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A bit permutation network is an sss-stage interconnection
network composed of dddnnn−1 ddd ××× ddd crossbar switches in
each stage. This class of networks includes most of the
multistage interconnection networks. Recently, Chang
et al. [Networks 33 (1999), 261–267] showed that an sss-
stage ddd-nary bit permutation network NNN with dddn inputs
(outputs) can be characterized by an (sss −−− 1)-vector (kkk1,
. . . , kkksss−1), where kkkt ∈∈∈ {1, . . . , nnn −−− 1}. In this paper, we
give a simple (but not trivial) formula to determine the
characteristic vector of a new network GGG(NNN)+, which is,
approximately, the line digraph of NNN. We use this for-
mula to obtain relations between some well-studied bit
permutation networks. © 2001 John Wiley & Sons, Inc.
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1. INTRODUCTION

Chang et al. [1] proposed the notion of a bit
permutation network which is an s-stage interconnec-
tion network composed of dn−1 d × d crossbar switches
in each stage, where a crossbar switch, or just a crossbar,
can connect any one-to-one mapping from inputs to out-
puts. This class of networks includes the Beneš network,
the Omega network, the banyan network, the baseline
network, and their extra-stage versions, namely, most
of the multistage interconnection networks. Suppose that
the dn−1 crossbars in a stage are each labeled by a distinct
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d-nary (n−1)-vector. They showed that an s-stage d-nary
bit permutation network N with dn inputs (outputs) can
be characterized by a (s − 1)-vector (k1, . . . , ks−1), where
kt = j ∈ {1, . . . , n − 1} means that N is topologically
equivalent to a network whose linking pattern between
stage t and t+1 consists of dn−2 disjoint complete bipar-
tite graphs where each such graph connects all crossbars
in stage t and t+1 having the same d-nary (n−1)-vectors
except bit j. Fig 1 shows a bit permutation network with
characteristic vector (3, 1, 2) and is topologically equiv-
alent to the network in Fig 2.

The line digraph G(N) of a multistage crossbar net-
work N is obtained by taking the links of N as nodes in
G(N), and an arc from node p to node q in G(N) exists
if link p is adjacent to and precedes link q in N. Note
that nodes of the same stage in G(N) are ordered by
the starting points of their corresponding links in N (see
Fig 3). Let G(N)+ be obtained from G(N) by adding d in-
lets (outlets) to each input (output) node. By interpreting
nodes as crossbars, then G(N)+ can also be viewed as a
multistage crossbar network (see Fig 4). It is well known
that being crosstalk-free (each crossbar carries at most
one path) is an essential property for photonic switching,
which uses optical fiber instead of electric wire as the
transmission media. Lea [3] observed that if two paths
are link-disjoint in N then their corresponding paths are
node-disjoint in G(N). Furthermore, Hwang and Lin [2]
gave formulas relating the nonblocking properties of N
to the crosstalk-free nonblocking properties of G(N)+.
Therefore, it is of interest to know that if N is a bit
permutation network, what kind of network is G(N)+.

In this paper, we will prove that if N is an s-stage
d-nary bit permutation network with dn inputs (outputs)
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FIG. 1. A bit permutation network N2(4; u, v, f1, f2, f3).

then G(N)+ is an (s+1)-stage d-nary bit permutation net-
work with dn+1 inputs (outputs). Furthermore, we give
a simple (but not trivial) formula to determine the char-
acteristic vector of G(N)+ from that of N. Finally, we
use this formula to obtain relations between some well-
studied bit permutation networks.

2. BIT PERMUTATION NETWORKS

Consider a multistage interconnection network with
dn inputs (outputs) and s stages of dn−1 crossbars of size
d × d. Let the ith crossbar in a stage be labeled by i in
the d-nary (n − 1)-vector. Define a bit-j group as the set
of crossbars in a stage identical in their labels except the
jth bit. Such a group will also be labeled by a d-nary
(n − 1)-bit vector which is identical to any member in
the group except that bit j is replaced by the symbol
x0, which stands for the set {0, 1, . . . , d − 1}. Chang et

FIG. 2. A bit permutation network N2(4; I3, I1, I2).

al. [1] called an s-stage d-nary interconnection network
a bit permutation network if the links from stage t to
t + 1 are always from a bit-ut group Z to a bit-vt group
Z′, where Z′ is a permutation of Z, for t = 1, . . . , s − 1.
Those values ut and vt, 1 ≤ t ≤ s−1, can be represented
by two functions u and v from set {1, . . . , s − 1} to set
{1, . . . , n−1}. For our purpose, we will restate their main
results in a slightly different way (and provide proofs for
justification).

Assume that N is an s-stage d-nary bit permuta-
tion network with dn inputs (outputs). Let ft, t =
1, . . . , s − 1, denote the group linking function between
stage t and t + 1 of N. Then, N can be represented by
Nd(n; u, v, f1, . . . , fs−1). Note that ft is a permutation of
{1, . . . , n − 1} and (ft)−1(ut) = vt.

The network in Figure 1 shows a bit permutation net-
work with 16 inputs (outputs), in which crossbar i is
represented by its binary 3-bit vector (x1, x2, x3). Ignor-
ing the inputs and outputs, then the network in Figure
1 can be viewed as a digraph whose nodes are those 32
crossbars labeled by (x1(t), x2(t), x3(t)) (t is often omitted)
and links are directed from left to right, where 1 ≤ t ≤ 4
and x1, x2, x3 ∈ {0, 1}. The links are from a bit-3 group
(x1, x2, x0) in stage 1 to a bit-1 group (x0, x1, x2) in stage 2,
from a bit-2 group (x1, x0, x3) in stage 2 to a bit-3 group
(x1, x3, x0) in stage 3, and from a bit-2 group (x1, x0, x3)
in stage 3 to a bit-2 group (x1, x0, x3) in stage 4, where
x0 ∈ {0, 1}. Thus,

u1 = 3, v1 = 1, f1(1) = 3, f1(2) = 1, f1(3) = 2,

u2 = 2, v2 = 3, f2(1) = 1, f2(2) = 3, f2(3) = 2,

u3 = 2, v3 = 2, f3(1) = 1, f3(2) = 2, f3(3) = 3.

In this paper, we shall use the cycle notation for per-
mutations, that is, the cycle (i1, i2, . . . , in) represents the
permutation f with f(i1) = i2, f(i2) = i3, . . . , f(in−1) =
in, f(in) = i1, and the cycle (j) represents f with f(j) = j.
Then, f1 can be represented by (1, 3, 2); f2, by (1)(2, 3);
and f3, by (1)(2)(3).

Theorem 1. If there exist permutations g1, . . . , gs on
{1, . . . , n − 1} such that u′

t = (gt)−1(ut), v′
t = (gt+1)−1(vt),

and f′
t = (gt)−1 ◦ ft ◦ gt+1 for 1 ≤ t ≤ s − 1, then

two bit permutation networks Nd(n; u, v, f1, . . . , fs−1) and
Nd(n; u′, v′, f′

1, . . . , f′
s−1) are equivalent.

Proof. Consider the bijection gt from the cross-
bar of Nd(n; u, v, f1, . . . , fs−1) to the crossbar of
Nd(n; u′, v′, f′

1, . . . , f′
s−1) defined by

gt((x1, . . . , xn−1)) = (xgt(1), . . . , xgt(n−1)) for 1 ≤ t ≤ s.

In other words, gt((x1, . . . , xn−1)) = (x′
1, . . . , x′

n−1)
whenever x′

j = xgt(j) for 1 ≤ j ≤ n − 1.
To see that these two networks are equivalent, we

only need to check that g1, . . . , gs are link-preserving.
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FIG. 3. The line digraph G(N) obtained from the network in Figure
1. (links are directed from left to right)

Without loss of generality, suppose that the links be-
tween stage t and t + 1 of Nd(n; u, v, f1, . . . , fs−1) are
from a bit-ut group (x1, . . . , xut , . . . , xn−1) to a bit-vt group
(y1, . . . , yvt , . . . , yn−1), that is, yj = xft(j) for 1 ≤ j ≤ n−1.
Let

gt((x1, . . . , xut , . . . , xn−1)) = (x′
1, . . . , x′

(gt)−1(ut)
, . . . , x′

n−1),

i.e., x′
j = xgt(j) for 1 ≤ j ≤ n − 1,

and

gt+1((y1, . . . , yvt , . . . , yn−1)) = (y′
1, . . . , y′

(gt+1)−1(vt)
, . . . , y′

n−1),

i.e., y′
j = ygt+1(j) for 1 ≤ j ≤ n − 1.

Then,

y′
j = ygt+1(j) = xft◦gt+1(j) = xgt◦f′

t (j) = x′
f′

t (j)

for
1 ≤ j ≤ n − 1.

Thus, there exist links from a bit-(gt)−1(ut) group
(x′

1, . . . , x′
(gt)−1(ut)

, . . . , x′
n−1) to a bit-(gt+1)−1(vt) group

(x′
f′

t (1), . . . , x
′
f′

t ((gt+1)−1(vt))
, . . . , x′

f′
t (n−1)) between stage t and

t + 1 of Nd(n; u′, v′, f′
1, . . . , f′

s−1). Conversely, the links
in Nd(n; u′, v′, f′

1, . . . , f′
s−1) also correspond to the links

in Nd(n; u, v, f1, . . . , fs−1).

In Theorem 1, the permutations g1, . . . , gs change the
labels of crossbars in Nd(n; u, v, f1, . . . , fs−1), but pre-
serve the linking pattern of Nd(n; u′, v′, f′

1, . . . , f′
s−1).

Let I denote the identity permutation (1)(2) · · · (n −
1) and Nd(n; Ik1 , . . . , Iks−1 ) denote the bit permu-
tation network Nd(n; u, v, f1, . . . , fs−1) with ft =
I and ut = vt = kt for all t. While [1]
proved that Nd(n; u, v, f1, . . . , fs−1) is equivalent to
Nd(n; Ik1 , . . . , Iks−1 ) for some (k1, . . . , ks−1), we give
an explicit formula to compute kt for 1 ≤ t
≤ s − 1.

Theorem 2. A bit permutation network Nd(n; u, v,
f1, . . . , fs−1) is equivalent to Nd(n; Ik1 , . . . , Iks−1 ), where
k1 = u1 and kt = (f1 ◦ · · · ◦ ft−1)(ut) for t = 2, . . . , s − 1.

Proof. Setting gt = I except g2 = (f1)−1,
from Theorem 1, (g1)−1(u1) = u1, (g2)−1(v1) =
f1((f1)−1(u1)) = u1, and (g1)−1 ◦ f1 ◦ g2 = I, we
can verify that Nd(n; u, v, f1, . . . , fs−1) is equivalent to
Nd(n; u′, v′, Ik1 , f

′
2, . . . , f′

s−1), where u′
2 = f1(u2), v′

2 =
v2 = (f′

2)−1(u′
2), f′

2 = f1 ◦ f2, u′
t = ut, v′

t = vt, and
f′

t = ft for t = 3, . . . , s − 1.
Assume the induction hypothesis that Nd(n; u, v,

f1, . . . , fs−1) is equivalent to Nd(n; u′, v′, Ik1 , . . . , Ikj−1 ,
f′

j, . . . , f
′
s−1), where u′

j = (f1 ◦ · · · ◦ fj−1)(uj), v′
j =

vj = (f′
j)−1(u′

j), f′
j = f1 ◦ · · · ◦ fj, u′

t = ut,
v′

t = vt, and f′
t = ft for t = j + 1, . . . , s −

1. We prove that Nd(n; u, v, f1, . . . , fs−1) is equivalent
to Nd(n; u′′, v′′, Ik1 , . . . , Ikj−1 , Ikj , f

′′
j+1, . . . , f′′

s−1), where
u′′

j+1 = (f1 ◦ · · · ◦fj)(uj+1), v′′
j+1 = vj+1 = (f′′

j+1)−1(u′′
j+1),

f′′
j+1 = f1 ◦ · · · ◦ fj+1, u′′

t = ut, v′′
t = vt, and f′′

t = ft for
t = j + 2, . . . , s − 1.

FIG. 4. The network G(N)+ obtained from the network in Figure 1.
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Again, by setting gt = I except gj+1 = (f′
j)−1,

from Theorem 1, (gj)−1(u′
j) = (gj+1)−1(v′

j) = u′
j =

(f1 ◦ · · · ◦ fj−1)(uj), and (gj)−1 ◦ f′
j ◦ gj+1 = I, the net-

work Nd(n; u′, v′, Ik1 , . . . , Ikj−1 , f
′
j, . . . , f

′
s−1) is equivalent

to Nd(n; u′′, v′′, Ik1 , . . . , Ikj−1 , Ikj , f
′′
j+1, . . . , f′′

s−1).

For convenience, we shall use (k1, . . . , ks−1) as a
short notation for the network Nd(n; Ik1 , . . . , Iks−1 ). By
Theorem 2, we say that a bit permutation network
Nd(n; u, v, f1, . . . , fs−1) can be characterized by a (s − 1)-
vector (k1, . . . , ks−1).

Theorem 3. If g is a permutation of {1, . . . , n − 1}, then
Nd(n; Ik1 , . . . , Iks−1 ) is equivalent to Nd(n; Ig(k1), . . . , Ig(ks−1)).

Proof. Choose all gt as (g)−1 in Theorem 1. Since
g ◦ Ikt ◦ (g)−1 = Ig(kt), the theorem is proved.

3. MAIN RESULTS

Let N be an s-stage d-nary bit permutation network
with dn inputs (outputs). It is easily seen that G(N)+ is
an (s+1)-stage d-nary crossbar network with dn+1 inputs
(outputs). We show that G(N)+ is also a bit permutation
network and how the group linking functions of N de-
termine those of G(N)+.

Theorem 4. If a bit permutation network N is rep-
resented by Nd(n; u, v, f1, . . . , fs−1), then G(N)+ is a
bit permutation network represented by Nd(n + 1;
u∗, v∗, h1, . . . , hs), where u∗

1 = v∗
1 = n, h1 is the iden-

tity permutation (1) · · · (n), u∗
t = ut−1, v∗

t = n, and ht is
the same as ft−1 except ht(n) = ut−1 and ht(vt−1) = n for
t = 2, . . . , s.

FIG. 5. The network BYF(1, 4).

Proof. Let the jth link incident to the crossbars of
each stage of N be labeled by j in the d-nary n-vector
(x1, . . . , xn). Note that the links are ordered by the start-
ing points of them. According to the construction rules of
G(N)+, the group linking function ht between the cross-
bars of stage t and t+1 in G(N)+ is equal to the relation
between their corresponding links incident to the cross-
bars of stage t in N.

In stage 1 of N, since the links (x1, . . . , xn−1, x0)
are adjacent to and precede the links (x1, . . . , xn−1, x0),
where x0 ∈ {0, 1, . . . , d − 1}, we know that u∗

1 =
v∗

1 = n and h1 is equal to (1) · · · (n). For t = 2, . . . , s,
if the permutation ft−1 of N is from a bit-ut−1 group
(x1, . . . , xut−1−1, x0, xut−1+1, . . . , xn−1) to a bit-vt−1 group
(xft−1(1), . . . , xft−1(vt−1−1), x0, xft−1(vt−1+1), . . . , xft−1(n−1)), then
the links (x1, . . . , xut−1−1, x0, xut−1+1, . . . , xn) are adjacent
to and precede the links (xft−1(1), . . . , xft−1(vt−1−1), xn,
xft−1(vt−1+1), . . . , xft−1(n−1), x0), where x0 ∈ {0, 1, . . . , d−1}
in stage t of N. Hence, u∗

t = ut−1, v∗
t = n, and ht is the

same as ft−1 except that ht(n) = ut−1 and ht(vt−1) = n for
t = 2, . . . , s. From the above, we also prove that G(N)+

is a bit permutation network.

Theorem 5. Suppose that the characteristic vector of
a bit permutation network Nd(n; u, v, f1, . . . , fs−1) is
(k1, . . . , ks−1). Then, the characteristic vector of G(Nd(n;
u, v, f1, . . . , fs−1))+ is (l1, . . . , ls), where l1 = n and
lt = kt−1 if kt−1 /∈ {k1, . . . , kt−2} or lt = li, where i =
max{j | kj = kt−1, 1 ≤ j ≤ t−2} if kt−1 ∈ {k1, . . . , kt−2}
for t = 2, . . . , s.

Proof. Since the characteristic vector of Nd(n; u,
v, f1, . . . , fs−1) is (k1, . . . , ks−1), where kt ∈ {1, . . . , n−1},
by Theorems 2 and 4, we can prove that the char-
acteristic vector of G(Nd(n; Ik1 , . . . , Ikj−1 , fj, . . . , fs−1))+

equals that of G(Nd(n; Ik1 , . . . , Ikj−1 , Ikj , f
′
j+1, . . . , f′

s−1))+

for 1 ≤ j ≤ s − 1. Hence, the characteristic vectors of
G(Nd(n; u, v, f1, . . . , fs−1))+ and G(Nd(n; Ik1 , . . . , Iks−1 ))

+

are the same.
By Theorem 4, G(Nd(n; Ik1 , . . . , Iks−1 ))

+ is a bit permu-
tation network represented by Nd(n+1; u∗, v∗, h1, . . . , hs),
where u∗

1 = n, h1 = (1) · · · (n), u∗
t = kt−1, and ht =

(1) · · · (kt−1−1)(kt−1+1) · · · (n−1)(kt−1, n) for t = 2, . . . , s.
Hence, hj(m) = m if m /∈ {kj−1, n} for m ∈ {1, . . . , n}
and j = 1, . . . , s. By Theorem 2, the characteristic vec-
tor of G(Nd(n; Ik1 , . . . , Iks−1 ))

+ is (l1, . . . , ls), where l1 = n
and lt = (h1 ◦ · · · ◦ ht−1)(kt−1) for t = 2, . . . , s. Thus,
lt = kt−1 if kt−1 /∈ {k1, . . . , kt−2}. If kt−1 ∈ {k1, . . . , kt−2},
then i = max{j | kj = kt−1, 1 ≤ j ≤ t − 2} ≥ 1 and
lt = (h1◦· · ·◦ht−1)(kt−1) = (h1◦· · ·◦hi+1)(kt−1) = (h1◦· · ·◦
hi+1)(ki) = (h1 ◦ · · · ◦ hi)(n) = (h1 ◦ · · · ◦ hi−1)(ki−1) = li.

For example, if the characteristic vector of a bit
permutation network N with d4 inputs (outputs) is
(1, 3, 3, 2, 2, 3, 1, 3, 1, 1, 2, 3, 2, 2, 1), then the character-
istic vector of G(N)+ is (4, 1, 3, 1, 2, 1, 3, 4, 1, 3, 1, 2, 4,
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1, 4, 3). Here, l1 = n = 4, l2 = k1 = 1, l3 = k2 = 3, and
l4 = l2 = 1 since k3 = 3 = k2. The formula obtained
from Theorem 5 can be useful for some well-studied bit
permutation networks.

Let us consider the network obtained by adding k ex-
tra stages to the banyan network with 2n inputs (outputs)
and by specifying that the extra k stages should be iden-
tical to the first k stages (denote this way of adding extra
stages by F). Represent the above network by BYF(k, n).
If the extra k stages are identical to the mirror image of
the first k stages, then denote the network by BYF−1 (k, n).
Fig 5 shows the network BYF(1, 4).

Theorem 6. The network G(BYF(k, n))+, 0 ≤ k ≤ n, is
equivalent to the network BYF(k, n + 1), where F can be
replaced by F−1.

Proof. Since BYF(k, n) is represented by N2(n;
In−1, In−2, . . . , I1, In−1, In−2, . . . , In−k), from Theorem 5,
the characteristic vector of G(BYF(k, n))+ is (n, n −
1, n − 2, . . . , 1, n, n − 1, . . . , n − k + 1). This means
that G(BYF(k, n))+ is equivalent to the network
N2(n+1; In, In−1, In−2, . . . , I1, In, In−1, . . . , In−k+1). Hence,
G(BYF(k, n))+ is equivalent to BYF(k, n + 1). Similarly,
we can obtain the result if F is replaced by F−1.

Let W−1 denote the inverse network of W, that is, the
network obtained from W by reversing the order of the
stages. It is easy to see that

Theorem 7. The network G(BY−1
F (k, n))+, 0 ≤ k ≤ n, is

equivalent to the network BY−1
F (k, n+1), where F can be

replaced by F−1.

Proof. Since BY−1
F (k, n) is represented by N2(n; I1,

I2, . . . , In−1, I1, I2, . . . , Ik), from Theorem 5, the charac-
teristic vector of G(BY−1

F (k, n))+ is (n, 1, 2, . . . , n − 1, n,
1, . . . , k−1). We can find the permutation g = (1, 2, . . . , n)
such that N2(n + 1; In, I1, I2, . . . , In−1, In, I1, . . . , Ik−1) is
equivalent to N2(n + 1; I1, I2, I3, . . . , In, I1, I2, . . . , Ik) by
Theorem 3. Hence, G(BY−1

F (k, n))+ is equivalent to
BY−1

F (k, n + 1). If F is replaced by F−1, then we can
also obtain the similar result.

Theorem 7 was crucially used in [2] to prove the
crosstalk-free property of BY−1

F−1 (k, n) essential to pho-
tonic switching.
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