because of register-to-memory or memory-to-memory instruction set architectures
and limited register sets. As superscalar architectures advance, an aggressive schedul-
ing policy for memory access becomes crucial. In this paper, we examine the schedul-
ing policies of loads/stores on CISC superscalar processors and develop an aggressive
scheduling policy called preload. The preload scheduling policy allows loads to pre-
cede the earlier unsolved pending stores, and delays the checking of conflict and for-
warding of data until the data is loaded, thereby allowing greater tolerance of the latency
for address generation. Because of its popularity, we focus our attention on the x86
instruction set. Simulation results show that the preload achieves a higher performance
in comparison with the traditional scheduling policies such as load bypassing and load
forwarding. Furthermore, by reducing the pipeline stages, the preload can achieve even
higher performance.

Keywords: CISC, superscalar, memory access ordering, x86 microprocessor, load by-

passing, load forwarding

1. INTRODUCTION

For CISC (complex instruction-set computing) microprocessors, such as the x86
[1-3] and VAX [4], the proportion of memory access instructions is relatively high, and a
specific address is likely to be accessed repeatedly in a short period of time because of
register-to-memory or memory-to-memory instruction set architectures and limited reg-
ister sets. For those CISC processors that use modern superscalar techniques to achieve
higher performance by dynamic scheduling and out-of-order execution of multiple in-
structions in parallel, exploiting the parallel execution ability of memory access opera-
tions becomes crucial.

In this paper, we examine the scheduling policies of loads/stores on CISC supersca-
lar processors and propose a new aggressive scheduling policy suitable especially for
CISC. We focus our attention on the x86 instruction set as an example due to its
popularity. The x86 superscalar processors, such as Pentium, Pentium Pro, K5, K6, M1
and M2, have dominated the PC market over the past decade, and require more powerful
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load/store techniques to achieve higher issue rates for following generations of micro-
processors.

For consistency of memory, stores are executed in the original program order.
However, loads can be executed speculatively without obeying the original program or-
der. Because of the looser restriction of loads, more parallel execution can be exploited
by out-of-order execution of loads, and, thus, forms the scheduling policies of memory
accesses such as load bypassing and load forwarding [5]. In load bypassing, the ad-
dress of a load is checked with the addresses of its previous stores. If there is no con-
flict, the load can be issued to the data cache. Otherwise, the load must be held until the
conflicted stores are issued. In load forwarding, the data of the conflicted store can be
forwarded directly to the pending load. Load bypassing has been used by this genera-
tion of x86 microprocessors such as Pentium Pro, K5, and K6.

However, in load bypassing and load forwarding, a load cannot be issued or for-
warded if any one of the addresses of its previous stores is unsolved, i.e., has not been
generated [6]. In the CISC superscalar microprocessors, an additional pipeline stage
must be attached to generate the addresses for loads and stores. The lengthened pipe-
line will cause the unsolved problem to be even more severe. In this paper, we develop
an aggressive scheduling policy called preload. In preload, loads can be issued without
doing an address conflict check, and therefore, they can precede the previous unsolved
pending stores. After the data is read from the cache, these loads will perform the ad-
dress conflict check and forward data if their addresses violate those of the previous
stores. Under the preload policy, we can reduce the scheduling stage of loads in CISC
processors and thus achieve higher performance gain.

There are other aggressive techniques, such as address prediction [7-11] and data
prediction [12, 13], which are developed to resolve similar problems. However, all
these techniques suffer from prediction errors and the cost of recovery mechanisms.
Therefore, we focus our research on scheduling policies that need no recovery mecha-
nisms.

To examine the scheduling policies of loads/stores on x86 superscalar microproces-
sors, we design a load/store unit with a unified memory access buffer (UMAB), and ana-
lyze the policies, including load bypassing, forwarding, and preload, in a simulation en-
vironment. The simulation results show that the preload achieves higher performance
in comparison with the other two traditional scheduling policies.

The organization of this paper is as follows. In the next section, we survey the
load/store units of current CISC microprocessors. Then, we propose our design of
load/store units with different policies in Section 3. In Section 4, we examine the
scheduling policies and other design issues by experiments. Finally, we make conclu-
sions in Section 5.

2. LOAD/STORE UNITS OF CURRENT CSIC
MICROPROCESSORS

We choose Intel P6 and AMD K5 to represent current CISC microprocessors and
survey their load/store units. We also compare them with the Power PC 604 [14], a
processor representing current RISC microprocessors. Features of these three micro-
processors are summarized in Table 1. “N/A” means not available.
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Table 1. Load/store processing of K5, P6 and PowerPC 604.

Microprocessor AMD K5 Intel P6 PowerPC 604

Reservation Station
Distributed

4-entry
Centralized

20-entry
Distributed

2-entry
Out-of-order issue × � ×

Number of issues
2 loads or

1 load + 1 store
1 load + 1 store 1 load or 1 store

LSU 2 load/store units
1 load address unit
1 store address unit

1 store data unit
1 load/store unit

Buffer / Size Store buffer/4-entry
Memory reorder buffer

/ N/A
Load queue/4-entry
Store queue/6-entry

Data Cache

8K bytes
4-way set associative

Dual-ported
Virtually tagged

8K bytes
4-way set associative

Dual-ported
Physically tagged

Nonblocking

16K bytes
4-way set associative

S ingle-ported
Physically tagged

Nonblocking
Load bypassing � � �

Load forwarding N/A N/A �

Due to the significant amount of memory access operation, x86 microprocessors
provide more load/store ports than RISC microprocessors. For example, the AMD K5
and Intel P6 can issue one load and one store per cycle, while the PowerPC 604 can issue
only one load or one store per cycle.

All three microprocessors provide load bypassing. The PowerPC 604 additionally
provides load forwarding. However, we cannot find any relevant information in the
literature to tell whether or not the AMD K5 and Intel P6 provide load forwarding.

3. SCHEDULING POLICY OF X86 SUPERSCALAR
MICROPROCESSORS

In this section, we propose our designs for the load/store units of x86 superscalar
microprocessors with different scheduling policies. First, we develop an aggressive
scheduling policy − preload. Then, we model the x86 superscalar microprocessor and
its load/store unit. Finally, we point out that the number of pipeline stages can be re-
duced under preload.

3.1 An Aggressive Scheduling Policy – Preload

In preload, loads can be issued without an address conflict check. After the data is
loaded back from the cache, these loads will check the addresses with their previous
stores. If any conflict is found out, the data of the conflicted stores may be forwarded
directly to the pending loads. If not the entire data of the pending load can be obtained
from such forwarding, and the load will be re-issued after all its previous stores are com-



R-MING SHIU, HUI-YUE HWANG AND JEAN JYH-JIUN SHANN790

pleted. Some data cache accesses may be wasted when conflicts are found. We will
describe the detailed actions of preload in Section 3.3.

A load can check its address with that of the previous stores only after all the ad-
dresses of these stores have been calculated. If loads can be issued only after the ad-
dress conflict check, many opportunities for parallel execution may be lost because of the
stalling of the loads due to an unfinished linear address calculation. Preload delays the
address conflict check after the data cache access, and, thus, loads can be executed with-
out being stalled by unsolved stores.

3.2 A Model of X86 Superscalar Microprocessors

To examine the scheduling policies of loads/stores, we first design a general model
of x86 superscalar microprocessors. The pipeline stages are depicted in Fig. 1, and the
block diagram of our simulator is depicted in Fig. 2. This model shows the characteris-
tics of x86 processors that need additional stages for translating instructions, dispatching
operations, and calculating addresses.

Fig. 1. Pipeline stages of x86 superscalar microprocessors.
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Fig. 2. Block diagram of x86 superscalar microprocessors.

The pipeline is divided into 6 stages: fetch, decode, dispatch, reservation station,
execution, and retire. X86 instructions are fetched and decoded into simple,
fixed-length micro-operations. For example, memory-to-register or register-to-memory
addressing modes are decoded into simple load, store and other related micro-operations.
Distributed reservation stations are used in our discussion. Micro-operations are dis-
patched to different reservation stations in order. The micro-operations with ready op-
erands and available functional units are issued out of order from the reservation stations

F e t c h D e c o d e D i s p a t c h R S R e t i r eE x e c u t i o n
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to the execution units. The execution latencies are different among different kinds of
micro-operations. The micro-operations are completed out-of-order while the in-order
state of the program is kept in the reorder buffer. The results of micro-operations are
retired in order by the reorder buffer.

3.3 Models of Load/store Units With Different Scheduling Policies

Under the architecture of x86 superscalar microprocessors, we design four models
of load/store units: in-order, bypassing, forwarding, and preload. We unify the pipeline
stages and the block diagrams of the four models as shown in Fig. 3 and 4, respectively.
However, the functions of each stage may be different between the four models.

Fig. 3. Pipeline stages of the load/store unit.

Fig. 4. Block diagram of the load/store unit.

So as to keep the original program order of load/store operations, we have to save
the loads/stores that have not yet been retired in buffers. Buffering of loads/stores may
be separated or unified. Separated buffering has two buffers, one for loads and the
other for stores. Unified buffering, on the other hand, has only one buffer for both loads
and stores. The major complexity in separated buffering is the cooperation between the
load and store buffers in order to maintain the relations of true data dependencies be-
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tween each other. In our design, we choose to maintain a unified buffer called the Uni-
fied Memory Access Buffer (UMAB) for loads/stores.

In Fig. 3, the gray blocks (A-stage, S-stage, and B-stage) are the operation latencies
caused by the load/store unit. The black sticks (from D1 to D4) denote the execution
decoupling, which allows the out-of-order execution of the ready operations. The
loads/stores are sequentially dispatched to the reservation station of the load/store unit in
the R-stage. Simultaneously, to keep the program order of the loads/stores, the
loads/stores are also registered into the UMAB. The loads/stores stored in the reserva-
tion station are issued to the load/store unit if all their operands are ready and the address
generation unit of the load/store unit is available. The linear addresses of the newly
issued loads/stores are then generated in the A-stage.

In the S-stage, the executable loads/stores are issued to the data cache or the data is
forwarded to the result bus. There are different issue rules for the loads in the four
models. The issue rules are summarized in Table 2. For stores, the issue rules are the
same in all four models. A store is executable if it satisfies the following conditions:

1. Its linear address is generated.
2. It reaches to the head of the UMAB.
3. Its retirement permission is received from the reorder buffer.
If the number of the executable loads/stores is larger than the number of ports pro-

vided by the data cache, the older loads/stores have higher priorities.
The I-stage is assigned for data cache accesses. One-cycle latency is assumed.

For a load, after the data is loaded back from the data cache, the B-stage is responsible
for arbitrating the result bus for the data. With preloading, loads must be checked for
address conflict, and data forwarding, bus arbitration, and re-issuing must be performed
according to the checking result. The functions of the four models in each stage are
summarized in Table 3.

Table 2. Issue rules of the loads in the four models.

Issue rules of the loads

In-order
1. Linear addresses of the loads are generated.
2. There is no unsolved previous store.
3. There is no pending previous store.

Bypassing
1. Linear addresses of the loads are generated.
2. There is no unsolved previous store.
3. There is no true data dependency with the pending previous stores.

Forwarding

1. Linear addresses of the loads are generated.
2. There is no unsolved previous store.
3. There is no true data dependency with the pending previous

stores, or there is a true data dependency with a store from which
the whole data can be forwarded.

Preload Linear addresses of the loads are generated.
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Table 3. Execution stages in the load/store unit.

The detailed block diagram of an LSU with preload policy is shown in Fig. 5. The
dependency check is done by the comparator associated with every UMAB entry. From
the diagram, we see that data forwarding and result bus arbitration can be activated in
parallel right after the dependency check, and, thus, would not lengthen the latency of the
B-stage.

Fig. 5. Detailed block diagram of a load/store unit with preload policy.

3.4 Preload With Reduced Pipeline

With preload, the functions of the S-stage may be merged into that of the A-stage,
and, thus, the S-stage can be eliminated. A load that has finished its address calculation
can be issued to the data cache immediately. The pipeline stages and the block diagram
of this new model are shown in Figs. 6 and 7, respectively. Compared to other models,
the S-stage of the reduced pipeline is eliminated, and the scheduling control can work at
the same time as that of the address calculation.
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Fig. 6. Stages of the reduced pipeline for the load/store unit with preload.

Fig. 7. Block diagram of the load/store unit with reduced pipeline.

4. PERFORMANCE EVALUATION AND ANALYSIS

In this section, we use simulations to examine scheduling policies. First, we pre-
sent the simulation environment and the simulation models. Then, we examine the
proportion of loads/stores in benchmarks to show their importance. Finally, we
simulate different scheduling policies under different sets of parameters.

4.1 Simulation Environment

In order to examine the scheduling policies of loads/stores, we build a trace-driven
simulator. The source code of SPEC95 is compiled with the gcc compiler. The ex-
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compatible PCs. The traces are retrieved by the system call “ptrace()” and are read into
our simulator to evaluate the performance of the simulation models we proposed in Sec-
tion 3. The flow chart of the simulation environment is shown in Fig. 8.

Fig. 8. Flow chart of the simulation environment.

The benchmark programs we simulated are of SPECint95. We briefly describe them
in Table 4 [15].

Table 4. Short descriptions of the SPECint95 benchmarks.

Benchmark Remarks

Go Artificial intelligence; plays the game of “Go”

m88ksim Motorola 88000 chip simulator; run test program

Gcc New version of GCC; build SPARC code

Compress Compress and decompress file in memory

Li LISP interpreter

Ijpeg Graphic compression and decompression

Perl Manipulates strings and prime numbers in Perl

Vortex A database program

4.2 Simulation Models

The simulator in our experiments simulates the models mentioned in Sections 3.2
and 3.3. To focus the discussion on the design issues of load/store units, we make the
following assumptions.
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1. The accuracy of branch prediction is 100%. When a branch is taken, its succeeding
instructions if fetched at that cycle are discarded.

2. No data cache miss occurs, and the access latency is 1 cycle.
3. The latency of ALU and BU is 1 cycle.

To clear up the parameters of our simulator, we set three sets of restrictions for the
simulator and summarize them in Table 5. Restriction 1 restricts the UMAB size and
let other parameters be unlimited so that we can analyze the influence of the UMAB size
and ignore the influences of other parameters. For similar reason, Restriction 2 limits
the UMAB size and the number of LSU ports, and let other parameters be unlimited. In
order to analyze the simulation results under the specific set of parameters, Restriction 3
limits all the parameters listed.

Table 5. Three sets of restrictions for the components in our simulator.

Restriction Fetcher Decoder Dispatcher
Reservation

Station
LSU ports

UMAB
Size

1 Unlimited Unlimited Unlimited Unlimited Unlimited Variable

2 Unlimited Unlimited Unlimited Unlimited Variable 32 entries

3 Unlimited
8 micro-

operations
8 micro-

operations
16 entries 3 ports 32 entries

The four basic models of the load/store unit mentioned in Section 3 (in-order, load
bypassing, load forwarding, and preload) are simulated under these three sets of restric-
tions. The simulation results described in Sections 4.4, 4.6, and 4.7 are collected under
Restrictions 1, 2, and 3, respectively.

4.3 The Proportion of Loads/stores in SPECint95 Benchmarks

Before evaluating the performances of different scheduling policies, we examine the
proportion of loads/stores in the benchmarks of SPECint95 to show the importance of
these operations in CISC superscalar microprocessors. In our model, the CISC x86
instructions are translated into simple, fixed-length micro-operations. As shown in Fig.
9, the proportions of loads/stores in most of the benchmarks approximate 50%. In
comparison with RISC microprocessors, which comprise only about 25%~30%
loads/stores, the design of the load/store unit is much more important in CISC micro-
processors.

4.4 Performance Evaluations Under the Limitation of the UMAB Size

Under only the UMAB size restriction, i.e., Restriction 1 in Section 4.2, the per-
formance variations between different UMAB sizes of in-order, bypassing, forwarding,
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and preload models are depicted in Fig. 10. The performance of the in-order model
with 4-entry UMAB is regarded as the base case for comparison in this paper. As
shown in Fig. 10, the preload model has the best performance gain, while the in-order
model is the worst.
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Fig. 9. Proportions of load/store micro-operations in the translated SPECint95.

Fig. 10. Speedup for different scheduling policies under various UMAB sizes.

The in-order model has the worst performance because the loads are always stalled
by the pending stores. The bypassing model has better performance because the loads
can bypass those previous pending stores which have no true data dependencies with the
loads. The forwarding model achieves higher performance because the loads may ob-
tain the data forwarded from the nearest stores. Recall that, no matter in load bypassing
or forwarding, a load cannot be issued or forwarded if any address of its previous stores
is unsolved. Therefore, the preload model has the best performance because the loads
can bypass all previous stores, pending or unsolved.
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performance a model can achieve, the larger UMAB of the model for saturated perform-
ance is required. This means that a more aggressive scheduling policy will use more
UMAB entries effectively.

The data cache traffic will increase a little in the preload model. The average for-
warding rates in the forwarding model and the preload model are both 5.4%. However,
the preload model has loaded the data from cache before forwarding, thus increasing the
traffic. Compared with the in-order and the bypassing models, re-issue loads increase
the traffic. As shown in Fig. 11, the re-issuing rates are always below 1%. The low
traffic increment along with high performance gain makes the preload model practical.

Fig. 11. Re-issued rate of each benchmark in the preload model.

4.5 Performance Evaluation of the Speculative Load/store Unit with Reduced Pipe-
line

As mentioned in Section 3.4, the S-stage in the pipeline of the preload model can be
removed. The performance improvement by reducing the pipeline is shown in Fig. 12.
It is obvious that the reduction of just one pipeline stage can improve the performance
significantly.
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In this subsection, we simulate the scheduling policies under Restriction 2 men-
tioned in Section 4.2 in order to estimate the effect of different numbers of load/store unit
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is variable, and the other parameters are not limited. The simulation results are depicted
in Fig. 13. It is obvious that the performance improvement from one port to two is sig-
nificant. The performance rises gradually from two ports to three. However, there is
only a small change in performance for more than three ports. Therefore, we suggest
that providing the load/store unit with three ports is best for performance consideration.
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Fig. 12. Speedup improvement of the preload by reducing pipeline.

Fig. 13. Speedup of scheduling polices under various numbers of LSU ports.

4.7 Performance Evaluations of the Load/store Unit Under the Limited Front End

In the previous sections, we evaluated the performance of the load/store unit under
the unlimited front end, which provides unlimited decoder bandwidth, dispatching band-
width, and reservation station buffer size. In this section, we restrict the decoder band-
width to at most eight micro-operations. We first examine the size of the reservation
stations and the numbers of ALUs and branch units (BUs). The base case is the per-
formance under 4-entry reservation stations, one ALU, one BU, and one load/store unit
(LSU). As shown in Fig. 14, there is almost no performance improvement when the
number of the ALU increases from two to three. In the case of three ALUs, there is little
performance improvement when the size of the reservation station is larger than 16 en-
tries.
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Fig. 14. Performance variations between different sizes of RS and numbers of ALUs and LSUs.

We then restrict the size of the reservation stations to 16, the number of ALU to
three, the number of BU to one, and the number of load/store units to three. The base
case of the following simulation is the performance of in-order model with 4-entry
UMAB and unlimited front end. The performance differences between the limited and
unlimited front end are shown Fig. 15.

Fig. 15. Comparison between unlimited and limited front end.

As shown in Fig. 15, the preload model still has the best performance under the lim-
ited front end. Additionally, there is only a sprinkling of performance degradation be-
tween the limited and unlimited front ends in the forwarding and preload models. As a
result, under the limited front end, the capability of the scheduling policies is important.
A load/store unit with load bypassing and load forwarding is necessary, and a load/store
unit with preload is strongly recommended.
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5. CONCLUSIONS

In this paper, we develop the preload scheduling policy, design the models of the
load/store units with different scheduling policies, and examine these scheduling policies.
We simulate four models, which are in-order, load bypassing, load forwarding, and pre-
load. Furthermore, we realize that the preload can reduce the pipeline stage for sched-
uling to decrease the load latency.

Almost half of the micro-operations in the translated x86 instructions are
loads/stores. Therefore, the capability of load/store units is very important in x86 mi-
croprocessors. In comparison to other scheduling policies, the simulation results show
that the preload achieves the best performance gain. The preload model enlarges the
execution window of load/store instructions the most and gains the most profit as the
window size grows. In addition, the pipeline stages of the preload model can be further
reduced to gain more performance improvement.

As our simulation results show, the load/store unit with preload can gain as much
performance improvement under the limited front-end superscalar microprocessor as that
of infinite-way superscalar microprocessors. Hence, in the next generation of the CISC
processors, memory access is still one of the most important design issues as the super-
scalar degree increases.

The CISC instruction sets have good application compatibility and code density.
Due to the recent advances in silicon technology, sophisticated load/store units can be
implemented to handle the complex addressing modes and the heavy memory traffic.
As the issue rates of superscalar microprocessors are increasing, careful design of the
load/store units becomes more important.

In the future, we plan to study software scheduling of loads/stores for help in im-
proving the efficiency of hardware scheduling. Furthermore, the scheduling of
loads/stores in this paper does not allow the stores to be executed speculatively. Relax-
ing the restriction on in-order executed stores may exploit greater parallel execution of
loads/stores. Of course, some mechanism should be provided to maintain the consis-
tency of system memory. We are also interested in the performance evaluation and
recovery mechanism of speculative stores.
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