
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 17, 825-839 (2001)

825

Short Paper_________________________________________________

Design and Implementation of a Communication-Efficient
Data-Parallel Program Compiling System

KUEI-PING SHIH, CHING-YING LAI*, JANG-PING SHEU*

AND YU-CHEE TSENG+

Department of Computer Science and Information Engineering
Tamkang University

Tamshui, Taipei, 251 Taiwan
E-mail: kpshih@mail.tku.edu.tw

*Department of Computer Science and Information Engineering
National Central University

Chungli, Taoyuan, 320 Taiwan
E-mail: sheujp@csie.ncu.edu.tw

+
Department of Computer Science and Information Engineering

National Chiao Tung University
Hsinchu, 300 Taiwan

E-mail: yctseng@csie.nctu.edu.tw

In this paper, we present the design and implementation of a data-parallel compiling
system. The system has been implemented on a DEC Alpha 3000 workstation and in-
corporated into a parallel programming environment called UPPER (User-interactive
Parallel Programming EnviRonment). Given an HPF program, the built-in compiler sys-
tem can automatically analyze the access pattern of the HPF program, enumerate the
computation and communication sets, and then generate the SPMD code for execution
on nCUBE/2. Moreover, the user interface is designed to help the programmer to capture
some information during the compilation and execution phases, including interprocessor
communication, distribution of data elements onto processors, and execution results.

Keywords: communication sets, distributed-memory multicomputers, high performance
Fortran (HPF), parallelizing compilers, single program multiple data (SPMD)

1. INTRODUCTION

Programming on parallel computers, especially on distributed-memory multicom-
puters, is known to be very difficult and painful. It is time-consuming and error-prone to
rewrite a sequential program to obtain a parallel program. However, investments have
been made in software for sequential machines throughout the world. It is impossible to
rewrite them all. Therefore, intelligent tools are needed to automatically transform se-
quential codes into equivalent concurrent codes that can be executed efficiently on paral-
lel computers. Recently, several parallel programming environments designed to help

Received September 28, 1999; revised June 29, 2000; accepted August 29, 2000.
Communicated by Chu-Sing Yang.



KUEI-PING SHIH, CHING-YING LAI, JANG-PING SHEU AND YU-CHEE TSENG826

programmers develop parallel programs have been developed.
The PARADIGM (PARAllelizing compiler for Distributed-memory Gen-

eral-purpose Multicomputers) compiler [1] is a source-to-source parallelizing compiler,
based upon Parafrase-2 [2]. It strives to provide a fully automated way to parallelize pro-
grams for efficient execution on a wide range of distributed-memory multicomputers.
PARADIGM currently accepts either a sequential Fortran 77 or High Performance For-
tran (HPF) program and produces an optimized message-passing parallel program (in
Fortran 77 with calls to the selected communication library and the PARADIGM runtime
system).

The SUIF (Stanford University Intermediate Format) compiler [3], is a flexible in-
frastructure designed to support collaborative research in optimizing and parallelizing
compilers. It takes a sequential FORTRAN-77 or C source program as input and trans-
lates it into a language-independent abstract syntax tree annotated with some necessary
information for parallelization. It also supports automatic data partitioning for multi-
processor systems.

The Vienna Fortran Compilation System (VFCS) [4] was developed at the Univer-
sity of Vienna. VFCS performs a source-to-source translation from Vienna Fortran or
HPF to explicitly parallel Message Passing Fortran, providing automatic parallelization
as well as vectorization.

UPPER (User-interactive Parallel Programming EnviRonment) is an ongoing pro-
ject at the National Central University [5]. UPPER can support either a sequential For-
tran or an HPF program as input and generate SPMD code either for simulators or real
machine (currently, the platform is nCUBE/2 [6]), up to users’ choice. In addition to the
compilation system, we also provide a friendly user interface, through which users can
interact with the system. The interface provides not only an on-line editor and on-line
help, but also a graphical demonstration subsystem for users to view the intermediate
results produced during the compilation and simulation stages. This greatly helps users or
programmers design and write parallel programs based on a variety of assertions and
information generated by the compiler.

The rest of this paper is organized as follows. Section 2 reviews UPPER and gives
an overview of the data-parallel compiling system proposed in this paper. In Section 3,
we describe in detail the implementation of our data-parallel compiling system, including
data structures, compilation techniques, and the user interface. Finally, conclusions are
given and future works described in Section 4.

2. SYSTEM OVERVIEW

The major components of UPPER include the user interface, the parallelizing com-
piler system (consisting of a machine-independent phase and a machine-dependent
phase), and simulators of several target machines. Recently, we have built a subsystem to
extend the capability of UPPER to accept data-parallel programs as inputs. The main
configuration of the system is shown in Fig. 1, where the modules in gray are the
to-be-presented subsystem supporting data-parallel programs.

In the following, we first review UPPER and then give an overview of the
data-parallel compiling system that we have newly added into UPPER.



COMMUNICATION-EFFICIENT DATA-PARALLEL COMPILING SYSTEM 827

Fig. 1. The system structure of UPPER.

2.1 Structure of UPPER

In this subsection, we describe the original UPPER without extensions. The user in-
terface is designed to facilitate user interaction with the system. Through the interface,
users can edit their sequential or parallel programs, observe the data dependence infor-
mation, and tune or restructure their programs into better forms to obtain more parallel-
ism. Users can also set different system parameters to predict how their programs will
perform on experimental machines or machines designed based on different technolo-
gies.

There are three modules in the machine-independent phase: preprocessing, de-
pendence analysis, and program transformation. These modules are designed to exploit
the parallelism of the given sequential program, regardless of the machine topologies and
properties. The machine-dependent phase also has three modules: data distribution, pro-
gram scheduling, and code generation. These modules accept the information produced
by the machine-independent phase and generate parallel execution codes according to the
machine topology, network size, and architecture. In addition, a database module (at the
top of Fig. 1) stores all data and information generated or needed by each module.

The preprocessing module takes the user program and parameters of the target ma-
chine as inputs, scans and parses the program, and constructs the program representation
and data-flow information for later use. Then, data dependence analysis is performed on
the program representation. Several data dependence testing methods, including the GCD
test [7] and Banerjee-Wolfe test [8], have been implemented in this system. The data
dependence information is used to guide subsequent compilation analysis and optimiza-



KUEI-PING SHIH, CHING-YING LAI, JANG-PING SHEU AND YU-CHEE TSENG828

tion, such as exploitation of parallelism and reusability of registers. The program trans-
formation module utilizes the results of dependence analysis to improve program per-
formance and transforms the sequential program, by using data dependence information,
into a parallelizing or vectorizing form. Finally, the transformed program is mapped and
scheduled for execution onto the given target machine by the data distribution and pro-
gram scheduling modules.

The intermediate code for the simulator is then generated for the target machine in
the code generation module. The simulator is a testbed for the development of this envi-
ronment and a tool for evaluating parallelizing techniques. It simulates execution of the
obtained parallel codes on target machine and evaluates the efficiency. The simulation
outputs include the behavior records of each processor and statistical data. Based on the
simulation results, users can predict whether the parallelized codes achieve the desired
performance or not.

2.2 The Data-Parallel Program Compilation Subsystem

The subsystem is a source-to-source translator, which converts an HPF program into
an equivalent SPMD program that can run on a distributed-memory multicomputer. It
was implemented in the C language on a DEC Alpha 3000 workstation. We were target-
ing the nCUBE/2 parallel machine [6] with up to 16 nodes.

The structure of the subsystem is shown in Fig. 2. It performs a source-to-source
translation from HPF programs to SPMD codes. Given an HPF program, the compilation
module analyzes the array access pattern, extracts the regular behavior of the access pat-
terns, and then creates a class table to record these patterns. For a program with complex
data-processor mapping, the compilation module will additionally create a compression
table to generate the compressed local array [9]. These two tables will be used frequently
during the process of generating communication sets and local memory access sequences.
The data structure and algorithms used to construct these tables will be presented in the
next section. The methodology used the compilation module is illustrated in Fig. 3.

The user interface can ease the task of writing a data-parallel program. Information
provided by the interface includes the intermediate results of compilation, interprocessor
communication, distribution of data elements onto processors, and execution results. The
details of user interface will be given in the next section.

3. IMPLEMENTATION ISSUES

In this section, we describe the implementation of the proposed data-parallel com-
piling system. The implementation has two major parts: the compiler system and the
user interface.

3.1 Compiler System

HPF provides several useful directives, such as PROCESSORS, TEMPLATE,
ALIGN, and DISTRIBUTE, for users to specify the mappings of data onto processors [10].
The compiler can analyze these directives and the array accessing patterns so that the



COMMUNICATION-EFFICIENT DATA-PARALLEL COMPILING SYSTEM 829

Fig. 2. Structure of the proposed data-parallel compiling system.

global references of array elements can be translated into local addresses on processors,
and so that communication sets can be generated, if needed, so that processors to access
non-local data. According to this information, the compiler can then generate an SPMD
code for execution.

HPF supports a two-level mapping model which users can employ to specify data
distribution. A two-level mapping is used to conceptually divide the data distribution into
two steps: aligning data with a template and distributing the template onto the abstract
processors. A one-level mapping is a degenerated case of a two-level mapping if the array
elements are identically aligned on a template.

In Section 3.1.1, we will present how to represent an HPF program. Then, Section
3.1.2 will describe the kernel of the compiling system.

3.1.1 Preprocessing

Given an HPF program, the compiler first scans and parses the program to generate
an internal representation, or program representation, for that program. The internal
representation should not only preserve the semantic meanings of the source program,
but also extract necessary information for subsequent processing.



KUEI-PING SHIH, CHING-YING LAI, JANG-PING SHEU AND YU-CHEE TSENG830

Fig. 3. Compilation phases in the compilation module.

The internal representation is shown in Fig. 4. A header, “Program”, leads the
representation. Following the header is a number of “Statement” nodes. Each “State-
ment” node can be either an “Assignment Statement,” a “DO Statement,” or an “IF
Statement.” The “Assignment Statement” node contains two children: “Left” and
“Right,” which respectively indicate the left- and right-hand side variables. The “Left”
node in turn has two children: “Id” and “Subscript,” which contain the variable’s name
and an expression to represent the subscript expression, respectively. The “Subscript”
node can also represent multidimensional array structures. The “Right” node can have
a few “Operand” nodes, each of which has an “Id” and a “Subscript,” which indicate the
operand's name and its subscript expression, respectively. If the operand is a constant,
the ‘Id’ node is represented as ‘—’.

A “DO Statement” has three children: “Id,” “Range,” and “Body.” The “Id” node
carries the induction variable’s name. The “Range” node has three children: “Lower
Bound,” “Upper Bound,” and “Stride,” which indicate how “Id” changes in value. The
“Body” node points to a list of “Statement” nodes, each of which can be any one of the
three statements.

As for the “If Statement” node, it contains two children: “True” and “False,” each of
which can have a list of “Statement” nodes as its children.



COMMUNICATION-EFFICIENT DATA-PARALLEL COMPILING SYSTEM 831

Fig. 4. The program representation design in the compiler system.

The above description does not contain the declaration part. We store such informa-
tion separately for subsequent use. The data structure is designed for efficient access by
compiler writers. The representation can be easily extended to multidimensional repre-
sentation. The general representation is illustrated in Fig. 5.

3.1.2 Kernel design

Presently, the compiling system supports both the one-level and two-level mapping
compilation techniques. The benefit is that we can process HPF programs in which array
elements are block-cyclically distributed onto processors in either one-level or two-level
mapping. However, the array statements that are allowed must be limited to doall array
statements, the array dimension must be one-dimensional, and the subscript must contain
only one induction variable. The extension to multi-dimensional structures is currently
under investigation. We also plan to include the affined subscripts in the near future.



KUEI-PING SHIH, CHING-YING LAI, JANG-PING SHEU AND YU-CHEE TSENG832

Fig. 5. General structure for representing the declaration area of an HPF program.

In the implementation, we apply some one-level mapping techniques proposed in
[11], where efficient methods are presented to enumerate the local memory access se-
quence and to generate communication sets. Given a one-level mapping, the array refer-
ence patterns are generated, from which a class table to record the classification of
blocks is created. As shown in [11], each array statement can be regularly partitioned
into several repeating sets of classes. According to the class table, generation of commu-
nication sets and local memory access sequences can be efficiently achieved. Generating
communication sets and local memory access sequences will cause a trade-off between
execution time and memory usage. Hence, if the communication sets are small, commu-
nication set generation can be pre-computed at compile-time to save some run-time exe-
cution.

One interesting problem in two-level mapping is the hole compression problem [9].
It is known that aligning related data objects together and distributing them onto the
same processor can reduce interprocessor communication. However, non-unit alignment
stride will result in a lot of “memory holes.”

Memory holes not only waste memory, but also degrade system performance be-
cause the memory spatial locality may be reduced. These holes should be removed. At
the same time, the computation statements may also need to be changed, as the array
elements are now located at difference places after compression. The hole compression
technique used in this implementation is based on the one proposed in [9]. First, the



COMMUNICATION-EFFICIENT DATA-PARALLEL COMPILING SYSTEM 833

blocks are classified into classes. Then, a class table to record the classification of blocks
is generated. From the class table, a compression table is generated. Since data distribu-
tion on a processor typically has some repetitive patterns, simply recording the attributes
of the first repetitive pattern will be sufficient. Using the compression table, we can eas-
ily obtain the compressed local array. It is worth mentioning that hole compression only
affects where the array elements are placed in a processor’s local memory, not which
array elements are assigned to which processors. Therefore, we can transform an array
statement in a two-level mapping into an equivalent array statement in a one-level map-
ping. The techniques used to generate communication sets and local memory access se-
quences for array statements in one-level mappings can, thus, be applied to.

Although we can deal with one-level and two-level mappings in a consistent manner,
it is still necessary to transform the communication sets and local memory access se-
quences into ones in the compressed local arrays. The transformations need not be per-
formed on all array elements − only the first array element on every block needs to be
recomputed. Doing so can save a lot of computation.

The user interface plays as an important role in a compiler system; without it, writ-
ing a parallel program would be a pretty difficult job. We have designed and imple-
mented a user interface for our compiling system. Through the interface, a user can write,
edit, and compile his/her programs, select and use compilation techniques, simulate and
run the generated SPMD program, and view the results. In addition, performance statis-
tics, intermediate compilation information, resultant SPMD codes, memory usage before
and after hole compression, communication sets among processors, etc., are also pro-
vided. Wherever appropriate, graphs and tables are used to increase visual readability.
These will greatly help users analyze their program and, thus, decide how to improve it
by either adjusting the program parameters or tuning the system parameters.

Fig. 6 shows the first screen that is seen upon entering UPPER. The upper-left cor-
ner shows the source program (Fortran or HPF). After compilation, the parallelized or
SPMD codes are listed in the upper-right corner. The execution results are shown in the
lower half. There are 7 pull-down menus on the top bar: File, View, Compile, Execution,
Simulate, Options, and Help, which are explained in the following.

In the File menu, three commands are supported: Open, Editor, and Exit. By means
of the Open command, users can open an existing source program to compile. The Editor
command will invoke an on-line editor. All of the jobs will stop and the system will halt
if the Exit command is selected.

When a source program is opened, the Options menu can be opened to set system
parameters. Two submenus are provided: Set Machine Environment and Compilation
Techniques. In the Set Machine Environment submenu, users can set the execution envi-
ronment, such as the machine type (distributed-memory multiprocessor, shared-memory
multiprocessor, or supercomputer), the number of processors, and the network topology.
These parameters will also be used by the simulator to simulate the execution of the gen-
erated parallelized code in the specified environment. For the case presented in this paper,
the target machine will be an nCUBE/2 with up to 16 processors. From the submenu
Compilation Techniques, users can choose one compilation technique to compile their
program.



KUEI-PING SHIH, CHING-YING LAI, JANG-PING SHEU AND YU-CHEE TSENG834

Fig. 6. A snapshot of UPPER’s user interface. The upper-left part is the original HPF program, the
upper-right part is the SPMD code generated by the compiling system, and the lower part
contains the execution results.

Since UPPER is designed for academic research, several compilation techniques
have been developed for experimental purposes. Currently, the choices include: commu-
nication-free partitioning with/without duplicate data [12], non-communication-free
transformation [13], vectorization transformation [14], compilation for one-level map-
pings [11], and compilation for two-level mappings [9]. The first three items are for com-
piling sequential Fortran programs into parallelized or vectorized ones, and the last two
are for compiling HPF programs into SPMD codes.

After choosing a suitable compilation technique, a user can use Compile on the
menu bar to compile his/her program. The produced program, in parallelized, vectorized,
or SPMD form, will be shown on the screen. The user can compare the source program
with the produced codes and, to some extent, understand how the parallel compiler trans-
forms the source program.

When the communication-free partitioning with/without duplicate data or
non-communication-free transformation option is chosen, the resultant code will be in-
termediate codes for the simulator. Then the Simulate menu can be selected. Some
simulation results will be generated and illustrated by the demonstration system. If the
vectorization transformation option is chosen, Run under the Execution menu can be
chosen to submit the vectorized codes to a Convex C3840 vector computer. On the other
hand, the user should choose compilation for one- or two-level mappings if the input is
an HPF program; the output will be some SPMD codes, which can be submitted to an



COMMUNICATION-EFFICIENT DATA-PARALLEL COMPILING SYSTEM 835

nCUBE/2 if Run command is selected. We support two execution models for users to
run programs: Run and Speedup Evaluation. The former is used to run the SPMD pro-
gram on nCUBE/2 by means of a user-specified number of processors, and the execution
results will be shown in the lower half of the screen, below the source and the generated
SPMD programs, such as in the lower half of Fig. 6. The latter, Speedup Evaluation, is
for experiments on network size; once chosen, the SPMD codes will be run on nCUBE/2
several times using 1, 2, 4, 8, and 16 processors. The performance statistics will be fed
back to the system for analyses. The user can easily grasp how his/her program performs
under different conditions.

One feature new to UPPER is the View menu, which provides three new functions
for visualizing our system: View Communication, View Compression, and View Per-
formance. The former two functions are available after executing the Compile command,
while the last is available after executing the Speedup Evaluation command. View Com-
munication is used to demonstrate communication set generation, which is a key part of
compiling an HPF program. Users can, thus, observe the communication pattern and the
amount of communication among processors. An illustrative example of View Commu-
nication is shown in Fig. 7. In Fig. 7, the left half shows the communication pattern.
Nodes in the left column are senders, and those in the right column receivers. The con-
nection lines indicate necessary of interprocessor communication between the two nodes.
The right half shows the communication sets. The upper-right part is for senders, and the
lower-right part for receivers.

Fig. 7. A snapshot of View Communication, which illustrates the communication pattern and the
amount of communication among processors.



KUEI-PING SHIH, CHING-YING LAI, JANG-PING SHEU AND YU-CHEE TSENG836

The View Compression command can visually demonstrate the data distribution on
processors with and without hole compression. By means of View Compression, users
can easily visualize the memory usage. Fig. 8 shows a snapshot of View Compression.
The upper half is the data layout on processors with hole compression, while the lower
half is that without hole compression.

Fig. 8. A snapshot of the View Compression screen, which illustrates the data distribution on proc-
essors with and without hole compression.

Fig. 9. A snapshot of the View Performance screen, which compares the 1-processor execution
time, speedup, and efficiency, against the 2-, 4-, 8-, and 16-processor cases.



COMMUNICATION-EFFICIENT DATA-PARALLEL COMPILING SYSTEM 837

The View Performance command provides a visual comparison of the performance
of the program when executed on a 1-, 2-, 4-, 8-, and 16-processor nCUBE/2. This en-
ables comparison of the execution time, speedup, and efficiency, against the 1-processor
case. Speedup is defined as T1/Tp, where T1 is the execution time with one processor
and Tp is the execution time with p processors. Efficiency is defined as speedup/p. A
snapshot of View Performance is illustrated in Fig. 9.

Finally, the Help menu provides on-line guidance regarding how to correctly use
the UPPER environment.

4. CONCLUSIONS

In this paper, we have described the design and implementation of a communica-
tion-efficient data-parallel programs compiling system. The compiler has been incorpo-
rated into the UPPER environment, a multi-platform compiling environment that we
have developed at National Central University. Given an HPF program, the compiler
system can efficiently enumerate the computation and communication sets. Both
one-level and two-level mappings can be effectively processed by the system. For the
case of two-level mapping, the compiling system can even perform hole compression by
eliminating the memory holes, which are caused by non-unit alignment stride in the pro-
gram. Hole compression can save memory space, increase spatial locality, and further
improve system performance.

The user interface of UPPER is designed to help users quickly obtain experimental
results. Given an HPF program, an SPMD code can be generated for execution on
nCUBE/2. Important information, such as intermediate compilation results, memory us-
age, hole compression results, and communication sets among processors, can be col-
lected and shown to users to give them a better understanding of the internal parallelism
in their programs. We expect that this environment can greatly reduce the work involved
in writing parallel programs.

ACKNOWLEDGEMENTS

This work was supported by the National Science Council of the Republic of China
under grants NSC 89-2213-E-008-013, NSC 89-2213-E-008-023, NSC 89-2213-E-008-
024, and NSC 89-2213-E-008-025.

REFERENCES

1. M. Gupta and P. Banerjee, “PARADIGM: A compiler for automatic data distribution
on multicomputers,” in Proceedings of the ACM International Conference on Super-
computing, 1993, pp. 87-96.

2. C. D. Polychronopoulos, M. Girkar, M. R. Haghighat, C. L. Lee, B. Leng, and D.
Schouten, “Parafrase-2 : an environment for parallelizing, partitioning, synchronizing
and scheduling programs on multiprocessors,” in Proceedings of International Con-
ference on Parallel Processing, Vol. 2, 1989, pp. 39-48.



KUEI-PING SHIH, CHING-YING LAI, JANG-PING SHEU AND YU-CHEE TSENG838

3. M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S. W. Liao, E.
Bugnion, and M. S. Lam, “Maximizing multiprocessor performance with the SUIF
compiler,” IEEE Computer, 1996, pp. 84-89.

4. B. M. Chapman, P. Mehrotra, and H. P. Zima, “Programming in Vienna Fortran,”
Scientific Programming, Vol. 1, No. 1, 1992, pp. 31-50.

5. T. S. Chen, K. P. Shih, and J. P. Sheu, “Design and implementation of a
user-interactive parallel programming environment,” in Proceedings of the National
Science Council, Republic of China, Part A:Physical Science and Engineering, Vol.
20, No. 4, 1996, pp. 474-490.

6. nCUBE/2 Supercomputers Manual, NCUBE Company, 1990, Gates94.
7. H. Zima and B. Chapman, Supercompilers for Parallel and Vector Computers, New

York: ACM Press, 1991.
8. M. Wolfe, High Performance Compilers for Parallel Computing, Redwood City, CA:

Addison-Wesley, 1996.
9. K. P. Shih, J. P. Sheu, C. H. Huang, and C. Y. Chang, “Efficient index generation for

compiling two-level data-processor mappings in data-parallel programs,” Journal of
Parallel and Distributed Computing, Vol. 60, No. 2, 2000, pp. 189-216.

10. C. Koelbel, D. Loveman, R. Schreiber, G. Steele Jr., and M. Zosel, The High Per-
formance Fortran Handbook, The MIT Press, 1994.

11. W. H. Wei, K. P. Shih, and J. P. Sheu, “Compiling array references with affined func-
tions for data-parallel programs,” Journal of Information Science and Engineering,
Vol. 14, No. 4, 1998, pp. 695-723.

12. T. S. Chen and J. P. Sheu, “Communication-free data allocation techniques for paral-
lelizing compilers on multicomputers,” IEEE Transactions on Parallel and Distrib-
uted Systems, Vol. 5, No. 9, 1994, pp. 924-938.

13. J. P. Sheu and T. S. Chen, “Partitioning and mapping of nested loops for linear array
multicomputers,” The Journal of Supercomputing, Vol. 9, No. 1/2, 1995, pp. 183-202.

14. C. Y. Chang, “Design and implementation of an assistant tool for vector compilers,”
Department of Computer Science and Information Engineering, National Central
University, Taiwan, 1995.

Kuei-Ping Shih (���) received the B.S. degree in Mathematics from Fu-Jen
Catholic University, Taiwan, in June 1991 and the Ph.D. degree in Computer Science and
Information Engineering from National Central University, Taiwan, in June 1998. After
two years of military obligation, he joined the faculty of the Department of Computer
Science and Information Engineering, Tamkang University, Taiwan, Republic of China,
as an assistant professor in 2000. His research interests include parallelizing compilers,
interconnection network, parallel and distributed computing, and wireless network pro-
tocol design.

Ching-Ying Lai (���) was born in Taiwan, Republic of China, on February 26,
1968. She received B.S. degree in applied mathematics from the Providence University,
Taiwan, in 1992 and the M.S. degree in Computer Science and Information Engineering
from the National Central University, Taiwan, in 1998. She has worked at the Com-



COMMUNICATION-EFFICIENT DATA-PARALLEL COMPILING SYSTEM 839

puter & Communications Research Laboratories, Industrial Technology Research Insti-
tute (CCL/ITRI) from 1998 so far. Her research interests include multimedia network-
ing and mobile multimedia computing.

Jang-Ping Sheu (���) received the B.S. degree in Computer Science from
Tamkang University, Taiwan, Republic of China, in 1981, and the M.S. and Ph.D. de-
grees in Computer Science from the National Tsing Hua University, Taiwan, Republic of
China, in 1983 and 1987, respectively.

He joined the faculty of the Department of Electrical Engineering, National Central
University, Taiwan, Republic of China, as an associate professor in 1987. He is currently
a professor of the Department of Computer Science and Information Engineering, Na-
tional Central University. From July of 1999 to April of 2000, he was a visiting scholar at
the Department of Electrical and Computer Engineering, University of California, Irvine.
His current research interests include parallelizing compilers, interconnection networks,
and mobile computing.

Dr. Sheu is a senior member of the IEEE, a member of the ACM and Phi Tau Phi
Society. He is an associate editor of Journal of Information Science and Engineering,
Journal of the Chinese Institute of Electrical Engineering, and Journal of the Chinese
Institute of Engineers. He received the Distinguished Research Awards of the National
Science Council of the Republic of China in 1993-1994, 1995-1996, and 1997-1998.

Yu-Chee Tseng (	
�) received his B.S. and M.S. degrees in Computer Science
from the National Taiwan University and the National Tsing-Hua University in 1985 and
1987, respectively. He worked for the D-LINK Inc. as an engineer in 1990. He obtained
his Ph.D. in Computer and Information Science from the Ohio State University in Janu-
ary of 1994. From 1994 to 1996, he was an Associate Professor at the Department of
Computer Science, Chung-Hua University. He joined the Department of Computer Sci-
ence and Information Engineering, National Central University in 1996, and has become
a professor since 1999. Since August 2000, he has become a professor at the Department
of Computer Science and Information Engineering, National Chiao Tung University,
Taiwan. Dr. Tseng served as a Program Committee Member in the International Confer-
ence on Parallel and Distributed Systems, 1996, the International Conference on Parallel
Processing, 1998, the International Conference on Distributed Computing Systems, 2000,
and the International Conference on Computer Communication and Networks 2000. He
was a Workshop Co-chair of the National Computer Symposium, 1999. His research in-
terests include wireless communication, network security, parallel and distributed com-
puting, and computer architecture.

Dr. Tseng is a member of the IEEE Computer Science and the Association for Com-
puting Machinery.


