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Robust Stabilization of Axial Flow
Compressor Dynamics Via Sliding
Mode Design
Issues of the robust stabilization for axial-flow compressor dynamics with respect t
uncertainty in axisymmetric characteristics are presented. This is achieved by the d
of sliding mode controllers. By assuming an actuation directly modulating the mass
such as the close-coupled valve, the domain of attraction for the unstalled oper
equilibrium will be enlarged to a great extent. Nonlocal robust stability of the opera
equilibrium, with respect to the uncertainty in the unstable branch of axisymmetric c
pressor characteristic, is also provided by the proposed control laws. Moreover,
demonstrated that the robust control scheme can be employed to fulfill the task o
recovery. The proposed stabilization design does not require an explicit form for c
pressor characteristic.@DOI: 10.1115/1.1386393#
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1 Introduction

Axial flow compressors are widely used in both aerospace
industrial applications due to their potential of high efficiency.
achieve high efficient operation of an engine, the air prior to co
bustion is known to be greatly compressed by compressor@1#.
However, when a compressor operates close to its maxim
pressure-rise, two aerodynamic instabilities can happen, bot
which reduce system’s performance. One is the so-called ‘‘ro
ing stall,’’ which is a dynamic instability that occurs when a
asymmetric flow pattern develops in the blade passages of a c
pressor stage. The other is a large-amplitude, axisymmetric o
lation in the overall pumping system and is known as ‘‘sur
behavior.’’ The rotating stall will result in a drastic pressure dr
of the fluid within the compressor, while surge behavior rend
the compressor suffering violent periodic impingements and d
ages the compressor eventually. Therefore, the prevention of t
two instabilities becomes an important issue.

Conventionally, a stall~or surge! line is drawn to provide a safe
operation boundary for compressors. Such a conservative trad
unduly restricts engine’s capability. Therefore, various con
schemes have been recently proposed to allow compresso
operate safely beyond the stall line and thus increase system
ciency. Among these, the active control@2# and the bifurcation
control @3# designs guarantee local stabilities, while the backst
ping designs@4# achieve global stabilities for specific cubic-typ
compressors. However, the robustness issues and study of
cubic characteristic systems haven’t been considered yet.

When there is no 2D distributive actuation available, the co
pression system described by a three-state model@5# is known to
be uncontrollable@3,6,7#. For compressors with the so-calle
‘‘left-tilt’’ property operating at the stable unstalled equilibrium
the system can be characterized as a nonlinear minimum-p
system@8#. The domain of attraction~DOA! of the unstalled equi-
librium has been effectively enlarged by@8#. But, robustness was
not considered in that study. It is known that the unstable por
of the compressor axisymmetric characteristic is hard to mea
and the associated system uncertainties are inevitable in rea
plications@9#. A robust control scheme was recently proposed
deal with such uncertainties by assuming the axisymmetric c
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acteristic of a compressor is a specific cubic function@10#. The
robust study for compressor systems with noncubic characteri
still haven’t been considered.

The major goal of this paper is to study nonlocal stabilization
the unstalled equilibria for ‘‘left-tilt’’ type of system subject to
uncertainties in the compressor characteristics. This will
achieved by the design of a sliding mode controller. Sliding mo
design is characterized by its robustness and low computati
requirements@11#. Based on a simplified two-state dynamic
model, sliding mode control has been applied to the robust con
of surge behavior in compressors@12#. However, the results for
stall dynamics had not been obtained yet. There are two m
objectives of this paper. One is to attain nonlocal stabilization
the unstalled system equilibria, and the other is to provide syst
robustness with respect to the uncertainty in the compressor c
acteristic. These results will not rely on the explicit forms for t
compressor characteristics. The actuation proposed to be uti
in the study is an additive-type control for the mass flow dyna
ics, which can be practically implemented in several ways@13#.

The paper is organized as follows. Section 2 recalls the co
pression system model developed by@5#. A brief description of
compressor dynamics is also given to highlight the motivation
the paper. It is followed by the nonlocal stabilization design of t
unstalled equilibria via sliding mode control schemes. The cu
compressor model is adopted in Section 4 to demonstrate the
lidity of the designs. Finally, conclusions are given in Section

2 Dynamical Equations for Axial Flow Compression
Systems

Conceptually, a compression system can be represented
series of components: inlet duct, compressor, exit duct, plen
and throttle as depicted in Fig. 1. A lumped-parameter mode
axial flow compressors introduced by@5# in terms of nondimen-
sional variables using the notation of@3# is recalled as follows:

dA

dt
5

a

pW E
0

2p

Css~ṁC1WAsinu!sinudu, (1)

dṁC

dt
52DP1

1

2p E
0

2p

Css~ṁC1WAsinu!du, (2)

dDP

dt
5

1

4B2 $ṁC2F~g,DP!%. (3)
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The quantities appearing in the model above are given in
Nomenclature. In the dynamical equations above, Eq.~2! is ob-
tained from momentum balance and implies that the accelera
of the fluid in the inlet and outlet ducts is proportional to t
difference between the pressure rise across the compresso
that in the plenum. The variable of integrationu represents the
angular displacement from a reference stationary with the
harmonic mode of the stall wave@5#. Moreover, Eq.~1! deter-
mines the rate of amplitudeA(t), while Eq. ~3! governs the
change rate of the plenum pressure. The compressor axisymm
characteristicCss(•), characterizing the steady pressure r
across the compressor, is often an S-shaped function and ca
modeled by a suitable nonlinear function@5#. It is observed that
the nonlinearities of system~1!–~3! mainly come from the axi-
symmetric compressor characteristicCss(•) and the throttle char-
acteristic functionF(g,DP). In this paper,Css(•) is assumed to
be smooth enough whileF(g,DP) is assumed to be strictly in
creasing with respect to bothg andDP.

Normally, the system~1!–~3! operates at the stable unstalle
equilibrium of which A50. Denotex05(0,ṁC

0 ,DP0)T an un-
stalled equilibrium point. By lettingA50, it is easy to check from
Eqs.~2!–~3! that ṁC

0 5F(g0 ,DP0) andDP05Css(ṁC
0 ) for given

g5g0 . In addition, there usually exists another equilibriu
branch for system~1!–~3! with AÞ0, which is the so-called
‘‘stalled equilibria.’’ The nominal unstalled operating point a
known to be locally asymptotically stable~resp. unstable! for
Css8 (ṁC

0 ),0 ~resp. forCss8 (ṁC
0 ).0) @3#. Moreover, the unstalled

operating points are found to lose linear stability at the point w
Css8 (ṁC

0 )50. This operating point is the so-called ‘‘stall inceptio
point’’ at which both stalled and unstalled system equilibria jo
together due to the occurrence of stationary bifurcation@3#. When
compressor operates at an unstalled point near the stall ince
point, a small perturbation of the throttle control value or lar
enough disturbance might cause the compression system to
hibit a jumping behavior from stable operation to some ot
stable stalled equilibrium due to the coexistence of multiple eq
libria. This results in a sudden drop of the pressure rise and
occurrence of rotating stall in real operations.

For illustrations, typical time responses and bifurcation d
grams for a compressor with cubic characteristic defined in
~22! of Section 4 are depicted in Figs. 2 and 3. In Figs. 2~d! and
3~d!, solid curves denote stable equilibria while dotted curves r
resent unstable equilibria with respect to the variation of thro
setting. The system equilibria are plotted inDP2ṁC plane, which
are obtained by solving Eqs.~1!–~3! via the code AUTO@14#.
Denote gs and gc , respectively, the values ofg at which the
compression system exhibits saddle-node bifurcation and sta
ary bifurcation@15#. The throttle control functions forg5gs and
g5gc are shown in Figs. 2~d! and 3~d! as two dash-dotted lines
It is clear from the discussions above that the throttle function
g5gc intersects the axisymmetric compressor characteri
Css(ṁC) at the pointṁC5ṁC

P with Css8 (ṁC
P)50, i.e., the local

peak point ofCss(ṁC) as depicted in Figs. 2~d! and 3~d!. Since
Css8 (ṁC),0 for ṁC.ṁC

P , the unstalled operating equilibrium
x05(0,ṁC

0 ,DP0)T is hence stable forṁC
0 .ṁC

P . On the contrary,
Css8 (ṁC).0 for 1,ṁC,ṁC

P . Thus, the unstalled operating equ

Fig. 1 Schematic diagram of an axial-flow compression sys-
tem
Journal of Dynamic Systems, Measurement, and Control
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librium x0 is unstable for 1,ṁC
0 ,ṁC

P . The other curve, which
emerges from the local peak point ofCss(ṁC) and is plotted by
dotted-line connecting with solid-line, denotes the equilibrium s
lution of ~1!–~3! with AÞ0. This solution curve is marked a
‘‘stalled equilibria’’ as depicted in Fig. 2~d!.

Fig. 2 Jump behavior for operation in the prestalled zone „a… A
versus t, „b… mass flow versus t, „c… pressure rise versus t, „d…
plot in the phase plane

Fig. 3 Jump behavior for operation in the stalled zone „a… A
versus t, „b… mass flow versus t, „c… pressure rise versus t, „d…
plot in the phase plane
SEPTEMBER 2001, Vol. 123 Õ 489
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Multiple system equilibria are observed to coexist forg<gs .
For instance, consider the time response for the case of w
gc,g,gs as depicted in Figs. 2~a!–2~d!. The two transient
trajectories denoted as 1 and 2 in Fig. 2~d! go to different final
states for the same value of the throttle control value. Initial sta
of trajectories 1 and 2 are, respectively, given byx01

5@0.6,1.88,2.769#T andx025@1.5,1.88,2.769#T. The jumping be-
havior associated with trajectory 2 is obviously caused by a la
disturbance of the initial condition, which makes the system s
eventually settles down to an equilibrium with a finite amplitu
of stall wave and a much lower pressure rise as depicted in F
2~a!–2~d!. For smaller disturbance, the system state marked
trajectory 1 returns back to the original unstalled equilibrium
depicted in Figs. 2~a!–2~d!. The jumping behavior, as presente
above, might also attribute to a perturbation of the throttle con
value as depicted in Fig. 3. In Figs. 3~a!–3~d!, the system state
with initial x01 jumps to a stable stalled equilibrium along traje
tory 1 for the perturbed control valueg,gc .

By intuition, the rotating stall occurring forgc,g<gs due to
finite-size disturbance might be avoided by making the DOA
the unstalled equilibrium large enough. However, suitable s
recovery schemes are required to be undertaken for annihila
rotating stall forg,gc @16#. One of commonly used stall recov
ery control schemes is to push the system response toward a s
unstalled equilibrium by setting a new value of the throttle cont
parameterg to assureg.gc and to make the differenceg2gc
large enough. But, such control scheme apparently decrease
efficiency of engine. It is obvious that the efficiency loss by su
a stall recovery scheme will be minimized if the DOA of th
desired unstalled equilibrium can be effectively enlarged. A s
ing mode control scheme is proposed in the next section to fu
these two tasks with respect to the uncertainty in the compre
characteristics.

3 Robust Stabilization
Though it is known that the compression system is uncont

lable under throttle control input@3,6,7#, the throttle control has
been used to stabilize the bifurcated solution branch@3,4# or to
fulfill the task of the stall recovery@16#. In order to study the
robust stabilization of system~1!–~3!, the compression system i
assumed to have one more control input available. Denotex0

5(0,ṁC
0 ,DP0)T the desired unstalled equilibrium at someg

5g0. Let x5(x1 ,x2 ,x3)T with x15A, x25ṁC2ṁC
0 , x35DP

2DP0, andu25g2g0 be the throttle control force. System~1!–
~3! can then be rewritten as

dx1

dt
5

a

pW E
0

2p

Css~x21ṁC
0 1Wx1 sinu!sinudu (4)

dx2

dt
52x32DP01

1

2p E
0

2p

Css~x21ṁC
0 1Wx1 sinu!du1u1~ t !

(5)

dx3

dt
5

1

4B2 $x21ṁC
0 2F~g01u2~ t !,x31DP0!%. (6)

Here,u1(t) is an additive-type control input assumed to be ava
able in the control design. Implementation of such control is
hard to find. For instance, the close-coupled valve is one
choices@12# and another ways of implementation can be found
@13#.

It is easy to check that system~4!–~6! is uncontrollable since
A50 is an invariant manifold. According to@3#, that means no
linear control laws can be obtained byu1 and u2 to provide the
stability of the unstalled operating equilibrium which is near t
stall inception point and lies on the unstable equilibrium branch
the uncontrolled model. In this paper, we will focus on the des
for fulfilling two main objectives. One is to enlarge the domain
attraction for the stable unstalled operating equilibrium pointx0,
490 Õ Vol. 123, SEPTEMBER 2001
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and the other is to provide a scheme for stall recovery when
tating stall occurs atg,gc . The design is shown in Section 3.2 t
be robust with respect to the uncertainty of theCss(•) function.
Details are given as follows.

3.1 Uncertainty in the Axisymmetric Characteristic
Css„"…. It is known that the stable portion of theCss function
can usually be determined by careful experiment. On the contr
the unstable branch can hardly be measured. The uncertain
system dynamics is hence inevitable. From the structure of sys
dynamics~4!–~6!, such kind of uncertainty belongs to the s
called ‘‘mismatched’’ type and is not easy to manipulate us
traditional methodologies. Nevertheless, based on the four
sumptions~H1!-~H4! given in Hypothesis 1, a sliding mode con
trol scheme can still be employed to achieve robust, nonlo
asymptotic stability for the unstalled operating point subjecting
such ‘‘mismatched-type’’ uncertainty. Detailed are given as f
lows.

First, we recall the definition of concave function as given
the following.

Definition 1. A real-valued functionf is said to be concave on
interval J#R if

f~x1h!2f~x!<f8~x!•h for all xPJ and x1hPJ.
(7)

To facilitate the stabilization design, we make the following h
pothesis.

Hypothesis 1. Suppose the axisymmetric compressor charac
istic Css(•) satisfies the following conditions:
~H1! Css(ṁC) is a C2 function with a local maximumCss(ṁC

P)
.0 at ṁC5ṁC

P .
~H2! Css(ṁC) is strictly decreasing withCss9 (ṁC)<0 for all ṁC

>ṁC
P .

~H3! Css(ṁC).0 for all ṁC,ṁC
P .

~H4! Css(ṁC) satisfies the so-called ‘‘left-tilt’’ property@8#, i.e.,
Css(ṁC

P1h),Css(ṁC
P2h) for all h.0.

According to Definition 1, the compressor characteristicCss(ṁC)
is a concave function forṁC>ṁC

P if conditions ~H1! and ~H2!
hold. It is also observed from~H1!-~H2! that there exists a poin
mİ C.ṁC

P such thatCss(mİ C)50. This implies thatCss(ṁC)>0 for
ṁC<mİ C andCss(ṁC),0 for ṁC.mİ C . In practical application,
it is reasonable to assume that the unstalled operating poinx0

5@0,ṁC
0 ,DP0#T satisfies the relation:ṁC

P,ṁC
0 ,mİ C since

Css(ṁC
0 ).0.

Next result is recalled from@8#.
Lemma 1. Suppose Hypothesis 1 holds andṁC

0 1x2.ṁC
P . Then

for system~4!–~6!, x1ẋ1<0 and the equality holds only whe
x150.

Remark 1. Compressors satisfying all the conditions of~H1!-
~H4! may not be common, but are not rare either@8#.

Let the curveLr denote the right portion of the axisymmetr
compressor characteristicCss(ṁC) for ṁC.ṁC

P , which is usually
obtainable by careful experiment. As depicted in Fig. 4, the cu
denoted byLbl is obtained from the symmetry of the curveLr

with respect to the lineṁC5ṁC
P . For the robust design, in this

paper, the axisymmetric compressor characteristic is assume
satisfy Hypothesis 1. This implies that the unstable branch
Css(ṁC), i.e., the left portion ofCss(ṁC) for ṁC,ṁC

P as marked
by dotted-curve, must lie within the shaded region as shown
Fig. 4.

3.2 Sliding Mode Designs. To achieve the main goals o
the paper as stated in Section 2, in this subsection, we employ
sliding mode control~SMC! technique to fulfill the design task. In
general, SMC design procedure consists of three major steps~see
e.g.@17,18#!. The first step is to choose a sliding surface, which
a function of system state. It is followed by the design of t
controller for governing the motion on the sliding surface su
Transactions of the ASME
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that the reduced-order dynamics possesses desired stability pe
mance. The final step is to construct an extra control for guar
teeing that the system state will reach the sliding surface
forcing the system state to stay near the sliding surface. The s
ing surface generally needs to be deliberately selected to ach
asymptotic stability of the equilibrium on the surface. In gener
there are lots of choices of sliding surface for control design.
this study, we choose a special one for the robust design.
implied by Lemma 1, the amplitude of stall wavex1 will eventu-
ally go to zero if the mass flowṁC

0 1x2.ṁC
P . That means the

rotating stall can be prevented and/or recovered by makingṁC
0

1x2.ṁC
P for a given unstalled operating pointx0

5@0,ṁC
0 ,DP0#T. Thus, as motivated by the result of Lemma 1, t

sliding surface for the robust stabilization is selected as:

S~x!5x250. (8)

If the system operates under the case of whichgc<g<gs , the
objective of the control algorithm is to enlarge the domain
attraction of the working unstalled equilibriumx0. In such cases,
the control inputu2(t) can be simply set to zero since the u
stalled operating equilibrium is known to be asymptotically stab
However, when the system operates withg<gc due to some un-
certainty on the throttle function, the control inputu2 will be used
to fulfill the task of stall recovery. That is,u2(t) will be selected
as a constant bias such thatg1u25gd , of which gd satisfies the
relation:ṁC

0 5F(gd ,DP0), and let the unstalled equilibriumx0 be
the desired operating point for stall recovery from rotating sta

Now, we show the asymptotic stability of the reduced-ord
dynamics on the sliding surfaceS in Eq. ~8!. When the system
state is trapped in the sliding surface onS(x)50, the following
two conditions are required to be satisfied@11#:

S50 and Ṡ50. (9)

The reduced dynamics on the sliding surface is then obtained f
Eqs.~4! and ~6!, by lettingx250, as

Fig. 4 Maximal uncertainty allowed in the control design
Journal of Dynamic Systems, Measurement, and Control
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dx1

dt
5

a

pW E
0

2p

Css~ṁC
0 1Wx1 sinu!sinudu, (10)

dx3

dt
5

1

4B2 $ṁC
0 2F~g01u2~ t !,x31DP0!%. (11)

For simplicity, choose the Lyapunov function candidate

V~x1 ,x3!5
1

2
•~x1

214B2x3
2!. (12)

for the reduced dynamics~10!–~11!. Taking the time derivative of
V(x1 ,x3) along the trajectory of the reduced model~10!–~11!, we
have

V̇~x1 ,x3!5x1ẋ11x3$ṁC
0 2F~g01u2~ t !,DP01x3!%

5x3•$F~gd ,DP0!2F~gd ,DP01x3!%1x1ẋ1 .

(13)

SinceF(g,DP) is assumed to be strictly increasing with respe
to both g and DP, it follows that x3•$F(gd ,DP0)2F(gd ,DP0

1x3)%<0 and the equality holds only atx350. Therefore, by
Lemma 1, we have2V̇(x1 ,x3) is a ~locally! positive definite
function for ṁC

0 .ṁC
P . This implies that the asymptotic stabilit

of the unstalled equilibriumx0 is provided on the sliding surface
S50.

Next, we propose a control law to guarantee the reaching c
dition for a prescribed regionV in the state space. That is, th
domain of attraction of the operating equilibrium will be enlarg
with a certain extent. To give a clear definition of the subspaceV,
a real valueBl,ṁC

P is assumed to satisfy the following condition

Css~ṁC!<Css~ṁC
P! for all ṁC>Bl . (14)

In fact, Bl can always be found from conditions~H1! and~H2!. It
is clear that a positive constantMl<ṁC

0 2Bl /W exists sinceṁC
0

.ṁC
P.Bl . For the proof of reaching condition, the subsetV is

defined as:

Vª$xPR3ix1u<Ml ,x2>Bl2ṁC
0 1WMl%. (15)

Apparently,Ml is the allowed upper bound for the state variab
A(t) to deviate from its equilibrium value; whileBl2ṁC

0 1WMl
is that for the state variableṁC(t). The size ofV depends on the
choice ofMl andBl . In practical applications, the value ofBl is
first decided to be as small as possible from the nominalCss(•)
function. The value ofMl is then decided from the inequality
Bl2ṁC

0 1WMl,0. By the definition ofV as in Eq.~15!, we have
x21ṁC

0 1Wx1 sinu>Bl 1WMl2Wx1>Bl . It then follows from
Eq. ~14! that

Css~x21ṁC
0 1Wx1 sinu!<Css~ṁC

P!,

for all 0<u<2p and xPV.

(16)

The inequality~16! above can be regarded as the key property t
characterizes all the states within the setV.

We now show the reaching property for the sliding surfaceSby
using the Lyapunov criterion. Choose the Lyapunov function c
didate as

V~S!ª
1

2
S2. (17)

Taking the time derivative ofV(S) along the trajectories of sys
tem ~4!–~6!, we have
SEPTEMBER 2001, Vol. 123 Õ 491
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V̇~S!5SṠ5x2ẋ252x3x22~DP0!x21
x2

2p

3E
0

2p

Css~x21ṁC
0 1Wx1 sinu!du1x2•u1 .

(18)
v

b

r

m

492 Õ Vol. 123, SEPTEMBER 2001
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To assureV̇(S),0 for all trajectories with initial lying withinV,
the control law is proposed as:

u1~ t !5H x3~ t ! for x2~ t !.0,

x3~ t !1@Css~ṁC
0 !2Css

m~ t !# for x2~ t !,0,
(19)

where
Css
m~ t !5H 0 when x2~ t !1ṁC

0 1Wx1~ t !<ṁC ,

Css~x2~ t !1ṁC
0 1Wx1~ t !! when x2~ t !1ṁC

0 1Wx1~ t !.ṁC .
(20)
d-

ion
e the
Note that,Css
m(t) defined in Eq.~20! is obtainable from the stable

branch of the functionCss(•), which is measurable. The reachin
condition is hence provided by the next lemma.

Lemma 2. SupposeCss(ṁC) satisfies Hypothesis 1. Then th
reaching condition for system~4!–~6! is guaranteed by the contro
u1 as in ~19! for all initials lying within V, whereV is given in
~15!.

Proof: see Appendix A.
Remark 2. As discussed previously, there exists no constra

on x3 for reaching condition. In addition, by Lemma 1 and pre
ous discussions, the stability of the reduced dynamics onS50 is
provided for allx5(x1 ,x2 ,x3)T with ṁC

0 1x2.ṁC
P . According to

the principle of SMC design, the DOA of the unstalled equili
rium x0 is hence governed only byV, as in~15!.

The next theorem follows readily from Lemma 2 and the s
bility on the sliding surface.

Theorem 1. SupposeCss(•) satisfies Hypothesis 1. Then th
domain of attraction of the unstalled equilibriumx0 for system
~4!–~6! can be enlarged to the extent ofV as defined in~15!. The
proposed control design is robust with respect to the uncertain
in the functionCss(•).

The controlu1 defined in Eq.~19! for x2(t).0 is mainly used
for cancellation. As given in the next lemma, such control fo
can be set to zero.

Lemma 3. Suppose the state trajectory of system~4!–~6! can be
constrained within the half spaceCª$xux21ṁC

0 .ṁC
P% by a suit-

able control. Then it will eventually converge to the equilibriu
point x0.

Proof: Let the Lyapunov function candidate be given by

V~x1 ,x2 ,x3!5
1

2
~x1

21x2
214B2x3

2!.

Then the time derivative ofV along the system trajectory of sys
tem ~4!–~6! for x2(t).0 yields

V̇~x1 ,x2 ,x3!ux2~ t !.05x1ẋ11x2ẋ214B2x3ẋ3

<x2ẋ214B2x3ẋ3 ~By Lemma 1!

52x2x31
x2

2p E
0

2p

@Css~x21ṁC
0

1Wx1 sinu!2Css~ṁC
0 !#du14B2x3ẋ3

In the derivation above,u1 is set to zero forx2.0. This leads to
that x2/2p*0

2p@Css(x21ṁC
0 1Wx1 sinu)2Css(ṁC

0)#du,0 for x2
.0. As implied by the proof of Lemma 2, we have

V̇~x1 ,x2 ,x3!ux2~ t !.0<2x2x31~ṁC
0 !x31x2x32x3F~g,DP01x3!

5x3$F~g,DP01x3!2F~g,DP0!%<0,

where the equality holds only whenx50. Q.E.D.
g

e
l
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i-

-
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-

To smooth the chattering behaviors, a boundary layer of2d
,x2,d is introduced. The control law is modified as:

u1~ t !5H x3~ t ! when x2~ t !.d,

x3~ t !2k2~ t !~x21d! when2d<x2~ t !<d,

x3~ t !1@Css~ṁC
0 !2Css

m~ t !# when x2~ t !,2d.
(21)

HereCss
m(t) is given as in~20! andk2(t)5Css(ṁC

0 )2Css
m(t)/2d.

It is not difficult to check that the practical stability of the close
loop system~4!–~6! is guaranteed by the controlu1 as in Eq.~21!.
As implied by Lemma 3,u1(t) can also be set to zero forx2(t)
.0 to save the control effort.

4 Numerical Results
In the following, the proposed control laws proposed in Sect

3 are applied to a specific compression system to demonstrat
validity of the main design.

Consider the system of~1!–~3! with Css(•) adopted from@3# as
given by:

Css~y!520.5~y21!311.5~y21!11.56. (22)

Fig. 5 Results for operation in the pre-stalled zone „a… A ver-
sus t, „b… mass flow versus t, „c… versus t, „d… plot in the phase
plane
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The system parameters and control for the numerical study
selected and calculated asa50.4114; W50.3; B50.4; ṁC

P

52.0; ṁC
0 52.08; mİ C'3.15; d50.05; k2525.5. In addition,Bl is

chosen to be21.0, which can be justified from Eq.~22!. More-
n

h

o
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areover, Ml can be selected to 10.0 from the discussions in Sec
3.2. However, to allow a larger deviation ofṁC

0 , Ml is set to 3.0,
which is large enough for practical considerations.

From Eq.~21!, the control inputu1 can then be obtained
u1~ t !55
x3 when x2.0.05,

x32k2~x210.05! when 20.05<x2<0.05,

x31Css~2.08! when 22.18,x2,20.05

and ṁC~ t !10.3x1~ t !<3.15

x31Css~2.08!1Css~ṁC~ t !10.3x1~ t !! when 22.18,x2,20.05

and ṁC~ t !10.3x1~ t !.3.15

(23)
s

the

on-
sed

trol
is
inty

in
Case 1. Behavior of Nominal System.Let g051.3. As de-
picted by trajectory 2 in Fig. 2, the system might run into rotati
stall under large disturbances sincegc<g0<gs . The control
force defined in Eq.~24! is now utilized to force the system bac
to the desired unstalled equilibriumx0. The DOA of x0 in Eq.
~15! can then be obtained as:

Vª$xu0<x1<3.0, x2>22.18%. (24)

Numerical results for the control system are shown in Fig. 5. T
time responses without and with control with initialx0

5@1.5,1.88, 2.769#T are depicted in trajectories 1 and 2, respe
tively. Since a great extent of uncertainty in the compressor c
acteristic is allowed for the proposed designs, as depicted in
5~c!, a large control force guaranteeing the system state to re
the sliding surface is expected. When the transient is forced t
within the boundary layer, the control is switched to the line
state feedback and therefore the control force is dramatically

Fig. 6 Two compressor characteristics used in the simulation
works
g

k

he

c-
ar-

Fig.
ach
be

ar
re-

duced as observed in Fig. 5 fort.0.5. The transient state i
forced back tox0 as depicted by trajectory 2 in Fig. 5~d!.

Case 2. Behavior of Perturbed System.Next, we approximate
the Css(•) in Eq. ~22! by:

C̃ss~ṁC!520.4722ṁC
3 11.3069ṁC

2 10.3174ṁC10.5039.
(25)

For clarity, compressor characteristics as defined by~22! and~25!
are redrawn in Fig. 6. Note that small deviations exist between
two functions. One can treat Eq.~22! as the nominal model and
Eq. ~25! as a perturbed one. To justify the robustness of the c
trol designs, the same initial and target states in Fig. 5 are u
again while theCss(•) function in Eq.~22! is now replaced by Eq.
~25! for numerical study. In this case we use the same con
laws as in~23!. The numerical results are shown in Fig. 7. It
observed that the performance is not influenced by the uncerta
embedded in the variation of theCss(•) function. However, again,
the price of a large control force must be paid for, as depicted

Fig. 7 Results of Case 2 for operation in the pre-stalled zone
„a… A versus t, „b… mass flow versus t, „c… u versus t, „d… plot in
the phase plane
SEPTEMBER 2001, Vol. 123 Õ 493
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Fig. 7~c!. For the operations withg<gc , the results for stall
recovery given in Fig. 8 are also quite satisfactory. In this ca

Fig. 8 Results of Case 2 for operation in the stalled zone „a… A
versus t, „b… mass flow versus t, „c… u versus t, „d… plot in the
phase plane
e

494 Õ Vol. 123, SEPTEMBER 2001
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se,

g51.22,gc51.25 andu2 is set to 0.08 as a constant bias su
that g1u25gd51.3. The new valuegd provides a desired un
stalled equilibrium.

5 Conclusions
By utilizing an additive-type actuation for the mass flow d

namics, the DOA of the unstalled equilibria has been enlarged
sliding mode control designs. The design was shown to be ro
with respect to the uncertainty embedded in the unstable por
of the axisymmetric compressor characteristic. The robust de
mainly depends on the knowledge of the stable portion of co
pressor characteristic, which is usually measurable by delibe
experiments. Though large control effort might be required,
proposed study is surely attractive in real applications. In fact,
amount of control efforts is mainly dependent on the magnitude
system uncertainties and/or disturbance.
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Appendix A
A proof of Lemma 2 is given as follows.
Proof: Substituting Eq.~19! into the right-hand side of Eq.~18!

yields
SṠ5x2ẋ255
x2

2p E
0

2p

Css~x21ṁC
0 1Wx1 sinu!du2x2•~DP0!, for x2.0

x2

2p E
0

2

@Css~x21ṁC
0 1Wx1 sinu!2Css

m~ t !#du, for x2,0.

(26)
The objective of the control design is to assureSṠ,0 for all state
trajectories with initials lying withinV andx2Þ0. First, consider
the case of whichx2.0. Two subcases listed below are separat
studied:

~C1! x2(t)1ṁC
0 2Wx1(t)>ṁC

P ,
~C2! x2(t)1ṁC

0 2Wx1(t),ṁC
P .

As pointed out in Section 3.1, from (H2)Css(•) is a concave
function in the regionJª$ṁCuṁC>ṁC

P%. Thus, for case~C1! we
have

SṠ5
x2

2p E
0

2p

@Css~x21ṁC
0 1Wx1 sinu!2Css~ṁC

0 !#du

,
x2

2p E
0

2p

@Css~x21ṁC
0 1Wx1 sinu!

2Css~x21ṁC
0 !#du ~by ~H2!!

<
x2

2p E
0

2p

Css8 ~x21ṁC
0 !•Wx1 sinudu ~by concavity!50.

(27)
ly

For case~C2!, since x2(t)1ṁC
0 .ṁC

P and x2(t)1ṁC
0 2Wx1(t)

,ṁC
P , it follows that 21,ṁC

P2x2(t)2ṁC
0 /Wx1(t),0. Let u t

5sin21(ṁC
P2x2(t)2ṁC

0/Wx1(t)). Then u t exists andu t,0. Since
Css(•) is a concave function, by Definition 1, we have

Css~x21ṁC
0 1Wx1 sinu!

<Css~x21ṁC
0 !1Css8 ~x21ṁC

0 !•Wx1 sinu,

for all 0<u<p2u t and 2p1u t<u<2p.

(28)

Similarly, from Eq.~16! and the concavity ofCss(•) we have

Css~x21ṁC
0 1Wx1 sinu!

<Css~ṁC
P!,

<Css~x21ṁC
0 !1Css8 ~x21ṁC

0 !•~ṁC
P2x2~ t !2ṁC

0 !

5Css~x21ṁC
0 !1Css8 ~x21ṁC

0 !•Wx1 sinu t

<Css~x21ṁC
0 !1Css8 ~x21ṁC

0 !•Wx1 sinu

for all p2u t,u,2p1u t . (29)

Thus, for case~C2! it is clear that
Transactions of the ASME

4 Terms of Use: http://asme.org/terms



e

h

M.,
ed

ll

f the

in
J.

. J.,
l.

. J.,
l.

s-
yst.

tifi-
J.

on-
rge
trol

d

rol
pled
pp.

or-

y-

ive
2–

re
e

Downloaded F
SṠ5
x2

2p E
0

2p

@Css~x21ṁC
0 1Wx1 sinu!2Css~ṁC

0 !#du

,
x2

2p E
0

2p

@Css~x21ṁC
0 1Wx1 sinu!2Css~x21ṁC

0 !#du

<
x2

2p E
0

2p

Css8 ~x21ṁC
0 !•Wx1 sinudu50 (30)

Thus, by Eq.~30! and Lemma 1, the state trajectory will nev
leave the setV and approach to the sliding surfaceS eventually
for all initials lying within V with x2(0).0.

Next, we consider the case of whichx2,0. Similarly, two sub-
cases are studied separately:

~C3! x2(t)1ṁC
0 1Wx1(t)<ṁI C

~C4! x2(t)1ṁC
0 1Wx1(t).ṁI C .

For case~C3!, we haveCss
m50 and

SṠ5
x2

2p E
0

2p

Css~ṁC
0 1x21Wx1 sinu!du,0. ~by ~H3!!

For case~C4!, we haveCss
m(t)5Css(x2(t)1ṁC

0 1Wx1(t)),0.
Denote u15sin21(x2(t)1ṁC

02ṁI C /Wx1(t)). It is clear thatu1 is
solvable. We then have

SṠ5
x2

2p E
0

p1u1

@Css~ṁC
0 1x21Wx1 sinu!2Css

m~ t !#du

1
x2

2p E
p1u1

2p1u1

@Css~ṁC
0 1x21Wx1 sinu!2Css

m~ t !#du

1
x2

2p E
2p1u1

2p

@Css~ṁC
0 1x21Wx1 sinu!2Css

m~ t !#du

,
x2

2p E
p1u1

2p1u1

@Css~ṁC
0 1x21Wx1 sinu!2Css~x2~ t !1ṁC

0

1Wx1~ t !!#du,0

Based on the discussions above, the final condition is t
proved. Q.E.D.

Nomenclature

A 5 amplitude of the first angular mode of rotating wave
DP5 nondimensional pressure rise within the plenum
ṁC5 nondimensional compressor mass flow rate
u 5 circumferential coordinate
B 5 GreitzerB-parameter, proportional to rotor speed
Journal of Dynamic Systems, Measurement, and Control
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r

us

a 5 a geometry-related constant
W 5 scaling parameter for normalized velocities
Css5 nondimensional axisymmetric compressor characteristic
Css8 5 first derivative ofCss function
Css9 5 second derivative ofCss function
F 5 nondimensional throttle function
g 5 control parameter of throttle function
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