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Path Integral Quantization of the Aharonov–Bohm–Coulomb
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The Coulomb system with a charge moving in the fields of Ahanorov and Bohm is quantized via
path integral in momentum space. Due to the dynamics of the system in momentum space being in
curve space, our result not only gives the Green function of this interesting system in momentum space
but provides the second example to answer an open problem of quantum dynamics in curved spaces
posed by DeWitt in 1957: We find that the physical Hamiltonian in curved spaces does not contain the
Riemannian scalar curvatureR. C© 2001 Academic Press

I. INTRODUCTION

Half a century ago, Feynman proposed the method of the path integral to describe quantum dynam-
ics [1, 2]. It provides us with a global approach for studying quantum dynamics via fluctuating paths.
Feynman’s method has been successfully applied to diverse areas of physics [3, 4]. Nevertheless, so
far almost all the exact results for the dynamic problems of particles moving in the external potentials
given by the path integral are obtained in position space [5, 6]. In this paper, we calculate the path
integral of the Aharonov–Bohm–Coulomb (A-B-C) system in momentum space. Our procedures
can serve a further example for treating quantum dynamics in momentum space by path integrals.
Because the dynamics of the system in momentum space is in curved space, it may give an answer
to an old question in quantum dynamics in curved spaces proposed by DeWitt in 1957: The Hamil-
tonian in curved spaces should not contain an additional term of the Riemannian scalar curvatureR
[7]. Otherwise, the level spacing of the energy spectra will be changed. The phenomenon was first
observed by Kleinert in Ref. [8] who pioneered the treatment of the Coulomb system in momentum
space. Here we provide the second example to confirm his result.

II. PATH INTEGRAL QUANTIZATION OF THE A-B-C SYSTEM IN MOMENTUM SPACE

With the space-time transformation, a stable path integral representation for the quantum Green
function of a charge particle moving in the external electromagnetic fields from xa to xb is given by
[8, 10, 11]

G(xb, xa; E) =
∫ ∞

0
dS
∫
D f (λ)8 [ f (λ)]

∫
D3x(λ) exp{−AE[x, ẋ]} (2.1)
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with the classical action

AE[x, ẋ] =
∫ λb

λa

dλ

[
ẋ2(λ)

2 f (λ)
− ieA(x) · ẋ(λ)+ f (λ)(V(x)− E)

]
, (2.2)

whereS is defined as

S=
∫ λb

λa

dλ f (λ), (2.3)

in which f (λ) is an arbitrary dimensionless fluctuating scale variable, and8[ f (λ)] is some convenient
gauge-fixing functional. The only condition on8[ f (λ)] is that∫

D f (λ)8[ f (λ)] = 1. (2.4)

In Eq. (2.1), natural units withh- = c = m= 1 are used. We see that if8[ f (λ)] is taken as the delta
functionalδ[ f − 1], the representation reduces to Feynman’s original path integral of a relativistic
particle. The path integral representation arises from the continuous limit of theλ-sliced expression

G(xb, xa; E) ≈
∫ ∞

0
dS

N∏
n=0

[ ∫
d fn8( fn)

]
1

(2πεb fb)3/2

N∏
n=1

[ ∫ ∞
−∞

d3xn

(2πεn fn)3/2

]
exp

{−AN
E

}
(2.5)

with theλ-sliced action

AN
E =

N∑
n=0

[
(xn − xn−1)2

2εn fn
− ieA(xn) · (xn − xn−1)+ εn fn (V(xn)− E)

]
, (2.6)

whereεn = λn − λn−1, λb = λN , λa = λ0, xa = x(λ0), and xb = x(λN). In the A-B-C potential
problem that we consider, the vector and scalar potentials are defined as

A(x) = 2g
−yêx + xêy

x2+ y2
, V(r ) = −α

r
, (2.7)

whereêx,y stand for the unit vector along thex, y axis. Let’s first analyze the influence of A-B effect
on theG(xb, xa; E). Introducing the azimuthal angle around the A-B tube

ϕ(x) = arctan(y/x), (2.8)

the components of the vector potential can be expressed as

Ai = 2g∂iϕ(x). (2.9)

The associated magnetic field lines are confined to an infinitely thin tube along the z-axis,

B3 = 2gε3i j ∂i ∂ jϕ(x) = 4πgδ(x⊥), (2.10)
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where x⊥ stands for the transverse vector x⊥ = (x, y). Note that the derivatives in front ofϕ(x)
commute everywhere, except at the origin where Stokes’ theorem yields∫

d2x(∂x∂y − ∂y∂x)ϕ(x) =
∮

dϕ = 2π. (2.11)

The magnetic flux through the tube is defined by the integral

Ä =
∫

d2x B3. (2.12)

This shows that the coupling constantg is related to the magnetic flux by

g = Ä

4π
. (2.13)

InsertingAi = 2g∂iϕ(x) into the action of Eq. (2.2), the magnetic interaction takes the form

Amag= iµ0

∫ S

0
dλϕ̇(λ), (2.14)

whereϕ(λ) = ϕ(x(λ)), ϕ̇ = dϕ/dλ, andµ0 is the dimensionless number

µ0 = −2eg. (2.15)

The minus sign is a matter of convention. Since the particle orbits are present at all times, their
worldlines in space-time can be considered as being closed at infinity, and the integral

k = 1

2π

∫ S

0
dλϕ̇(λ) (2.16)

is the topological invariant with integer values of the winding numberk. The magnetic interaction is
therefore purely topological; its value is given by

e−Amag = eie
∫ λb
λa

dλA(x)·ẋ(λ) = e−iµ02kπ . (2.17)

Due to the nature of topological interaction, the influence of the A-B effect may be considered after
the dynamics of the Coulomb system in the momentum space is carried out. To perform the path
integral of the Coulomb system in the momentum space, we note that the representation of the path
integral in Eq. (2.1) has the phase space version

G(pb, pa; E) =
∫ ∞

0
dS
∫
D f8[ f ]

∫ D3 p

2π

∫
D3x exp{−A [p, x, f ]}, (2.18)

where the action

A [p, x, f ] =
∫ S

0
dλ[i ṗ · x+ f (H (p, x)− E)] (2.19)
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withH is the classical Hamiltonian. For the Coulomb system under consideration,H = p2/2−α/r .
In order to obtain a stable path integral in this case, the gauge fixing functional8[ f ] is chosen as [8]

8[ f ] ≈
N∏

n=0

[
1

rn

]
exp

{
−

N∑
n=0

εn

2r 2
n

[
fn − x2

n

(
p2

n

2
− E

)]2
}
. (2.20)

With the functional measure

∫
D f ≈

N∏
n=0

[∫ ∞
−∞

d fn√
2π/εn

]
, (2.21)

the gauge condition
∫
D f8[ f ] = 1 is automatically satisfied. Combining Eq. (2.20), we have the

action in the path integral

A[p, x, f ] =
∫ S

0
dλ

[
i ṗ · x+ 1

2
x2

(
p2

2
− E

)2

+ f 2

2r 2
− f α

r

]
. (2.22)

We see that the path integrals overf and x in this equation are Gaussian and can be performed. The
time-sliced path integral inf gives us a factor

exp

{
N∑

n=0

εnα
2

2

}
. (2.23)

The integrand of the time-sliced path integral associated with x reads now

N∏
n=0

23(2π/εn)3/2(
p2

n + κ2
)3 exp

{
−1

2

N∑
n=0

(24pn)2

εn
(
p2

n + κ2
)2
}
, (2.24)

where we have definedκ2 ≡ −2E. If the measure of the path integral is defined as in Dewitt’s paper
[7], the path integral becomes the form

G(pb, pa; E) ≈
∫ ∞

0
dS

23(2π)3

(2πεa)3/2
(
p2

a + κ2
)3 N∏

n=1

[∫ ∞
−∞

23d3 pn

(2πεn)3/2
(
p2

n + κ2
)3
]

exp
{−AN

E

}
.

(2.25)
The sliced action reads

AN
E =

N∑
n=0

[
1

2

(24pn)2

εn
(
p2

n + κ2
)2 − εnα

2

2

]
. (2.26)

Here we perform the stereographic projection onto a unit sphere in the four dimensions

z= 2κp
p2+ κ2

, z= p2− κ2

p2+ κ2
, z2+ z2 = 1. (2.27)
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Then, Eq. (2.26) becomes

AN
E [ẑ] =

N∑
n=0

[
1

2

(4ẑn)2

εnκ2
− εnα

2

2

]
(2.28)

and the measure in Eq. (2.26),

∫ ∞
0

dS
(2π)3

(2πκ2εa)3/2

N∏
n=1

[ ∫ ∞
−∞

d4ẑn

(2πκ2εn)3/2

]
, (2.29)

whereẑ = (z, z) is the four-dimensional unit vector. By defining a pseudomassµ = 1/κ2, we find
the momentum path integral

G(pb, pa; E) = (2π)3
∫ ∞

0
dSK(pb, pa; S) (2.30)

with the time sliced pseudo-propagator

K (pb, pa; S) ≈ 1

(2πεa/µ)3/2

N∏
n=1

[ ∫ ∞
−∞

d4ẑn

(2πεn/µ)3/2

]
exp

{−AN
E [ẑ]

}
. (2.31)

This would be the path integral of DeWitt. It should not lead to the correct spectrum for this problem.
However, it was shown by Kleinert [5] that the measure of path integrals in curved space is not simply
the product of invariant integrals

∏
n

∫
dqn
√

g(qn). By performing a non-holonomic mapping from
flat to curved space, he found that the measure receives a contribution explicitly,

Aeff = −
∫ S

0
dλ

R

6µ
(2.32)

in which R is the Riemannian scalar curvature. For a sphere of radiusr in D dimensional space,R
is given by (D−1)(D−2)/r 2, so that the measure correction for an unit sphere in four-dimensional
space gives a contribution

e−Aeff = e
∫ S

0 dλR/6µ = e
∫ S

0 dλ1/µ = eκ
2S. (2.33)

The path integral (2.31) had been solved in Refs. [5, 9] by

K (pb, pa; S) =
∞∑

n=1

n2

2π2
Pn(cosϑ)e−(κ2n2−α2)S/2, (2.34)

wherePn(cosϑ) = sinnϑ/n sinϑ with ϑ being the angular between the four vectorsẑb andẑa:

cosϑ = ẑb · ẑa =
(
p2

b − κ2
)(

p2
a − κ2

)+ 4κ2pb · pa(
p2

b + κ2
)(

p2
a + κ2

) . (2.35)
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We now complete the integration onS in Eq. (2.30) and obtain the exact Green function of the
Coulomb system in momentum space

G(pb, pa; E) = (2π)3
∞∑

n=1

n2

2π2
Pn(cosϑ)

2

2En2+ α2
. (2.36)

We see that the poles display the correct energy levels of hydrogen spectra

En = − α
2

2n2
, n = 1, 2, 3, . . . . (2.37)

This path integral derivation was first given by Kleinert in [8].
Here is the place that we can go over to the A-B-C system. Let us define the new quantum number

nr = n− 1 and rewrite (2.36) as

G(pb, pa; E) = (2π)3
∞∑

nr=0

(nr + 1)

2π2

2

2E(nr + 1)2+ α2
C1

l (cosϑ), (2.38)

whereC1
l (cosϑ) = sin(nr + 1)ϑ/sinϑ are the Gegenbauer polynomials [12, p. 218]. By defining

the new variables

u =
(
p2

b − κ2
)(

p2
b + κ2

) , v =
(
p2

a − κ2
)(

p2
a + κ2

) , (2.39)

with the addition theorem of the Gegenbauer polynomials [12, p. 223],C1
l (cosϑ) has the expansion

C1
nr

(cosϑ) = C1
nr

(
u · v + (1− u2)1/2(1− v2)1/2 cos4ϑ)

=
nr∑

l=0

4l (2l + 1)0(nr − l + 1)02(l + 1)

0(nr + l + 2)

× (1− u2)l/2(1− v2)l/2Cl+1
nr−l (u)Cl+1

nr−l (v)Pl (cos4ϑ), (2.40)

where4ϑ is the angular between the unit vectorsp̂b, p̂a in the momentum space. Since the Legendre
function has the expansion into the spherical harmonic

Pl (cos4ϑ) = 4π

(2l + 1)

l∑
k=−l

Ylk(p̂b)Y∗lk(p̂a), (2.41)

the exact Green’s function becomes

G(pb, pa; E) = (2π)3
∞∑

nr=0

nr∑
l=0

l∑
k=−l

(nr + 1)

2π2

2

2E(nr + 1)2+ α2

× 4l (2l + 1)0(nr − l + 1)0(l + k+ 1)0(l − k+ 1)

0(nr + l + 2)

× (1− u2)l/2(1− v2)l/2Cl+1
nr−l (u)Cl+1

nr−l (v)P(k,k)
l−k (cos2b)P(k,k)

l−k (cos2a)

× (cos2b/2 cos2a/2 sin2b/2 sin2a/2)k · eik(8b−8a). (2.42)



PATH INTEGRAL QUANTIZATION 101

Here, (2,8) are the angular of the polar coordinates of the total momentum vector in momentum
space, and the relation between the associated Legendre polynomialPk

l (x) and the Jacobi function
P(k,k)

n (x) [10]

Pk
l (cos2) = (−1)k

0(1+ k+ l )

0(1+ l )
(cos2/2 sin2/2)k P(k,k)

l−k (cos2), (2.43)

has been used for obtaining Eq. (2.42) via

Ylk(p̂) = Ylk(2,8) = (−1)k
[

2l + 1

4π

(l − k)!

(l + k)!

]1/2

Pk
l (cos2)eik8. (2.44)

To proceed, we change summation indices by definingnr − l = n, and a further change of the index
of summation replacesl with q by definingl − k = q. We obtain from (2.42)

G(pb, pa; E) = (2π)3
∞∑

n=0

∞∑
q=0

∞∑
k=−∞

(n+ q + k+ 1)

2π2

2

2E(n+ q + k+ 1)2+ α2

× 4q+k[2(q + k)+ 1]0(n+ 1)0(q + 1)0(q + 2k+ 1)

0(n+ 2(q + k)+ 2)

× (1− u2)(q+k)/2(1− v2)(q+k)/2Cq+k+1
n (u)Cq+k+1

n (v)P(k,k)
q (cos2b)P(k,k)

q (cos2a)

× (cos2b/2 cos2a/2 sin2b/2 sin2a/2)k · eik(8b−8a). (2.45)

We are now prepared to include the influence of the A-B potential in (2.17). With the help of Poisson’s
summation formula [5, p. 124],

∞∑
k=−∞

f (k) =
∫ ∞
−∞

dy
∞∑

n=−∞
e2πnyi f (y), (2.46)

we obtain for the Green function of the A-B-C system in momentum space

G(pb, pa; E) = (2π)3
∞∑

n=0

∞∑
q=0

∞∑
k=−∞

(n+ q + |k+ µ0| + 1)

2π2

2

2E(n+ q + |k+ µ0| + 1)2+ α2

× 4(q+|k+µ0|)[2(q + |k+ µ0|)+ 1]0(n+ 1)0(q + 1)0(q + 2|k+ µ0| + 1)

0(n+ 2(q + |k+ µ0|)+ 2)

×
(

2κpb

p2
b + κ2

)q+|k+µ0|
·
(

2κpa

p2
a + κ2

)q+|k+µ0|

×Cq+|k+µ0|+1
n

(
p2

b − κ2

p2
b + κ2

)
· Cq+|k+µ0|+1

n

(
p2

a − κ2

p2
a + κ2

)
× P(|k+µ0|,|k+µ0|)

q (cos2b) · P(|k+µ0|,|k+µ0|)
q (cos2a)

× (cos2b/2 cos2a/2 sin2b/2 sin2a/2)|k+µ0| · eik(8b−8a). (2.47)
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We see that the energy spectra are determined by the poles

En,q,k = − α2

2(n+ q + |k+ µ0| + 1)2
. (2.48)

This agrees with the result in Refs. [10, 11]. The wave functions can be read off by giving the form
of the spectral representation

G(pb, pa; E) =
∞∑

n=0

∞∑
q=0

∞∑
k=−∞

[
π3
(
p2

b + κ2
)2(

p2
a + κ2

)2
2κ5(n+ q + |k+ µ0| + 1)2

]
1

E − En,q,k

× 23κ5(n+ q + |k+ µ0| + 1)

π2
· 4(q+|k+µ0|)

× [2(q + |k+ µ0|)+ 1]0(n+ 1)0(q + 1)0(q + 2|k+ µ0| + 1)

0(n+ 2(q + |k+ µ0|)+ 2)

× 1(
p2

b + κ2
)2 · 1(

p2
a + κ2

)2 · ( 2κpb

p2
b + κ2

)q+|k+µ0|
·
(

2κpa

p2
a + κ2

)q+|k+µ0|

×Cq+|k+µ0|+1
n

(
p2

b − κ2

p2
b + κ2

)
· Cq+|k+µ0|+1

n

(
p2

a − κ2

p2
a + κ2

)
× P(|k+µ0|,|k+µ0|)

q (cos2b) · P(|k+µ0|,|k+µ0|)
q (cos2a)

× (cos2b/2 cos2a/2 sin2b/2 sin2a/2)|k+µ0| · eik(8b−8a),

=
∞∑

n=0

∞∑
q=0

∞∑
k=−∞

[
π3
(
p2

b+κ2
)2(

p2
a+κ2

)2
2κ5(n+q + |k+µ0| + 1)2

]
1

E − En,q,k
9n,q,k(pb)9∗n,q,k(pa)+· · · .

(2.49)

From this we identify the wave functions as

9n,q,k(p) = 2
√

2κ5

π
2(q+|k+µ0|)(n+ q + |k+ µ0| + 1)1/2

×
(

[2(q + |k+ µ0|)+ 1]0(n+ 1)0(q + 1)0(q + 2|k+ µ0| + 1)

0(n+ 2(q + |k+ µ0|)+ 2)

)1/2

× 1

(p2+ κ2)2
·
(

2κp

p2+ κ2

)q+|k+µ0|
· Cq+|k+µ0|+1

n

(
p2− κ2

p2+ κ2

)
× P(|k+µ0|,|k+µ0|)

q (cos2) · (cos2/2 sin2/2)|k+µ0| · eik8. (2.50)

The normalization condition ∫
d3 p9n,q,k(p)9∗n,q,k(p) = 1 (2.51)

can be easily checked by using the recursion formula

zCνn(z) = 1

2(n+ ν)

[
(n+ 1)Cν

n+1(z)+ (n+ 2ν− 1)Cν
n−1(z)

]
, (2.52)
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and the following orthogonality relations of the Jacobi function [5, p. 383]∫ −1

−1
dx(1− x)α(1+ x)βP(α,β)

n (x)P(α,β)
m (x) = 2α+β+1

α + β + 2n+ 1

0(α + n+ 1)0(β + n+ 1)

n!0(α + β + n+ 1)
δm,n,

(2.53)

as well as the Gegenbauer polynomials [5, p. 378],∫ 1

−1
dxCλn (x)Cλ

m(x)(1− x2)λ−1/2 = π21−2λ0(n+ 2λ)

n!(λ + n)02(λ)
δm,n. (2.54)

It is of interest to evaluate the average values of the square of the momentum in the various quantum
states:

〈P2〉 =
∫ ∞

0

∫ π

0

∫ 2π

0
P2 d Psin2 d2 d89n,q,k(p)P29∗n,q,k(p). (2.55)

With the help of Eqs. (2.53) and (2.54), we find

〈P2〉 = κ2 =
(

α

n+ q + |k+ µ0| + 1

)2

. (2.56)

This quantity characterizes the modified circular Bohr orbit of the A-B-C system. For the hydrogen
atom it specifics the square momentum of the electron in a circular Bohr orbit with the same total
quantum number. Indeed, forµ0 = 0, when there is no A-B effect, Eq. (2.50) reduces to the wave
functions of the pure Coulomb system

9ñ,l ,k(p) = 2
√

2κ5

π
2l0(l + 1)

√
4πñ0(ñ− l )

0(ñ+ l + 1)

× 1

(p2+ κ2)2
·
(

2κp

p2+ κ2

)l

· Cl+1
ñ−l−1

(
p2− κ2

p2+ κ2

)
· Ylk(2,8), (2.57)

where we have defined̃n = n + l + 1 (ñ = 1, 2, 3, . . . , l = 0, 1, 2, . . .). Wave functions were
first obtained by Podolanski and Pauling by carrying out the Fourier transformation on the wave
function of the position space in Ref. [13]. From the Schrödinger equation in the momentum space,
the Coulomb system was solved by Fock [14, 15]. The average values of the square are given by

〈P2〉 = κ2 =
(
α

ñ

)2

. (2.58)

This special case of (2.56) is the same as for a circular Bohr orbit, as discussed in the classical paper
of Pauling [13].

III. CONCLUSION

We have derived the exact Green function of the A-B-C system in momentum space from path
integrals. From this, the wave functions as well as the energy spectra have been extracted. Since the
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dynamics of the system in momentum space is on a curved manifold, our discussion offers another
piece of evidence in answering the historic question of different Hamiltonians in curved spaces.
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