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Abstract

The optimization of product or process quality profoundly influences a manufacturer. Most studies have focused primarily
on optimizing a quantitative (or qualitative) quality response, while others have concentrated on optimizing multiple
quantitative quality responses. However, optimizing multiple responses involving both qualitative and quantitative
characteristics have scarcely been mentioned, largely owing to the inability to directly apply conventional optimization
techniques. In this study, we present a novel approach based on artificial neural networks (ANNSs) to simultaneously optimize
multiple responses including both qualitative and quantitative quality characteristics. Two neural networks are constructed:
one for determining the ideal parameter settings and the other for estimating the values of the multiple quality characteristics.
In addition, a numerical example from an ion implantation process employed by a Taiwan IC fabrication manufacturer
demonstrates the proposed approach’s effectiveness. (© 2001 Published by Elsevier Science B.V.
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1. Introduction

Stringent market competitiveness has driven man-
ufacturers to enhance product quality. Off-line quality
control is a cost-effective means of optimizing the
product and process design in support of on-line
quality control. Under this approach, design para-
meters and noise parameters heavily influence the
responses of a product or operational process. Design
parameters are factors which the designer can control.

*Corresponding author. Tel.: +886-3-5731896;
fax: +886-3-5733873.
E-mail address: litong@cc.nctu.edu.tw (L.-I. Tong).

Noise parameters are factors which a designer can
generally not control. A robust design is desired to
obtain the optimum design parameter settings for a
product or an operational process in such a manner
that the product response attains its desired target with
minimum variation. Most investigations involving
robust designs have focused primarily on optimizing
the single response of a manufactured product or
process. However, many manufactured products are
diversified, causing more than one response to be
considered. For instance, the defect count on the
sensitive area and the amount of ion implanted may
require simultaneously consideration for an ion
implantation process in a semiconductor manufac-
turing process.
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In most products, the quality response with a quan-
titative feature is frequently considered owing to the
inherent nature of the quality response. Conventional
experimental design [13] techniques can be employed
to investigate the relationship between quality
response and design parameters (or noise parameters).
In addition, while combining experimental design
techniques with quality loss considerations, Taguchi’s
method [5,17,18,22] is an efficient approach for off-
line quality control when the single quality response is
involved. In some cases, the interested quality
response may be a qualitative (or categorical) quality
response. Optimization of a qualitative quality char-
acteristic has seldom been mentioned [6,15]. To opti-
mize the qualitative quality characteristic problem, the
qualitative response is generally represented by the
percentage form or it is classified into several cate-
gories. In addition, discriminant analysis [7] can be
performed to identify the relevant factors when ana-
lyzing a qualitative response problem. The accumula-
tion analysis (AA) [22] developed by Taguchi can also
be performed to optimize the ordered categorical
quality response.

In practice, multivariate analysis of variance
(MANOVA) [7] and the response surface method
(RSM) [14] are two methods frequently employed
to optimize a multi-response problem. Other multi-
response optimization techniques developed until now
can be found in [1,2,4,8-10,12,19,21,24,25]. How-
ever, these optimization procedures are only designed
for a quantitative multi-response problem. As the
product and process become increasingly compli-
cated, multiple quality responses may involve quali-
tative and quantitative characteristics. For instance,
the defect count of the sensitive area and the amount of
ion implanted in a wafer may require simultaneously
consideration for an ion implantation process in a
semiconductor manufacturing process. However, the
fact that optimization of such a multi-response pro-
blem has rarely been studied reflects the necessity for
an appropriate method.

In light of above developments, this study presents
an artificial neural network (ANN) approach to opti-
mize the multiple quality responses involving quali-
tative and quantitative responses. Two neural networks
are constructed to resolve the above multi-response
problem: one of the neural networks determines
the ideal parameter settings while the other estimates

the optimum values of the multiple quality character-
istics. The rest of this paper is organized as follows.
Section 2 reviews literature related to the optimization
of both a single qualitative responses and the multiple
qualitative responses. Section 3 reviews the theory of
artificial neural networks. Section 4 presents the pro-
posed approach. Section 5 provides an illustrative
example to demonstrate the proposed approach’s
effectiveness. Finally, concluding remarks are made
in Section 6.

2. Literature review

2.1. Optimization of the multiple quality
characteristics

Khuri and Conlon [8] proposed a procedure, based
on a polynomial regression model, to simultaneously
optimize several quantitative responses. In their pro-
cedure, a distance function is initially employed to
measure the deviations from the ideal optimum. By
doing so, the multiple responses can then be optimized
by minimizing the distance function under appropriate
operating conditions.

Logothetis and Haigh [12] simultaneously applied
multiple regression and linear programming to opti-
mize the multi-responses problem. Derringer and
Suich [4] used the desirability function to optimize
multi-response problems. They initially transformed
several responses into a single response and, then,
obtained a complete desirability value by taking the
geometric average of the multiple desirability values.
Castillo et al. [2] modified the desirability function
to avert a situation in which the non-differentiable
points appear in the original desirability function. In a
related work, Layne [10] presented a novel procedure
to determine the optimum factor/level combination.
He employed the criterion of minimizing the loss
function, maximizing the desirability function and
minimizing the distance function. Notably, the con-
troversies of Layne’s method can be generated by
simultaneously comparing the three results to deter-
mine the optimum parameter setting.

Pignatiello [19] utilized a variance component and a
squared deviation-from-target to form an expected
loss function to optimize a multi-response problem.
He initially constructed a regression model and, then,
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minimized the expected loss function. However, when
implementing this method in practice, the necessary
cost matrix may be difficult to obtain. Chapman [3]
proposed a co-optimization approach, which com-
bines all responses using a composite response, to
place constraints on some or all responses and then
minimize or maximize one of the responses.

Leon [11] presented a method based on a standar-
dized loss function with the specification limits to
optimize a multi-response problem. However, only the
nominal-the-best (NTB) response is appropriate for
this method. Tai et al. [23] claimed that quadratic
modeling is invalid for non-symmetric loss functions.
They also recommended developing an empirical loss
function for a multi-response problem. Ames et al. [1]
also presented a quality loss function approach in the
response surface models to resolve a multi-response
problem.

In addition, several other techniques have been
developed to optimize the multi-response problem.
Lai and Chang [9] proposed a fuzzy multi-response
optimization procedure to derive an appropriate com-
bination or process parameter settings. Tong et al. [25]
developed a multi-response signal to noise (MRSN)
ratio, capable of integrating the quality loss for all
responses, to optimize the multi-response problem. In
a later study, Su and Tong [21] proposed a principle
component analysis (PCA) approach to optimize the
multi-response problem. Initially, the quality loss of
each response was standardized. Next, the principle
component analysis was then applied to transform the
primary P quality characteristics into k summary
quality characteristics, where k < P. Finally, the opti-
mum factor/level combination can be obtained by
minimizing the sum of standardized quality loss. Tong
and Su [24] also proposed a procedure, capable of
applying fuzzy set theory to multiple attribute decision
making (MADM), to optimize a multi-response pro-
blem. That investigation also applied a similar tech-
nique for ordering preference by the similarity to an
ideal solution index to determine the optimum para-
meter setting.

2.2. Optimization techniques for a qualitative
characteristic

Taguchi [22] developed accumulation analysis (AA)
to effectively resolve the qualitative (categorical)

response problems. Taguchi’s AA primarily consists
of four steps: (1) define the corresponding cumulative
categories; (2) determine the effects of the factor’s
levels; (3) plot the cumulative probabilities; and (4)
predict the accumulated probabilities of each category
under optimum conditions. Taguchi also recom-
mended using the Omega (£2) transformation to trans-
fer the accumulated probability of the factor level to a
corresponding 2 value, thereby yielding the predicted
accumulated probability of the qualitative response.
The optimum factor/level combination can be deter-
mined by screening the factor effect diagram. How-
ever, Taguchi’s AA might lead to an erroneous result
under a subjective assessment while attempting to
determine the optimum level combination from the
factor effect diagram.

Nair [15] presented two scoring schemes (SS) to
identify the dispersion and location effects. That
investigation recommended using the mean square
to identify a prominent effect. The optimal condition
of dispersion and location effects can be obtained
according to the contribution of both effects of each
control factor. The final optimal control factor/level
combination is obtained by adjusting between the
dispersion effect and location effect.

Jean and Guo [6] proposed a weighted probability
scoring scheme (WPSS) to reduce the drawbacks of
Nair’s SS. Their approach is simpler and more
straightforward than Nair’s, in that they incorporate
the dispersion and location effects into a single mean
square deviation (MSD). In addition, the expected
mean square deviation for each category can be
obtained according to the definition of the categories.
The optimal control factor/level combination is
obtained by selecting the minimum mean squared
deviation.

All methods mentioned above only focus on either
the optimization of the multi-response with the quan-
titative forms or that of a single response with qua-
litative form. However, for the multi-response
simultaneously involving the qualitative and quanti-
tative forms, they still cannot be directly employed.

3. Neural networks

A neural network is a parallel computing system con-
sisting of many processing elements (PEs) connected
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Fig. 1. Topology of a typical neural network.

from layer to layer. Each PE can receive several
effective input signals, which subsequently pass
through a weight set (i.e. the strength of the connection
between PEs), to sum up all arrived signals. An
activation function determines the activation value.
The output signals of the PEs may be sent to other PEs
on the next layer or return to itself through intercon-
nections. Depending on the interconnection architec-
ture among the neurons, the activation function
transforms inputs into outputs, and the learning rules
lead to several different architectures. The character-
istic architecture of a neural networks can be defined
as the number of PEs in each layer. Fig. 1 depicts the
topology of a typical neural network.

Neural networks can model the non-linear relation-
ship between the system’s input and system’s discrete
or continuous output. The hidden structure of the non-
linear relationship can be learned by passing the
training pairs through the network. Several conven-
tional supervised learning neural models include per-
ceptron, back-propagation neural network (BPNN),
learning vector quantization (LVQ), and counter pro-
pagation network (CPN). The BPNN model is fre-
quently used and, therefore, selected herein. A
gradient-descent algorithm [16,20] is employed to
minimize the error function for a BPNN model.
The training process introduces the training set to
the network, and then adjust the connected weight
according to the difference between the produced and
target outputs. The error at the output layer propagates
backward through the network and, in doing so, the
error can be minimized by network training. The
adjustment of connection weights is repeated until
the training count arrives at a defined level or the
error converges toward an acceptable level. The

back-propagation learning algorithm is thoroughly
described in [16,20].

4. Proposed approach

A particular relationship must exist between the
input and output of a system. However, most mod-
ularization approaches can only modularize a system
by employing forward direction. Restated, a system’s
output can be viewed as a function of a system’s input.
However, from a logical perspective, the reverse
direction can also be employed to modularize a sys-
tem. The system’s ideal output is generally known and
the system’s input can be found for this ideal output.
For instance, the target value of the response of a
product is known and the ideal parameter settings for
attaining the target value can be determined through a
designed experiment. The system’s feature hidden in
the experiment can be directly used to modularize a
system by employing the neural network. In this study,
we apply this logical concept of reverse direction to
determine the optimum parameter settings of a multi-
response problem. That is, the response/parameter’s
combination is applied to the input/output of the first
neural network (reverse direction). The relationship
between responses and parameter’s combination will
be learned since the neural network being trained well.
Inputting the desired responses into the trained neural
network, the ideal parameter’s combination can be
obtained. Hence, the first neural network can be
required as a procedure of parameter searching. Then,
the parameter’s combination/responses is applied to
the input/output of the second neural network (forward
direction). The relationship between parameter’s com-
bination and responses will be also learned since the
neural network being trained well. Inputting the ideal
parameter combination we found into the trained
neural network, the estimated results of responses
can be obtained. Hence, the second neural network
can be required as a procedure of response estimating.
If these two neural networks are only separately
employed, it will give rise to two situations: (1) several
confirmation activities may be required when the
single neural network’s performance is under trained
or over trained since neural network with reverse
direction being separately utilized; (2) all possible
parameter’s combinations are sent into the single
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Fig. 2. The topology of the proposed approach.

neural network to search for the optimum parameter’s
combination since neural network with forward direc-
tion being separately utilized. It is a time-consuming
task. Obviously, employing the two neural networks
approach can work better and it is more flexible and
efficient. Fig. 2 depicts the topology of the proposed
neural network approach.

The proposed optimization approach for the multi-
ple quality responses problem involving qualitative
and quantitative characteristics is given in the follow-
ing steps:

1. Form the training set and the testing set of back-
propagation neural network. Randomly take
around one-third of the experimental data [16]
from the designed experiments to form the testing
set of the back-propagation neural network. The
remaining parts of the experimental data forms
the training set of the back-propagation neural
network.

2. Construct the architecture of the back-propaga-
tion neural network N-I and determine the opti-
mum parameter settings.

2.1. Compute the accumulated probability of the
kth ordered category of a qualitative response
with m ordered categories by using the
following formula: p; = Zf;lni/(nl +np+
-+ +n,), where n; denotes the count owing
to the ith (i = 1,2,...,m) ordered category.
Accumulated probability is used herein for
the following reasons: (i) the qualitative
response is attributed to the ordered category,
in that using the accumulated probability is
more meaningful than using the probability;
(ii) if the probability of the ordered category is
used, the structure of the category may contain
several zero input; and (iii) the process
engineers usually estimate the accumulated
probability directly and not the probability.
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Assign the accumulated probability of each
category of the qualitative response and the
value of the quantitative response as the input
signal of neural network N-I; the correspond-
ing factor/level combination is assigned as
the output signal of neural network N-I.
Therefore, the structure of the training set
and testing set can be represented as follows:

((P17P27P3a o

2.5.

Restated, assign all experimental data as the
training set. Retrain the optimum neural
network N-I chosen from Step 2.3 until the
optimum neural network N-Is architecture
reaches a steady-state.

Input the target value to the neural network
N-I found in Step 2.4. Restated, input the
ideal accumulated probability of each or-

., response, factor-A, factor-B, factor-C, .. ))

| —— inputsignal —— | ————output signal —— |

where p; (i=1,2,...,m) are the accumu-
lated probability obtained in Step 2.1;
response denotes the value of the quantitative
response, and factor-A, factor-B, factor-C,
... denote the setting values of factors A, B,
C,..., respectively. Assume that a designed
experiment includes a factors, one qualitative
response with m ordered categories, and n
quantitative characteristics, then the size of
the input signal of N-I and the size of the
output signal of N-I are (m+n) and q,
respectively.

Test several different architectures (i.e. the
number of PEs in the hidden layer) of neural
network N-I by using the training set and
testing set chosen in Step 1. The root mean
square error (RMSE) [16] of each architec-

( (factor-A, factor-B, factor-C, ...

dered category of the qualitative response and
the ideal value of the quantitative response to
neural network N-I. The ideal parameter
settings can then be obtained by computing
neural network N-II.

3. Construct the architecture of neural network N-II
and estimate the ideal responses.

3.1

Assign the factor/level combination as the
input signal of neural network N-II. The
corresponding accumulated probability of
each category of the qualitative response
and the value of the quantitative response are
assigned as the output signal of neural
network N-II. The structure of the training
set and testing set can be represented as
follows:

yP1,P2,P3s - - - 7resp0nse)>

| «——— input signal ——— | «—— output signal— |

24.

ture can be utilized as the criterion in
determining the optimum neural network.
After approaching 10,000 epochs (where an
epoch is one training data set presented to the
network). The RMSE value of training can be
obtained. Next, inputting the testing set into
the trained architectures, the RMSE value of
testing can be also obtained. The optimum
architecture is the one which can simulta-
neously minimize the RMSEs from both of
the training set and testing set in Step 1.

Incorporate the training set and testing set
chosen in Step 1 into a final training set.

3.2.

3.3.

3.4.

Test several different architectures (i.e. the
number of PEs in the hidden layer) of neural
network N-IIs by using the training set and
testing set chosen in Step 2.4. The principle for
determining the optimum neural network N-
IIs architecture is the same as that in Step 2.3.
Incorporate the training set and testing set
chosen in Step 2.4 into a final training set.
Retrain the optimum neural network N-IIs
architecture chosen from Step 3.2 until it
reaches a steady-state.

Input the ideal parameter settings found in
Step 2.5 to the optimum neural network N-II
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found in Step 3.3. By doing so, the estimated
accumulated probability of each ordered
category of the qualitative response and the
estimated response values of the quantitative
response can be obtained.

4. Compare the estimated result with the target (i.e.
the ideal accumulated probability of each ordered
category of the qualitative response and the ideal
value of the quantitative response). If the
estimated results in Step 3.4 do not significantly
depart from the target, the analysis is completed.
Otherwise, go back to Step 1 to reform the
training set and testing set and repeat Steps 2—4
until the deviation between the estimated results
and target can be accepted by users. For increas-
ing the flexibility of application, the acceptable
deviation will depend on the corresponding
problem and the engineering experience.

Form the training set and testing
» set from the designed experiment

Construct neural network N-I
and determine the optimum
parameters’ scttings

y

Construct neural network N-I1
and estimate the optimum
response values

Is the deviation of
the estimated result
and the target small?

Stop the analysis

Fig. 3. The flow-chart of the proposed approach.

Fig. 3 schematically depicts the above procedure of
the proposed approach.

5. Illustrative example

The following numerical example involves an ion
implantation process from a Taiwanese IC fabrication
manufacturer. Two quality responses are considered:
one is owing to the qualitative response (i.e. the total
defect counts of 36 sensitive areas in a wafer) and the
other is owing to the quantitative response (i.e. the
measurement of the ion amount). Furthermore, an
equal importance of these responses is considered
in the ion implantation process. Six control factors
are studied and are denoted as A—F. Among them, five
of them (B-F) are continuous and one (A) is discrete.
Table 1 lists these control factors and their levels. The
qualitative response includes five categories of the
defect situation: very good, good, not good and not
bad, bad and very bad. They are denoted by grade I, II,
I, TV and V. Table 2 lists these responses. The
quantitative response is the NTB with the target value
of 1000 (after the data transformation). There are two
repetitions. Table 3 summarizes the experimental data
in a L,g orthogonal array. In addition, the accumulated

Table 1

Control factors and their levels®

Factor Level 1 Level 2 Level 3
A Type 1 Type 2

B 6 12 18

C 50 100 150

D 5 10 15

E 4 8 12

F 25 50 75

 Starting levels are identified by underline.

Table 2

Categorical definition of the qualitative characteristic

Category Definition

I Very Good

II Good

I Not good and not bad
v Bad

\Y% Very bad
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Table 3
Experimental data
Number Responses
Qualitative (categories) response Quantitative response®
1 1T 11 v \% N, N,
1 33 3 0 0 0 745.2 741.4
2 24 5 6 1 0 968.3 972.1
3 6 2 20 8 0 800.2 796.1
4 0 14 4 4 0 795.9 797.8
5 2 12 12 16 791.4 796.6
6 4 12 20 4 8 800.4 802.1
7 0 2 6 14 14 912.2 908.2
8 10 2 8 4 12 650.0 645.7
9 0 0 0 24 12 651.2 650.3
10 34 0 2 0 0 1075.1 1072.5
11 30 2 4 0 0 1314.0 1316.1
12 10 10 12 0 4 884.4 890.5
13 14 8 10 4 0 884.3 886.6
14 8 16 12 0 0 817.4 826.5
15 0 8 6 4 18 796.0 800.1
16 18 12 6 0 0 819.8 816.1
17 10 6 0 4 16 821.8 824.2
18 0 4 2 6 24 732.4 735.6

* The value of the quantitative response are the form after transforming.

probability of each category of the qualitative
response and the value of the quantitative response
for the initial settings A;B;C3D3E F, are (I, II, III,
IV, V, R) = (0.30, 0.48, 0.82, 0.94, 1.0, 1085.2),
where I,...,V denote the accumulated probabilities
of the categories I,...,V of the qualitative response
and R represents the average value of the quantitative
response.

To simplify the computation of the proposed
approach, a neural network software package —
Neural Professional II/Plus [16] is used to develop
the required networks. This example contains 36 pairs
of experimental data. Among these pairs, 12 pairs of
experimental data are randomly selected to form the
testing set of the back-propagation neural network.
The remaining 24 pairs of experimental data are
assigned as the training set of the back-propagation
neural network. The accumulated probability of each
category of the qualitative response is computed.
Table 4 summarizes those results. Next, the accumu-
lated probability of each ordered category of the
qualitative response and the value of the quantitative
response are assigned as the input signals of neural
network N-I, the parameter settings are severed as

output signals of neural network N-I. Factor A is a
qualitative type herein and the coding for factor A is
that 1 denotes the type 1, and 2 denotes the type 2. The
PEs counts of the input and output layer of neural
network N-I are 6 and 6, respectively, and the number
of PEs in the hidden layer of the neural network N-I
can be determined by trial-and-error. Table 5 lists
several options of the neural network N-Is architec-
ture; the structure 6-8-6 is selected to obtain the ideal
continuous value of the parameters (for comparison of
the training set’s and the testing set’s RMSE values).
All experimental data are used as the final training set
to retrain the chosen optimum neural network’s archi-
tecture 6-8-6. This architecture of the neural network
will reach a steady-state after 10,000 epochs training.
By inputting the ideal targets (the ideal accumulated
probability of each category of the qualitative char-
acteristic (1.0, 1.0, 1.0, 1.0, 1.0) and the desired value
of the quantitative characteristic (1000)) to the steady-
weight set, the ideal parameter settings can be found as
(A,B,C,D,E, F) = (type 1, 6.06, 46.32, 1291,
11.63, 52.03).

Next, the neural network N-II is used to estimate
the accumulated probability of each category of the



K.-L. Hsieh, L.-1. Tong/Computers in Industry 46 (2001) 1-12 9

Table 4

The accumulated count (probability) of the qualitative characteristic

Number Accumulated count (probability)
I I I v v
1 33 (0.917) 36 (1.000) 36 (1.000) 36 (1.000) 36 (1.000)
2 24 (0.667) 29 (0.806) 35 (0.972) 36 (1.000) 36 (1.000)
3 6 (0.167) 8 (0.222) 28 (0.778) 36 (1.000) 36 (1.000)
4 0 (0.000) 28 (0.778) 32 (0.889) 36 (1.000) 36 (1.000)
5 2 (0.056) 4 (0.111) 8 (0.222) 20 (0.556) 36 (1.000)
6 4 (0.111) 4 (0.111) 24 (0.667) 8 (0.222) 36 (1.000)
7 0 (0.000) 2 (0.056) 8 (0.222) 22 (0.611) 36 (1.000)
8 10 (0.278) 12 (0.333) 20 (0.556) 24 (0.667) 36 (1.000)
9 0 (0.000) 0 (0.000) 0 (0.000) 24 (0.667) 36 (1.000)
10 34 (0.944) 34 (0.944) 36 (1.000) 36 (1.000) 36 (1.000)
11 30 (0.833) 32 (0.889) 36 (1.000) 36 (1.000) 36 (1.000)
12 10 (0.278) 20 (0.556) 32 (0.889) 32 (0.889) 36 (1.000)
13 14 (0.389) 22 (0.917) 32 (0.889) 36 (1.000) 36 (1.000)
14 8 (0.222) 24 (0.667) 36 (1.000) 36 (1.000) 36 (1.000)
15 0 (0.000) 8 (0.222) 14 (0.389) 18 (0.500) 36 (1.000)
16 18 (0.500) 30 (0.833) 36 (1.000) 36 (1.000) 36 (1.000)
17 10 (0.278) 16 (0.444) 16 (0.444) 20 (0.556) 36 (1.000)
18 0 (0.000) 4 (0.111) 6 (0.167) 12 (0.333) 36 (1.000)

qualitative response and the value of the quantitative
response under the ideal parameter settings found in
neural network N-I. The 24 pairs and 12 pairs of
experimental data selected for constructing the neural
network N-I are used to train the neural network N-II.
Herein, the parameter settings are assigned as the input
signal of neural network N-II, and the accumulated
probability of each ordered category of the qualitative
response and the response value of the quantitative
response are assigned as the output signal of neural
network N-II. Hence, the PEs count of N-IIs input and
output layer are equal to 6 and 6, respectively. Table 6
lists several options of neural network N-IIs architec-
ture with different PEs count in the hidden layer;
the structure 6-12-6 is selected to obtain the best

Table 5
The RMSE of neural network N-T

performance (for compromising the training set’s
and the testing set’s RMSE values). Next, all experi-
mental data are utilized to form the final training set of
the chosen optimum neural network’s architecture 6-
12-6 and retrain the neural network N-II. This archi-
tecture of the neural network reaches a steady-state
after 10,000 epochs of training. By inputting the ideal
parameter settings obtained from neural network N-I
to the chosen neural network N-II, the estimated
accumulated probability of each category of the
qualitative response and the estimated value of the
quantitative response can be found as (I, II, III,
IV, V, R) = (0.88,0.96,0.99, 1.0, 1.0, 1056.8). Com-
paring the estimated responses with the target (1.0,
1.0, 1.0, 1.0, 1.0, 1000) reveals that the deviation is

Table 6
The RMSE of neural network N-II

Architecture RMSE (training) RMSE (testing) Architecture RMSE (training) RMSE (testing)
6-5-6 0.158 0.211 6-6-6 0.146 0.169
6-8-6" 0.126 0.182 6-8-6 0.111 0.158
6-11-6 0.103 0.191 6-10-6 0.094 0.123
6-14-6 0.087 0.223 6-12-6" 0.085 0.102
6-18-6 0.072 0.224 6-15-6 0.076 0.114

* Denotes the optimal option after trade-off.

# Denotes the optimal option after trade-off.
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considerably small and the analysis is terminated. In
addition, inputting the initial parameter combination
into the neural network N-II allows us to obtain the
estimated accumulated probability of each category of
the qualitative response and the estimated value of the
quantitative response as (I, II, III, IV, V, R) = (0.24,
0.45, 0.86, 0.98, 1.0, 1106.5). In addition, comparing
the estimated responses from the proposed approach
with the result (0.30, 0.48, 0.82, 0.94, 1.0, 1085.2) of
the initial settings reveals that both results are quite
close. Correspondingly, this example confirms the
validity of the proposed approach.

Taguchi method is the popular method that most
manufactures are employed it to analyze the parameter
optimization. Herein, we also employ the Taguchi
method to make comparison with our proposed
approach. Assuming not only that Taguchi’s AA
and the conventional Taguchi method are employed
separately to optimize the qualitative and quantitative
responses of the same problem, but also that the results
from both methods are compromised to obtain the
optimum settings of the parameters for the above
example. By applying Taguchi’s AA to the qualitative
response, the optimum parameter combination for the
qualitative characteristic is A,B{C;D;E,F; and the
predicted accumulated probabilities of each category
of the qualitative response are (I, II, III, IV, V) =
(0.862, 0.926, 0.98, 0.995, 1.0). Fig. 4 summarizes
the results of the predicted accumulated probability of
each category for the initial parameter settings, Tagu-
chi’s AA and the proposed approach, respectively.
According to this figure, the proposed approach has
a higher predicted accumulated probability for each

category than that of the initial settings and Taguchi’s
AA. Moreover, when Taguchi’s method is applied to
the quantitative response, the optimum parameter
setting for the quantitative response is A;B,C;DE3F,.
To compromise the final parameters’ settings for the
results from qualitative and quantitative responses by
Taguchi’s method, our results indicate that a signifi-
cant conflict arises in setting the optimum levels for
factors A, B, D, E, and F, especially for factors A and
D. However, following discussion with the process
engineers, the final compromising parameters’ set-
tings is obtained as A;B,C;D;E,F,. To estimate the
response values, by inputting the final compromising
settings A1B,C;D;E,F; into the neural network N-II,
the estimated response values are (0.76, 0.85, 0.94,
0.99, 1.0, 1072.6). Table 7 compares the proposed
approach and Taguchi’s method with respect to the
estimated results of the initial settings. According to
this table, the estimated results for the proposed
approach performed better than Taguchi’s method
and the initial settings.

The estimated optimal parameter setting is (type 1,
6.06,46.32, 12.91, 11.63, 52.03). After discussing the
results with the engineer, the actual parameter setting
is determined as (type 1, 6, 45, 12.5, 12, 50) since
some difficulties arise in setting the parameters as the
estimated optimal parameter setting. Finally, the con-
firmed experiments for the proposed procedure are
performed. Table 8 summarizes those results. This
table reveals not only that the average accumulated
probability of each category of the qualitative
response are (0.88, 0.96, 0.99, 1.0, 1.0), but also that
they are close to the target value (1.0, 1.0, 1.0, 1.0,

5, 0.9
= 0.8 — - X - = The accumulated
g probability of the
S 0.7 initial settings.
206
=]
131
= 05 ——o0— The predicted
g 04 ; accumulated
§ 03 X~ probability of the
< 02 F proposed approach.
o 0.
<=
=01 ---A--- The predicted
0 accumulated
probability of the
1 2 3 5 Taguchi's AA.

Categories of the qualitative response

Fig. 4. The accumulated probability of the qualitative response.
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Table 7

Comparison of the optimum settings from Taguchi method and the proposed approach?

Method Optimum conditions Qualitative response Quantitative
(accumulated probability) response
(estimated
A B C E F I I I v V. value)
The settings of Taguchi’s method Type 1 12 50 8 25 076 085 094 099 1.0 1072.6

The settings of the proposed approach Type 1 6.06
The initial settings Type 1 6 150

46.32 1291 11.63 52.03 0.88 096 099 1.0 1.0 1056.8

4 50 024 045 0.86 098 1.0 11065

? The estimated results of the initial settings is also included in this table.

Table 8
Results of the confirmed experiments for the proposed approach

Confirm experiment number Qualitative response

Quantitative response

I I III v v N N,
1 29 34 35 36 36 1045.5 1044.3
2 30 33 36 36 36 1045.8 1047.1
Average accumulated probability 0.819 0.931 0.986 1.000 1.000

1.0). The average value of the quantitative response
(1045.7) is also close to the target value (1000).
Results obtained from the confirmed experiments
for the proposed procedure indicate that using the
proposed approach can efficiently enhance the product
quality, thereby confirming the proposed approach’s
effectiveness. The estimated results of setting (type 1,
6.06,46.32, 12.91, 11.63, 52.03) are (0.88, 0.96, 0.99,
1.0, 1.0, 1056.8) and the confirmed results of the actual
settings (type 1, 6, 45, 12.5, 12, 50) are (0.82, 0.93,
0.99, 1.0, 1.0, 1046.5). These two results are close and,
therefore, the process engineer can accept the para-
meter setting as (type 1, 6, 45, 12.5, 12, 50). Although
only one experiment is employed in this study, the
validity of the proposed approach can still be verified.

6. Concluding remarks

With an increasing complexity of manufactured
products, assessing a product may not merely be a
single quality response. Optimizing the multiple
quality responses is an increasingly task for many
manufacturers. Furthermore, multiple responses may
simultaneously involve qualitative and quantitative
quality characteristics. Taguchi method cannot be

directly applied to optimize such multi-response pro-
blems involving qualitative quality and quantitative
quality characteristics. In light of such situations this
study presents a novel approach based on artificial
neural network technique to effectively optimize the
multiple quality responses involving both qualitative
(categorical) and quantitative characteristics. An illus-
trative example demonstrates the proposed approach’s
effectiveness. Results presented herein confirm that
the proposed approach has several merits: (1) the
proposed approach does not require a complicated
computation. In addition, an analyst with limited
statistical training would find it relatively easy to
comprehend the proposed approach. Engineers can
directly apply the neural network software to develop
the required model or to design an appropriate neural
model by themselves; (2) applying the proposed
approach allows us to obtain the ideal settings of
the continuous parameters; and (3) the uncertainty
when making a decision regarding the optimum para-
meter settings in Taguchi method can be efficiently
averted.

In addition, the neural network approach proposed
herein can also be applied to the multi-response
problem with all quantitative or all qualitative char-
acteristics. When responses are all qualitative or all
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quantitative characteristics, we merely need to slightly
alter the structure of the neural networks to obtain the
ideal parameter settings.
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