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1 Introduction acteristic of a compressor is a specific cubic functi@f]. The

. . . ropust study for compressor systems with noncubic characteristics
Axial flow compressors are widely used in both aerospace ald haven't been considered

industrial applications due to their potential of high efficiency. To e major goal of this paper is to study nonlocal stabilization of
achieve high efficient operation of an engine, the air prior to confye ynstalled equilibria for “left-tilt” type of system subject to
bustion is known to be greatly compressed by comprefbbr yncertainties in the compressor characteristics. This will be
However, when a compressor operates close to its maximphieved by the design of a sliding mode controller. Sliding mode
pressure-rise, two aerodynamic instabilities can happen, bothdafsign is characterized by its robustness and low computational
which reduce system’s performance. One is the so-called “rotagquirements[11]. Based on a simplified two-state dynamical
ing stall,” which is a dynamic instability that occurs when armodel, sliding mode control has been applied to the robust control
asymmetric flow pattern develops in the blade passages of a ca#h-surge behavior in compressdis2]. However, the results for
pressor stage. The other is a large-amplitude, axisymmetric oséfiall dynamics had not been obtained yet. There are two main
lation in the overall pumping system and is known as “surg@bjectives of this paper. One is to attain nonlocal stabilization of
behavior.” The rotating stall will result in a drastic pressure drof’€ unstalled system equilibria, and the other is to provide systems
of the fluid within the compressor, while surge behavior rende gbus_tn_ess with respect to the uncertainty in the_ compressor char-
the compressor suffering violent periodic impingements and dar%(_:terlstlc. These results will not rely on the explicit forms for the

: compressor characteristics. The actuation proposed to be utilized
ages the compressor eventually. Therefore, the prevention of thﬁ§?ne study is an additive-type control for the mass flow dynam-
two instabilities becomes an important issue.

. T . ics, which can be practically implemented in several wdya.
Conventionally, a stallor surgg line is drawn to provide a safe " rhe paper is organized as follows. Section 2 recalls the com-

operation boundary for compressors. Such a conservative tradgfission system model developed [I5). A brief description of
unduly restricts engine’s capability. Therefore, various contrgompressor dynamics is also given to highlight the motivation of
schemes have been recently proposed to allow compressorgh@paper. It is followed by the nonlocal stabilization design of the
operate safely beyond the stall line and thus increase system effistalled equilibria via sliding mode control schemes. The cubic
ciency. Among these, the active contf@] and the bifurcation compressor model is adopted in Section 4 to demonstrate the va-
control [3] designs guarantee local stabilities, while the backstefidity of the designs. Finally, conclusions are given in Section 5.
ping designg4] achieve global stabilities for specific cubic-type
compressors. However, the robustness issues and study of non-
cubic characteristic systems haven’t been considered yet. : : . :
When there is no 2D distributive actuation available, the co 2 Dynamical Equations for Axial Flow Compression
pression system described by a three-state m@es known to ystems
be uncontrollable[3,6,7]. For compressors with the so-called Conceptually, a compression system can be represented by a
“left-tilt” property operating at the stable unstalled equilibrium,series of components: inlet duct, compressor, exit duct, plenum
the system can be characterized as a nonlinear minimum-phagé throttle as depicted in Fig. 1. A lumped-parameter model of
system[8]. The domain of attractiofDOA) of the unstalled equi- axial flow compressors introduced §] in terms of nondimen-
librium has been effectively enlarged B§]. But, robustness was Sional variables using the notation [ is recalled as follows:

not considered in that study. It is known that the unstable portion dA  a (27

of the compressor axisymmetric characteristic is hard to measure — = _f CsdMc+WASsIn)sin0d6, (1)

and the associated system uncertainties are inevitable in real ap- dat = 7W J,

plications[9]. A robust control scheme was recently proposed to df 1 (2

deal with such uncertainties by assuming the axisymmetric char dtC — AP+ ﬁf CodMe+WASsin6)do, @)
0
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The quantities appearing in the model above are given in the
Nomenclature. In the dynamical equations above, Bgis ob- ap 3 A,,s's
tained from momentum balance and implies that the acceleration 3
of the fluid in the inlet and outlet ducts is proportional to the Cs()
difference between the pressure rise across the compressor an 2 2.5Stalled

equilibria

that in the plenum. The variable of integrati@ehrepresents the
angular displacement from a reference stationary with the first '}
harmonic mode of the stall waé]. Moreover, Eq.(1) deter-
mines the rate of amplitudé\(t), while Eq. (3) governs the
change rate of the plenum pressure. The compressor axisymmetrit 4| } 1
characteristicC¢(-), characterizing the steady pressure rise .
across the compressor, is often an S-shaped function and can b o} m 55 70 S o s
modeled by a suitable nonlinear functif®l. It is observed that © g %) e
the nonlinearities of systerfl)—(3) mainly come from the axi-
symmetric compressor characterisfigy-) and the throttle char- Fig. 2 Jump behavior for operation in the prestalled zone (a) A
acteristic functionF(y,AP). In this paperCsq-) is assumed to versust, (b) mass flow versust, (c) pressure rise versust, (d)
be smooth enough whilE(y,AP) is assumed to be strictly in- plot in the phase plane
creasing with respect to bothand AP.

Normally, the system(1)—(3) operates at the stable unstalled
equilibrium of which A=0. Denotex°=(0,m2,AP%T an un- 0 0 p .
stalled equilibrium point. By lettin\=0, it is easy to check from llPrium x° is unstable for &mc<mc. The other curve, which
Egs.(2)—(3) thatml=F(y,,AP%) andAP°=C (m2) for given EMerges from the local peak point Gt{mc) and is plotted by

_ o . PR n?otted-llne connecting with solid-line, denotes the equilibrium so-
y=1vy. In addition, there usually exists another equilibriuny . : . ) .
branch for system(1)—(3) with A#0, which is the so-called “utlon of (1)._.(3). \,","th Ai(.)' Th'.s sgluuon curve is marked as
“stalled equilibria.” The nominal unstalled operating point are stalled equilibria™ as depicted in Fig. @).
known to be locally asymptotically stablgesp. unstablefor
CL{m2)<0 (resp. forC.(m2)>0) [3]. Moreover, the unstalled
operating points are found to lose linear stability at the point with 5 25
cgs(mg)=o. This operating point is the so-called “stall inception * <5 "
point” at which both stalled and unstalled system equilibria join
together due to the occurrence of stationary bifurcatginwhen
compressor operates at an unstalled point near the stall inceptior
point, a small perturbation of the throttle control value or large
enough disturbance might cause the compression system to ex
hibit a jumping behavior from stable operation to some other
stable stalled equilibrium due to the coexistence of multiple equi-
libria. This results in a sudden drop of the pressure rise and the
occurrence of rotating stall in real operations. o 1

For illustrations, typical time responses and bifurcation dia-
grams for a compressor with cubic characteristic defined in Eq.
(22) of Section 4 are depicted in Figs. 2 and 3. In Fig&l) 2nd
3(d), solid curves denote stable equilibria while dotted curves rep- ar
resent unstable equilibria with respect to the variation of throttle 25
setting. The system equilibria are plottedAi® — m¢ plane, which
are obtained by solving Eq$1)—(3) via the code AUTQ[14]. 2r
Denote ys and vy, respectively, the values of at which the
compression system exhibits saddle-node bifurcation and station-
ary bifurcation[15]. The throttle control functions foy= ys and 1
y= 1, are shown in Figs. @) and 3d) as two dash-dotted lines.
It is clear from the discussions above that the throttle function for  os
y=1v, intersects the axisymmetric compressor characteristic
C.{mc) at the pointmc=mg with C.(Mmg)=0, i.e., the local
peak point ofCs{(Mmc) as depicted in Figs.(d) and 3d). Since

7oy . - P . T
< >
CsdMc) <0 for me>mc, the unstalled operating equilibrium Fig. 3 Jump behavior for operation in the stalled zone (a A

A0 : 0P
x°=(0,ng,AP%T is hence stable foing>mc . On the contrary, yersys t, (b) mass flow versus t, (c) pressure rise versus t, (d)
Ci{mc)>0 for 1<mc< r'nE. Thus, the unstalled operating equi-plot in the phase plane

3

0

Journal of Dynamic Systems, Measurement, and Control SEPTEMBER 2001, Vol. 123 / 489

Downloaded From: http://dynamicsystems.asmedigitalcollection.asme.or g/ on 04/28/2014 Terms of Use: http://asme.org/terms



Multiple system equilibria are observed to coexist foe y,. and the other is to provide a scheme for stall recovery when ro-
For instance, consider the time response for the case of whieiting stall occurs ay<<vy.. The design is shown in Section 3.2 to
v.<y<ys as depicted in Figs. (8)—2(d). The two transient be robust with respect to the uncertainty of g(-) function.
trajectories denoted as 1 and 2 in Figd)2go to different final Details are given as follows.
states for the same value of the throttle control value. Initial states
of trajectories 1 and 2 are, respectively, given by, 3.1 Uncertainty in the Axisymmetric Characteristic
=[0.6,1.88,2.769 andxy,=[1.5,1.88,2.76¢. The jumping be- C.(-). It is known that the stable portion of th&., function
havior associated with trajectory 2 is obviously caused by a largan usually be determined by careful experiment. On the contrary,
disturbance of the initial condition, which makes the system staiige unstable branch can hardly be measured. The uncertainty in
eventually settles down to an equilibrium with a finite amplitudgystem dynamics is hence inevitable. From the structure of system
of stall wave and a much lower pressure rise as depicted in Figgnamics(4)—(6), such kind of uncertainty belongs to the so-
2(a)—2(d). For smaller disturbance, the system state marked ealled “mismatched” type and is not easy to manipulate using
trajectory 1 returns back to the original unstalled equilibrium asaditional methodologies. Nevertheless, based on the four as-
depicted in Figs. @)—2(d). The jumping behavior, as presentedsumptions(H1)-(H4) given in Hypothesis 1, a sliding mode con-
above, might also attribute to a perturbation of the throttle controlol scheme can still be employed to achieve robust, nonlocal
value as depicted in Fig. 3. In Figs(a3—3(d), the system state asymptotic stability for the unstalled operating point subjecting to
with initial Xo; jumps to a stable stalled equilibrium along trajecsuch “mismatched-type” uncertainty. Detailed are given as fol-
tory 1 for the perturbed control valug<1y,. lows.

By intuition, the rotating stall occurring foy.< y=< y, due to First, we recall the definition of concave function as given in
finite-size disturbance might be avoided by making the DOA ahe following.
the unstalled equilibrium large enough. However, suitable stall Definition 1 A real-valued functionp is said to be concave on
recovery schemes are required to be undertaken for annihilatingerval JCR if
rotating stall fory<y. [16]. One of commonly used stall recov- ,
ery control schemes is to push the system response toward a stablg?(X+ 7) ~ ¢(x)<¢'(x)- 7 for all xeJ and x+7eJ.
unstalled equilibrium by setting a new value of the throttle control ()
parametery to assurey> vy, and to make the difference—vy. To facilitate the stabilization design, we make the following hy-
large enough. But, such control scheme apparently decreasespbthesis.
efficiency of engine. It is obvious that the efficiency loss by such Hypothesis 1Suppose the axisymmetric compressor character-
a stall recovery scheme will be minimized if the DOA of thdstic C.{-) satisfies the following conditions:
desired unstalled equilibrium can be effectively enlarged. A sligH1) C () is a C? function with a local maximunCg{(iR)
ing mode control scheme is proposed in the next section to fulfill g 4¢ mczmg_

these two tasks with respect to the uncertainty in the compres cy . : et s N :
characteristics. iﬁ?pCSS(mC) is strictly decreasing wittC(m¢)=<0 for all mc
=me.

(H3) Co(fnc)>0 for all mc<mf.
H4) C.{(m¢) satisfies the so-called “left-tilt” property8], i.e.,
s(ME+ 7) <Cg Mg — 7) for all 7>0.
ccording to Definition 1, the compressor characteri€tig(mg)
is a concave function foms= r'né if conditions (H1) and (H2)
hold. It is also observed frortH1)-(H2) that there exists a point
me> r'nE such thatCs((m¢c) = 0. This implies thaCs(m¢)=0 for
me<mc and C,{(Mmc) <0 for Mc>m¢. In practical application,
it is reasonable to assume that the unstalled operating m8int
=[0m2,AP°]" satisfies the relation:m2<ml<mc since
Ce(m2)>0.

Next result is recalled frorf8].

Lemma 1Suppose Hypothesis 1 holds aind+x,>mg . Then
for system(4)—(6), x;X;<0 and the equality holds only when
x1=0.

3 Robust Stabilization

Though it is known that the compression system is uncontr
lable under throttle control inpuyB,6,7], the throttle control has A
been used to stabilize the bifurcated solution braf&H] or to
fulfill the task of the stall recoveryl16]. In order to study the
robust stabilization of systeifl)—(3), the compression system is
assumed to have one more control input available. Derbte
=(0,/m2,AP%T the desired unstalled equilibrium at some
=70 Let x=(X;,%p,X5)T with x;=A, x,=mc—m2, xs=AP
—AP® andu,=y—° be the throttle control force. Systefh)—
(3) can then be rewritten as

dx;

[} 2m
FTETY fo CsdXot+ Mg+ Wy sin 6)sin 6d 6 4

dx, o, 1 2w 0 ) Remark 1 Compressors satisfying all the conditions (6f1)-
gr - XeTAPTH EJ CsdXatmc+Wxg sind)dé+ui(t)  (H4) may not be common, but are not rare eitf@}
0 5 Let the curveL, denote the right portion of the axisymmetric
) compressor characterist@;(mg) for me> r'nE, which is usually
dx; 1 0 0 o obtainable by careful experiment. As depicted in Fig. 4, the curve
Tt = a2 et Me—F(y + Uy(t) X+ APT)}. (6)  denoted byL,, is obtained from the symmetry of the curte

) i . ‘with respect to the Iine’nC:r'nE. For the robust design, in this
Here, uy(t) is an additive-type control input assumed to be availaner, the axisymmetric compressor characteristic is assumed to

able in the control design. Implementation of such control is ngtatisfy Hypothesis 1. This implies that the unstable branch of

hard to find. For instance, the close-coupled valve is one . f . . . - p
choiceq[12] and another ways of implementation can be found %fSS(mC)’ I.e., the left portion oCs{(mc) for me=mg as marked

[13] y dotted-curve, must lie within the shaded region as shown in
It is easy to check that systed)—(6) is uncontrollable since Fig. 4.

A=0 is an invariant manifold. According 8], that means no 3.2 Sliding Mode Designs. To achieve the main goals of
linear control laws can be obtained by andu, to provide the the paper as stated in Section 2, in this subsection, we employ the
stability of the unstalled operating equilibrium which is near theliding mode contro(SMC) technique to fulfill the design task. In
stall inception point and lies on the unstable equilibrium branch general, SMC design procedure consists of three major segs

the uncontrolled model. In this paper, we will focus on the designg.[17,18). The first step is to choose a sliding surface, which is
for fulfilling two main objectives. One is to enlarge the domain o& function of system state. It is followed by the design of the

attraction for the stable unstalled operating equilibrium pafht
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3 T T T T T T T Xm o 2m .0 . .
. T . CodME+Wx, sin§)sin 6d 6, (10)
L. ot -
25 7 dX3 1 .0 0 0
gt~ ag2iMe—F(P+ua() g+ AP} (11)

For simplicity, choose the Lyapunov function candidate

V 1w 4B2x2 12
(X1,X3) > (x3+ X3). (12)

for the reduced dynamidd0)—(11). Taking the time derivative of
1 V(xq,x3) along the trajectory of the reduced mod&0)—(11), we
have

V(X1,X3) =Xq X1 + Xa{ME— F (7% + u,(t), AP+ x5)}
=Xg-{F (¥4, AP?) —F(74,AP%+X3)} +X:X; .
(13)

SinceF(vy,AP) is assumed to be strictly increasing with respect
to both y and AP, it follows thatxs-{F (4, AP% —F(y4,AP°

1 +x3)}=<0 and the equality holds only at;=0. Therefore, by
Lemma 1, we have-V(xq,x3) is a (locally) positive definite
function for mg> mE. This implies that the asymptotic stability

. . . . of the unstalled equilibriunx® is provided on the sliding surface

W 2 25 3 5 35 2% S=0
_ _ _ _ _ Next, we propose a control law to guarantee the reaching con-
Fig. 4 Maximal uncertainty allowed in the control design dition for a prescribed regiof in the state space. That is, the

domain of attraction of the operating equilibrium will be enlarged
with a certain extent. To give a clear definition of the subsgace
areal vaIueB|<r'nE is assumed to satisfy the following condition:
that the reduced-order dynamics possesses desired stability perfor-
mance. The final step is to construct an extra control for guaran- CedMe)<Ce(mg) for all Mc=B,. (14)
teeing that the system state will reach the sliding surface and
forcing the system state to stay near the sliding surface. The slid-fact, B, can always be found from conditioid1) and(H2). It
ing surface generally needs to be deliberately selected to achi¢yelear that a positive constam|sm8—B| /W exists sincer'ng
asymptotic stability of the equilibrium on the surface. In generah. m2>B, . For the proof of reaching condition, the sub§kts
there are lots of choices of sliding surface for control design. lfefined as:
this study, we choose a special one for the robust design. As
implied by Lemma 1, the amplitude of stall waxe will eventu- Q:={xeRI|x;|<M, ,x,=B,—m2+WM,}. (15)
ally go to zero if the mass flownd+x,>mf. That means the
rotating stall can be prevented and/or recovered by makifg Apparently,M, is the allowed upper bound for the state variable
+x,>mE for a given unstalled operating pointx® A(t) to deviate from its equilibrium value; whilB,—mg+WM,
:[o,mg,APO]T. Thus, as motivated by the result of Lemma 1, th& that for the state variabi@c(t). The size of() depends on the

sliding surface for the robust stabilization is selected as: choice ofM, andB, . In practical applications, the value Bf is
g first decided to be as small as possible from the nomhg(-)

S(x)=x,=0. (8) function. The value oM, is then decided from the inequality:

If the system operates under the case of whigks y=<1ys, the B|—mgC+WM|§0. By the definition of(} as in Eq.(15), we have
objective of the control algorithm is to enlarge the domain ofz*Mc+ WX, sin =B, +WM—Wx=B,. It then follows from
attraction of the working unstalled equilibriur?. In such cases, Eq. (14) that

the control inputu,(t) can be simply set to zero since the un-

. O . . P
stalled operating equilibrium is known to be asymptotically stable. Cso(Xa Mg+ W sin ) <CsdMmc),

However, when the system operates wjti y. due to some un- for all 0<@<27 and xe Q.
certainty on the throttle function, the control input will be used
to fulfill the task of stall recovery. That isi,(t) will be selected (16)

asl a'co_n.sgailt':mas ZUFSP th;azulf Kd » Of WHIC: vd §I§tt)|§f|§$ éhe The inequality(16) above can be regarded as the key property that
relation:mc =F(yq,AP"), and let the unstalled equilibriut be oo terizes all the states within the et
the desired operating point for stall recovery from rotating stall. " \y/e now show the reaching property for the sliding surfabs

Now, we show the asymptotic stability of the reduced-ordgjgjng the Lyapunov criterion. Choose the Lyapunov function can-

dynamics on the sliding surfacgin Eq. (8). When the system jijate as
state is trapped in the sliding surface 8(x)=0, the following
two conditions are required to be satisfidd]: 1
. V(S):=2 S2. (17)
S=0 and S=0. 9) 2
The reduced dynamics on the sliding surface is then obtained frdraking the time derivative of/(S) along the trajectories of sys-
Egs.(4) and(6), by lettingx,=0, as tem (4)—(6), we have
Journal of Dynamic Systems, Measurement, and Control SEPTEMBER 2001, Vol. 123 / 491
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Xo To assureV/(S)<0 for all trajectories with initial lying within(,

V(S)=SS=x,%,= —XgXp— (APO) X, + P the control law is proposed as:
27 X3(t) for x,(t)>0,
. fo Codxz g+ Wi sin 6)d6-+ x5 Uy Ui(t)= X3(t) +[Ced(MQ) —CIYD)]  for x,(1)<0, (19)
(18) where
|
N 0 when x,(t) +ma+Wx (t) <mc,
Ced0)= ( Cod Xo(t) + M2+ Wxq(1))  when X,(t)+ M+ Wx (t)>mc. (20)

Note that,CIyt) defined in Eq(20) is obtainable from the stable To smooth the chattering behaviors, a boundary layet-of

branch of the functioiC,4( ), which is measurable. The reaching<X,< d is introduced. The control law is modified as:

condition is hence provided by the next lemma.
Lemma 2 SupposeC(fc) satisfies Hypothesis 1. Then the X3(t) when x,(t)> 4,
reaching condition for systei)—(6) is guaranteed by the control  uj(t)=1 Xa(t) —Ka(t)(Xo+ 9) when- §<x,(t)<4,
in(19) fi Il initials lyi ithin Q, where() is gi i ;
1(1115)a.s in (19 for all initials lying within Q, where(} is given in x3(t)+[Css(mg)—C;"S(t)] when x,(t)<— &.

: - (21)
Proof: see Appendix A.
Remark 2 As discussed previously, there exists no constraihtere CIyt) is given as in(20) and kz(t)=Css(mg)—C2‘s(t)/2§.
on x3 for reaching condition. In addition, by Lemma 1 and previtt is not difficult to check that the practical stability of the closed-
ous discussions, the stability of the reduced dynamicSe0 is loop systenm(4)—(6) is guaranteed by the contro] as in Eq.(21).
provided for allx=(x;,X,,%3) " with m&+x,>mk . According to As implied by Lemma 3y, (t) can also be set to zero fap(t)
the principle of SMC design, the DOA of the unstalled equilib=>0 to save the control effort.
rium x° is hence governed only b, as in(15). .
The next theorem follows readily from Lemma 2 and the stét Numerical Results
bility on the sliding surface. In the following, the proposed control laws proposed in Section
Theorem 1 SupposeCs(-) satisfies Hypothesis 1. Then the3 are applied to a specific compression system to demonstrate the
domain of attraction of the unstalled equilibriux? for system validity of the main design.
(4)—(6) can be enlarged to the extent@fas defined in(15). The Consider the system ¢1)—(3) with C.{(-) adopted fron}3] as
proposed control design is robust with respect to the uncertaintgigen by:
in the functionCg(( ).

— 3
The controlu; defined in Eq(19) for x,(t)>0 is mainly used Cedy)=—0Xy-1)"+1.4y—-1)+1.56. (22)
for cancellation. As given in the next lemma, such control force
can be set to zero. .
Lemma 3 Suppose the state trajectory of syst@h-(6) can be 4, ]
constrained within the half spack:={x|x,+m2>mE} by a suit- 1 -
able control. Then it will eventually converge to the equilibrium . 2
point x°. 2
Proof: Let the Lyapunov function candidate be given by 2: 1_5\ -
1 2
V(Xq,Xp,X3) = §(x§+x§+482x§ . 15 ! !
]
2 0§
Then the time derivative 0¥ along the system trajectory of sys- 05
tem (4)_(6) for Xz(t)>0 ylelds % 10 20 30 % 10 20 30

. _ . . 2 .
V(X1,X2,X3)] %o(1)>0= X1X1 T XoXp+ 4B X3X3

<X,X,+4B%X3%; (By Lemma 1) "
X5 2w o
=—XpXzt 5— CsdXo+m
273 24 JO [ SS( 2 C 25

+Wxq sin ) — Cod M) ]d O+ 4B2x3k4

In the derivation abovey; is set to zero fox,>0. This leads to
that x,/27 [ 5[ Cod(Xp+ M2 +Wxq sin 6)— Cedim2)]d6<0 for x, 1
>0. As implied by the proof of Lemma 2, we have

0.5
. 0 10 20 t 20
V(%1% %3) [y (1)>0= — XoXa+ (MQ) X T XoXg— XaF (7,AP+x3) (©
:XS{F('y,APO+ X3)— F(y,APO)}SO, Fig. 5 Results for operation in the pre-stalled zone (a) A ver-
sus t, (b) mass flow versust, (c) versust, (d) plotin the phase
where the equality holds only whea=0. Q.E.D. plane
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The system parameters and control for the numerical study aneer, M, can be selected to 10.0 from the discussions in Section
selected and calculated as=0.4114; W=0.3; B=0.4; m2  3.2. However, to allow a larger deviation o2, M, is set to 3.0,
=2.0; r'n?:=2.08; mc~3.15; §=0.05; k,=25.5. In additionB, is  which is large enough for practical considerations.

chosen to be-1.0, which can be justified from E@22). More- From Eq.(21), the control inputu, can then be obtained
|
[ X3 when x,>0.05,
X3—K,(X,+0.05 when —0.05<x,=<0.05,
X3+ Cs42.08 when —2.18<x,<—0.05
ug(t)= (23)

and mg(t) +0.3x4(1)<3.15
X3+ Csd(2.08 + Cgy(mc(t) +0.3x4(t)) when —2.18<x,<—0.05
and mg(t)+0.34(t)>3.15

Case 1. Behavior of Nominal Systeniet y°=1.3. As de- duced as observed in Fig. 5 for>0.5. The transient state is
picted by trajectory 2 in Fig. 2, the system might run into rotatinéprced back tax® as depicted by trajectory 2 in Fig(d§.
stall under large disturbances singe<y’<+y,. The control . .
force defined in Eq(24) is now utilized to force the system backthggsj 2) iﬁeé'av('g;)og Eerturbed SystenNext, we approximate
to the desired unstalled equilibriuxf. The DOA of x° in Eq. s a: y:
(15 can then be obtained as: CodMc) = —0.4722n3 + 1.3069n2 + 0.3174n + 0.5039.

Q:={x|0<x,<3.0,x,=—2.18. (24) (25)

Heor clarity, compressor characteristics as defined22y and(25)
are redrawn in Fig. 6. Note that small deviations exist between the
two functions. One can treat E€R2) as the nominal model and

tively. Since a great extent of uncertainty in the compressor chcz?Errq' (25) as a perturbed one. To justify the robustness of the con-

teristic is all d for th d desi denicted in F ol designs, the same initial and target states in Fig. 5 are used
acteristic Is aflowed Ior the proposed designs, as depicted in ain while theCg4(-) function in Eq.(22) is now replaced by Eq.
5(0), a I_arge contro_l force guaranteeing the system state to re ) for numerical study. In this case we use the same control
the sliding surface is expected. When the transient is forced to

ithin the bound | th ol i itched to the li fvs as in(23). The numerical results are shown in Fig. 7. It is
within thé bounaary 1ayer, the control 1S switched 10 the Inegly e e that the performance is not influenced by the uncertainty
state feedback and therefore the control force is dramatically t&s - 1ded in the variation of ti@,((-) function. However, again

the price of a large control force must be paid for, as depicted in

Numerical results for the control system are shown in Fig. 5. T
time responses without and with control with initiat®
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Fig. 7 Results of Case 2 for operation in the pre-stalled zone

Fig. 6 Two compressor characteristics used in the simulation (a) A versus t, (b) mass flow versust, (c)uversust, (d) plotin
works the phase plane
Journal of Dynamic Systems, Measurement, and Control SEPTEMBER 2001, Vol. 123 / 493

Downloaded From: http://dynamicsystems.asmedigitalcollection.asme.or g/ on 04/28/2014 Terms of Use: http://asme.org/terms



y=1.22<vy.=1.25 andu, is set to 0.08 as a constant bias such
that y+u,= y4=1.3. The new valueyy provides a desired un-
stalled equilibrium.

5 Conclusions

By utilizing an additive-type actuation for the mass flow dy-
namics, the DOA of the unstalled equilibria has been enlarged via
sliding mode control designs. The design was shown to be robust
with respect to the uncertainty embedded in the unstable portion
of the axisymmetric compressor characteristic. The robust design
mainly depends on the knowledge of the stable portion of com-

3 35
Ap pressor characteristic, which is usually measurable by deliberate
25 a experiments. Though large control effort might be required, the
proposed study is surely attractive in real applications. In fact, the
2 2 amount of control efforts is mainly dependent on the magnitude of
is s system uncertainties and/or disturbance.
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Appendix A

A proof of Lemma 2 is given as follows.
Fig. 7(c). For the operations withy<y., the results for stall  Proof: Substituting Eq(19) into the right-hand side of E¢18)
recovery given in Fig. 8 are also quite satisfactory. In this casggelds

X 2m

ﬁ Cod X+ M2+ W, SiN0)dO—X,- (AP?), for x,>0
. 0

SS=X25(2: (26)

X 2
ﬁf [CodXo+ M2+ Wx, sinf)—CIy(t)]d#, for x,<0.
0

The objective of the control design is to ass8®<0 for all state For case(C2), since x,(t)+ m2>me and X,(t) + M2 — W (t)

trajectories with initials lying within() andx,# 0. First, consider <mf, it follows that —1<mf—x,(t) —m%/Wx,(t)<0. Let 6

the case of whiclkx,>0. Two subcases listed below are separately sin’l(hﬁfxz(t)fr'r%/le(t)). Then 6, exists andé,<0. Since
studied: C.{-) is a concave function, by Definition 1, we have

(CD) xo(t) + M2 —Wxy (1) =mg,

+ml+ [
(C2) Xo(t) + Ml — Wy (t) <mf . CsdXotMe+Wx; sin6)

. o ’ . 0 .
As pointed out in Section 3.1, from (HB).{-) is a concave <CsdXo+Mc) +C X+ Me) - Wx sino,
function in the region:={fmg|mc=m&}. Thus, for cas€¢C1) we for all 0<@<m—0, and 27+ 6,<0<2.
have
(28)
5 Similarly, from Eq.(16) and the concavity o€.{-) we have
o X2 [T . . .
S JO [CsdXz+ Mg+ W sing) —Csymg)]d6 Cad Xp+ M2+ W sin 6)

=CedMe),

X2 2m o )
<ﬂfo [Codxz+ e+ Wy sin6) = Cod X ) + Cl X+ ) - (M~ Xy(t) — )

—CodXp+m2)]1d6 (by (H2)) =Ced X+ Q)+ Clid X+ Me) - Wy Sin 6y
X, (2 » _ _ < Cod X+ M)+ ClLy X+ M) - Wx, sin g
<= CidXo+mg)-Wx, sinddé (by concavity=0.
2m Jo for all m— 6,<6<2m+6,. (29)

(27) Thus, for cas€C?2) it is clear that
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Xy (2 S _ " a = a geometry-related constant N
SS= 7 J [CsdXotMe+Wxg sinf) —Cgyme)]d o W = scaling parameter for normalized velocities
0 Cs& nondimensional axisymmetric compressor characteristic
X, (27 i’ _ » C.s first derivative ofCg, function
<5 | [CsdXztme+Wx siné)—Csdx,+mc)]do Ci&= second derivative o€ function
0 F = nondimensional throttle function
X, (27 v = control parameter of throttle function
<5- CldXp+mM2)-Wx, singd =0 (30)
° References

Thus, by Eq.(30) and Lemma 1, the state trajectory will never

leave the sef) and approach to the sliding surfaBeeventually
for all initials lying within Q with x,(0)>0.

Next, we consider the case of whigh<<0. Similarly, two sub-
cases are studied separately:

(C3) Xa(t) + Mg+ Wy (t) <fc
(C4) X,(t) + M+ Wxy (1) >

For case(C3), we haveC{,=0 and
. X 2m
SSFZZTJ Cod M2+ X, + W, Sin0)d#<0. (by (H3))
0
For case(C4), we have CT(t)=Cq{(X,(t) + M2+ Wx(t))<O.
Denote 61:sin’l(xz(t)+r'ng—r'pCIWx1(t)). It is clear thatd, is

solvable. We then have

. X T+ 01
Ss= ﬁ fo [Cod N2+ X, + W Sin6)—CMy(t)]d g

X2 27+ 6,

+ = [Cod M2+ X+ Wxq sin @) —CIY(t)]d 6
277 T+ 01
Xy 2m o )

+— [Csd(ME+Xo+Wxy sin ) —CIYt)]d6
2 2m+60p

X 27+ 6,

<= [Cod M2+ X, + W Sin ) — Cod Xp(t) + M
2@ T+ 01
+Wx(t))]do<0

Based on the discussions above, the final condition is th

proved. Q.E.D.

Nomenclature

A = amplitude of the first angular mode of rotating wave
AP= nondimensional pressure rise within the plenum
Mmc= nondimensional compressor mass flow rate

0 = circumferential coordinate

B = GreitzerB-parameter, proportional to rotor speed
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