Characterizing the Bit Permutation Networks Obtained from the Line Digraphs of Bit Permutation Networks

Frank K. Hwang
Department of Applied Mathematics, National Chiao Tung University, Hsinchu 30050, Taiwan, Republic of China
Chih-Hung Yen
Department of Applied Mathematics, National Chiao Tung University, Hsinchu 30050, Taiwan, Republic of China

Abstract

A bit permutation network is an s-stage interconnection network composed of $\boldsymbol{d}^{n-1} \boldsymbol{d} \times \boldsymbol{d}$ crossbar switches in each stage. This class of networks includes most of the multistage interconnection networks. Recently, Chang et al. [Networks 33 (1999), 261-267] showed that an s stage d-nary bit permutation network N with d^{n} inputs (outputs) can be characterized by an ($s-1$)-vector (k_{1}, \ldots, k_{s-1}), where $k_{t} \in\{1, \ldots, n-1\}$. In this paper, we give a simple (but not trivial) formula to determine the characteristic vector of a new network $G(N)^{+}$, which is, approximately, the line digraph of N. We use this formula to obtain relations between some well-studied bit permutation networks. © 2001 John Wiley \& Sons, Inc.

Keywords: multistage interconnection network; switching network; bit permutation network; photonic switching

1. INTRODUCTION

Chang et al. [1] proposed the notion of a bit permutation network which is an s-stage interconnection network composed of $d^{n-1} d \times d$ crossbar switches in each stage, where a crossbar switch, or just a crossbar, can connect any one-to-one mapping from inputs to outputs. This class of networks includes the Beneš network, the Omega network, the banyan network, the baseline network, and their extra-stage versions, namely, most of the multistage interconnection networks. Suppose that the d^{n-1} crossbars in a stage are each labeled by a distinct

[^0]d-nary $(n-1)$-vector. They showed that an s-stage d-nary bit permutation network N with d^{n} inputs (outputs) can be characterized by a $(s-1)$-vector $\left(k_{1}, \ldots, k_{s-1}\right)$, where $k_{t}=j \in\{1, \ldots, n-1\}$ means that N is topologically equivalent to a network whose linking pattern between stage t and $t+1$ consists of d^{n-2} disjoint complete bipartite graphs where each such graph connects all crossbars in stage t and $t+1$ having the same d-nary $(n-1)$-vectors except bit j. Fig 1 shows a bit permutation network with characteristic vector $(3,1,2)$ and is topologically equivalent to the network in Fig 2.

The line digraph $G(N)$ of a multistage crossbar network N is obtained by taking the links of N as nodes in $G(N)$, and an arc from node p to node q in $G(N)$ exists if link p is adjacent to and precedes link q in N. Note that nodes of the same stage in $G(N)$ are ordered by the starting points of their corresponding links in N (see Fig 3). Let $G(N)^{+}$be obtained from $G(N)$ by adding d inlets (outlets) to each input (output) node. By interpreting nodes as crossbars, then $G(N)^{+}$can also be viewed as a multistage crossbar network (see Fig 4). It is well known that being crosstalk-free (each crossbar carries at most one path) is an essential property for photonic switching, which uses optical fiber instead of electric wire as the transmission media. Lea [3] observed that if two paths are link-disjoint in N then their corresponding paths are node-disjoint in $G(N)$. Furthermore, Hwang and Lin [2] gave formulas relating the nonblocking properties of N to the crosstalk-free nonblocking properties of $G(N)^{+}$. Therefore, it is of interest to know that if N is a bit permutation network, what kind of network is $G(N)^{+}$.

In this paper, we will prove that if N is an s-stage d-nary bit permutation network with d^{n} inputs (outputs)

FIG. 1. A bit permutation network $N_{2}\left(4 ; u, v, f_{1}, f_{2}, f_{3}\right)$.
then $G(N)^{+}$is an $(s+1)$-stage d-nary bit permutation network with d^{n+1} inputs (outputs). Furthermore, we give a simple (but not trivial) formula to determine the characteristic vector of $G(N)^{+}$from that of N. Finally, we use this formula to obtain relations between some wellstudied bit permutation networks.

2. BIT PERMUTATION NETWORKS

Consider a multistage interconnection network with d^{n} inputs (outputs) and s stages of d^{n-1} crossbars of size $d \times d$. Let the $i^{\text {th }}$ crossbar in a stage be labeled by i in the d-nary $(n-1)$-vector. Define a bit- j group as the set of crossbars in a stage identical in their labels except the $j^{\text {th }}$ bit. Such a group will also be labeled by a d-nary ($n-1$)-bit vector which is identical to any member in the group except that bit j is replaced by the symbol x_{0}, which stands for the set $\{0,1, \ldots, d-1\}$. Chang et

FIG. 2. A bit permutation network $N_{2}\left(4 ; I_{3}, I_{1}, I_{2}\right)$.
al. [1] called an s-stage d-nary interconnection network a bit permutation network if the links from stage t to $t+1$ are always from a bit- u_{t} group Z to a bit- v_{t} group Z^{\prime}, where Z^{\prime} is a permutation of Z, for $t=1, \ldots, s-1$. Those values u_{t} and $v_{t}, 1 \leq t \leq s-1$, can be represented by two functions u and v from set $\{1, \ldots, s-1\}$ to set $\{1, \ldots, n-1\}$. For our purpose, we will restate their main results in a slightly different way (and provide proofs for justification).

Assume that N is an s-stage d-nary bit permutation network with d^{n} inputs (outputs). Let $f_{t}, t=$ $1, \ldots, s-1$, denote the group linking function between stage t and $t+1$ of N. Then, N can be represented by $N_{d}\left(n ; u, v, f_{1}, \ldots, f_{s-1}\right)$. Note that f_{t} is a permutation of $\{1, \ldots, n-1\}$ and $\left(f_{t}\right)^{-1}\left(u_{t}\right)=v_{t}$.

The network in Figure 1 shows a bit permutation network with 16 inputs (outputs), in which crossbar i is represented by its binary 3 -bit vector (x_{1}, x_{2}, x_{3}). Ignoring the inputs and outputs, then the network in Figure 1 can be viewed as a digraph whose nodes are those 32 crossbars labeled by $\left(x_{1}(t), x_{2}(t), x_{3}(t)\right)(t$ is often omitted) and links are directed from left to right, where $1 \leq t \leq 4$ and $x_{1}, x_{2}, x_{3} \in\{0,1\}$. The links are from a bit- 3 group $\left(x_{1}, x_{2}, x_{0}\right)$ in stage 1 to a bit- 1 group (x_{0}, x_{1}, x_{2}) in stage 2 , from a bit-2 group (x_{1}, x_{0}, x_{3}) in stage 2 to a bit- 3 group $\left(x_{1}, x_{3}, x_{0}\right)$ in stage 3 , and from a bit-2 group (x_{1}, x_{0}, x_{3}) in stage 3 to a bit-2 group (x_{1}, x_{0}, x_{3}) in stage 4 , where $x_{0} \in\{0,1\}$. Thus,

$$
\begin{aligned}
& u_{1}=3, v_{1}=1, f_{1}(1)=3, f_{1}(2)=1, f_{1}(3)=2, \\
& u_{2}=2, v_{2}=3, f_{2}(1)=1, f_{2}(2)=3, f_{2}(3)=2, \\
& u_{3}=2, v_{3}=2, f_{3}(1)=1, f_{3}(2)=2, f_{3}(3)=3 .
\end{aligned}
$$

In this paper, we shall use the cycle notation for permutations, that is, the cycle $\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ represents the permutation f with $f\left(i_{1}\right)=i_{2}, f\left(i_{2}\right)=i_{3}, \ldots, f\left(i_{n-1}\right)=$ $i_{n}, f\left(i_{n}\right)=i_{1}$, and the cycle (j) represents f with $f(j)=j$. Then, f_{1} can be represented by $(1,3,2) ; f_{2}$, by (1)(2,3); and f_{3}, by (1)(2)(3).

Theorem 1. If there exist permutations g_{1}, \ldots, g_{s} on $\{1, \ldots, n-1\}$ such that $u_{t}^{\prime}=\left(g_{t}\right)^{-1}\left(u_{t}\right), v_{t}^{\prime}=\left(g_{t+1}\right)^{-1}\left(v_{t}\right)$, and $f_{t}^{\prime}=\left(g_{t}\right)^{-1} \circ f_{t} \circ g_{t+1}$ for $1 \leq t \leq s-1$, then two bit permutation networks $N_{d}\left(n ; u, v, f_{1}, \ldots, f_{s-1}\right)$ and $N_{d}\left(n ; u^{\prime}, v^{\prime}, f_{1}^{\prime}, \ldots, f_{s-1}^{\prime}\right)$ are equivalent.

Proof. Consider the bijection g_{t} from the crossbar of $N_{d}\left(n ; u, v, f_{1}, \ldots, f_{s-1}\right)$ to the crossbar of $N_{d}\left(n ; u^{\prime}, v^{\prime}, f_{1}^{\prime}, \ldots, f_{s-1}^{\prime}\right)$ defined by

$$
g_{t}\left(\left(x_{1}, \ldots, x_{n-1}\right)\right)=\left(x_{g_{t}(1)}, \ldots, x_{g_{t}(n-1)}\right) \text { for } 1 \leq t \leq s .
$$

In other words, $g_{t}\left(\left(x_{1}, \ldots, x_{n-1}\right)\right)=\left(x_{1}^{\prime}, \ldots, x_{n-1}^{\prime}\right)$ whenever $x_{j}^{\prime}=x_{g_{t}(j)}$ for $1 \leq j \leq n-1$.

To see that these two networks are equivalent, we only need to check that g_{1}, \ldots, g_{s} are link-preserving.

FIG. 3. The line digraph $G(N)$ obtained from the network in Figure 1. (links are directed from left to right)

Without loss of generality, suppose that the links between stage t and $t+1$ of $N_{d}\left(n ; u, v, f_{1}, \ldots, f_{s-1}\right)$ are from a bit- u_{t} group $\left(x_{1}, \ldots, x_{u_{t}}, \ldots, x_{n-1}\right)$ to a bit- v_{t} group $\left(y_{1}, \ldots, y_{v_{t}}, \ldots, y_{n-1}\right)$, that is, $y_{j}=x_{f_{t}(j)}$ for $1 \leq j \leq n-1$. Let
$g_{t}\left(\left(x_{1}, \ldots, x_{u_{t}}, \ldots, x_{n-1}\right)\right)=\left(x_{1}^{\prime}, \ldots, x_{\left(g_{t}\right)^{-1}\left(u_{t}\right)}^{\prime}, \ldots, x_{n-1}^{\prime}\right)$,

$$
\text { i.e., } x_{j}^{\prime}=x_{g_{t}(j)} \text { for } 1 \leq j \leq n-1 \text {, }
$$

and
$g_{t+1}\left(\left(y_{1}, \ldots, y_{v_{t}}, \ldots, y_{n-1}\right)\right)=\left(y_{1}^{\prime}, \ldots, y_{\left(g_{t+1}\right)^{-1}\left(v_{t}\right)}^{\prime}, \ldots, y_{n-1}^{\prime}\right)$, i.e., $y_{j}^{\prime}=y_{g_{t+1}(j)}$ for $1 \leq j \leq n-1$.

Then,

$$
y_{j}^{\prime}=y_{g_{t+1}(j)}=x_{f_{t} \circ g_{t+1}(j)}=x_{g_{\imath} \circ f_{t}^{\prime}(j)}=x_{f_{t}^{\prime}(j)}^{\prime}
$$

for

$$
1 \leq j \leq n-1 .
$$

Thus, there exist links from a bit- $\left(g_{t}\right)^{-1}\left(u_{t}\right)$ group $\left(x_{1}^{\prime}, \ldots, x_{\left(g_{t}\right)}^{\prime-1}\left(u_{t}\right), \ldots, x_{n-1}^{\prime}\right)$ to a bit- $\left(g_{t+1}\right)^{-1}\left(v_{t}\right)$ group $\left.\left(x_{f^{\prime}(1)}^{\prime}, \ldots, x_{f_{\prime}^{\prime}\left(\left(g_{t+1}\right)^{-1}\left(v_{t}\right)\right)}^{\prime}\right), \ldots, x_{f_{f}^{\prime}(n-1)}^{\prime}\right)$ between stage t and $t+1$ of $N_{d}\left(n ; u^{\prime}, \nu^{\prime}, f_{1}^{\prime}, \ldots, f_{s-1}^{\prime}\right)$. Conversely, the links in $N_{d}\left(n ; u^{\prime}, v^{\prime}, f_{1}^{\prime}, \ldots, f_{s-1}^{\prime}\right)$ also correspond to the links in $N_{d}\left(n ; u, v, f_{1}, \ldots, f_{s-1}\right)$.

In Theorem 1, the permutations g_{1}, \ldots, g_{s} change the labels of crossbars in $N_{d}\left(n ; u, v, f_{1}, \ldots, f_{s-1}\right)$, but preserve the linking pattern of $N_{d}\left(n ; u^{\prime}, v^{\prime}, f_{1}^{\prime}, \ldots, f_{s-1}^{\prime}\right)$.

Let I denote the identity permutation (1)(2) $\cdots(n-$ 1) and $N_{d}\left(n ; I_{k_{1}}, \ldots, I_{k_{s-1}}\right)$ denote the bit permutation network $N_{d}\left(n ; u, v, f_{1}, \ldots, f_{s-1}\right)$ with $f_{t}=$ I and $u_{t}=v_{t}=k_{t}$ for all t. While [1] proved that $N_{d}\left(n ; u, v, f_{1}, \ldots, f_{s-1}\right)$ is equivalent to $N_{d}\left(n ; I_{k_{1}}, \ldots, I_{k_{s-1}}\right)$ for some $\left(k_{1}, \ldots, k_{s-1}\right)$, we give an explicit formula to compute k_{t} for $1 \leq t$ $\leq s-1$.

Theorem 2. A bit permutation network $N_{d}(n ; u, v$, $\left.f_{1}, \ldots, f_{s-1}\right)$ is equivalent to $N_{d}\left(n ; I_{k_{1}}, \ldots, I_{k_{s-1}}\right)$, where $k_{1}=u_{1}$ and $k_{t}=\left(f_{1} \circ \cdots \circ f_{t-1}\right)\left(u_{t}\right)$ for $t=2, \ldots, s-1$.

Proof. Setting $g_{t}=I$ except $g_{2}=\left(f_{1}\right)^{-1}$, from Theorem 1, $\left(g_{1}\right)^{-1}\left(u_{1}\right)=u_{1},\left(g_{2}\right)^{-1}\left(v_{1}\right)=$ $f_{1}\left(\left(f_{1}\right)^{-1}\left(u_{1}\right)\right)=u_{1}$, and $\left(g_{1}\right)^{-1} \circ f_{1} \circ g_{2}=I$, we can verify that $N_{d}\left(n ; u, v, f_{1}, \ldots, f_{s-1}\right)$ is equivalent to $N_{d}\left(n ; u^{\prime}, v^{\prime}, I_{k_{1}}, f_{2}^{\prime}, \ldots, f_{s-1}^{\prime}\right)$, where $u_{2}^{\prime}=f_{1}\left(u_{2}\right), v_{2}^{\prime}=$ $v_{2}=\left(f_{2}^{\prime}\right)^{-1}\left(u_{2}^{\prime}\right), f_{2}^{\prime}=f_{1} \circ f_{2}, u_{t}^{\prime}=u_{t}, v_{t}^{\prime}=v_{t}$, and $f_{t}^{\prime}=f_{t}$ for $t=3, \ldots, s-1$.

Assume the induction hypothesis that $N_{d}(n ; u, v$, $\left.f_{1}, \ldots, f_{s-1}\right)$ is equivalent to $N_{d}\left(n ; u^{\prime}, v^{\prime}, I_{k_{1}}, \ldots, I_{k_{j-1}}\right.$, $\left.f_{j}^{\prime}, \ldots, f_{s-1}^{\prime}\right)$, where $u_{j}^{\prime}=\left(f_{1} \circ \cdots \circ f_{j-1}\right)\left(u_{j}\right), v_{j}^{\prime}=$ $v_{j}=\left(f_{j}^{\prime}\right)^{-1}\left(u_{j}^{\prime}\right), f_{j}^{\prime}=f_{1} \circ \cdots \circ f_{j}, u_{t}^{\prime}=u_{t}$, $v_{t}^{\prime}=v_{t}$, and $f_{t}^{\prime}=f_{t}$ for $t=j+1, \ldots, s-$ 1. We prove that $N_{d}\left(n ; u, v, f_{1}, \ldots, f_{s-1}\right)$ is equivalent to $N_{d}\left(n ; u^{\prime \prime}, v^{\prime \prime}, I_{k_{1}}, \ldots, I_{k_{j-1}}, I_{k_{j}}, f_{j+1}^{\prime \prime}, \ldots, f_{s-1}^{\prime \prime}\right)$, where $u_{j+1}^{\prime \prime}=\left(f_{1} \circ \cdots \circ f_{j}\right)\left(u_{j+1}\right), v_{j+1}^{\prime \prime}=v_{j+1}=\left(f_{j+1}^{\prime \prime}\right)^{-1}\left(u_{j+1}^{\prime \prime}\right)$, $f_{j+1}^{\prime \prime}=f_{1} \circ \cdots \circ f_{j+1}, u_{t}^{\prime \prime}=u_{t}, v_{t}^{\prime \prime}=v_{t}$, and $f_{t}^{\prime \prime}=f_{t}$ for $t=j+2, \ldots, s-1$.

FIG. 4. The network $G(N)^{+}$obtained from the network in Figure 1.

Again, by setting $g_{t}=I$ except $g_{j+1}=\left(f_{j}^{\prime}\right)^{-1}$, from Theorem $1,\left(g_{j}\right)^{-1}\left(u_{j}^{\prime}\right)=\left(g_{j+1}\right)^{-1}\left(v_{j}^{\prime}\right)=u_{j}^{\prime}=$ $\left(f_{1} \circ \cdots \circ f_{j-1}\right)\left(u_{j}\right)$, and $\left(g_{j}\right)^{-1} \circ f_{j}^{\prime} \circ g_{j+1}=I$, the network $N_{d}\left(n ; u^{\prime}, v^{\prime}, I_{k_{1}}, \ldots, I_{k_{j-1}}, f_{j}^{\prime}, \ldots, f_{s-1}^{\prime}\right)$ is equivalent to $N_{d}\left(n ; u^{\prime \prime}, v^{\prime \prime}, I_{k_{1}}, \ldots, I_{k_{j-1}}, I_{k_{j}}, f_{j+1}^{\prime \prime}, \ldots, f_{s-1}^{\prime \prime}\right)$.

For convenience, we shall use $\left(k_{1}, \ldots, k_{s-1}\right)$ as a short notation for the network $N_{d}\left(n ; I_{k_{1}}, \ldots, I_{k_{s-1}}\right)$. By Theorem 2, we say that a bit permutation network $N_{d}\left(n ; u, v, f_{1}, \ldots, f_{s-1}\right)$ can be characterized by a $(s-1)$ vector $\left(k_{1}, \ldots, k_{s-1}\right)$.

Theorem 3. If g is a permutation of $\{1, \ldots, n-1\}$, then $N_{d}\left(n ; I_{k_{1}}, \ldots, I_{k_{s-1}}\right)$ is equivalent to $N_{d}\left(n ; I_{g\left(k_{1}\right)}, \ldots, I_{g\left(k_{s-1}\right)}\right)$.

Proof. Choose all g_{t} as $(g)^{-1}$ in Theorem 1. Since $g \circ I_{k_{t}} \circ(g)^{-1}=I_{g\left(k_{t}\right)}$, the theorem is proved.

3. MAIN RESULTS

Let N be an s-stage d-nary bit permutation network with d^{n} inputs (outputs). It is easily seen that $G(N)^{+}$is an ($s+1$)-stage d-nary crossbar network with d^{n+1} inputs (outputs). We show that $G(N)^{+}$is also a bit permutation network and how the group linking functions of N determine those of $G(N)^{+}$.

Theorem 4. If a bit permutation network N is represented by $N_{d}\left(n ; u, v, f_{1}, \ldots, f_{s-1}\right)$, then $G(N)^{+}$is a bit permutation network represented by $N_{d}(n+1$; $u^{*}, v^{*}, h_{1}, \ldots, h_{s}$), where $u_{1}^{*}=v_{1}^{*}=n, h_{1}$ is the identity permutation (1) $\cdots(n), u_{t}^{*}=u_{t-1}, v_{t}^{*}=n$, and h_{t} is the same as f_{t-1} except $h_{t}(n)=u_{t-1}$ and $h_{t}\left(v_{t-1}\right)=n$ for $t=2, \ldots, s$.

FIG. 5. The network $B Y_{F}(1,4)$.

Proof. Let the $j^{\text {th }}$ link incident to the crossbars of each stage of N be labeled by j in the d-nary n-vector $\left(x_{1}, \ldots, x_{n}\right)$. Note that the links are ordered by the starting points of them. According to the construction rules of $G(N)^{+}$, the group linking function h_{t} between the crossbars of stage t and $t+1$ in $G(N)^{+}$is equal to the relation between their corresponding links incident to the crossbars of stage t in N.

In stage 1 of N, since the links $\left(x_{1}, \ldots, x_{n-1}, x_{0}\right)$ are adjacent to and precede the links $\left(x_{1}, \ldots, x_{n-1}, x_{0}\right)$, where $x_{0} \in\{0,1, \ldots, d-1\}$, we know that $u_{1}^{*}=$ $v_{1}^{*}=n$ and h_{1} is equal to (1) $\cdots(n)$. For $t=2, \ldots, s$, if the permutation f_{t-1} of N is from a bit- u_{t-1} group $\left(x_{1}, \ldots, x_{u_{t-1}-1}, x_{0}, x_{u_{t-1}+1}, \ldots, x_{n-1}\right)$ to a bit- v_{t-1} group $\left(x_{f_{t-1}(1)}, \ldots, x_{f_{t-1}\left(v_{t-1}-1\right)}, x_{0}, x_{f_{t-1}\left(v_{t-1}+1\right)}, \ldots, x_{f_{t-1}(n-1)}\right)$, then the links $\left(x_{1}, \ldots, x_{u_{t-1}-1}, x_{0}, x_{u_{t-1}+1}, \ldots, x_{n}\right)$ are adjacent to and precede the links $\left(x_{f_{t-1}(1)}, \ldots, x_{f_{t-1}\left(v_{t-1}-1\right)}, x_{n}\right.$, $\left.x_{f_{t-1}\left(v_{t-1}+1\right)}, \ldots, x_{f_{t-1}(n-1)}, x_{0}\right)$, where $x_{0} \in\{0,1, \ldots, d-1\}$ in stage t of N. Hence, $u_{t}^{*}=u_{t-1}, v_{t}^{*}=n$, and h_{t} is the same as f_{t-1} except that $h_{t}(n)=u_{t-1}$ and $h_{t}\left(v_{t-1}\right)=n$ for $t=2, \ldots, s$. From the above, we also prove that $G(N)^{+}$ is a bit permutation network.

Theorem 5. Suppose that the characteristic vector of a bit permutation network $N_{d}\left(n ; u, v, f_{1}, \ldots, f_{s-1}\right)$ is $\left(k_{1}, \ldots, k_{s-1}\right)$. Then, the characteristic vector of $G\left(N_{d}(n\right.$; $\left.\left.u, v, f_{1}, \ldots, f_{s-1}\right)\right)^{+}$is $\left(l_{1}, \ldots, l_{s}\right)$, where $l_{1}=n$ and $l_{t}=k_{t-1}$ if $k_{t-1} \notin\left\{k_{1}, \ldots, k_{t-2}\right\}$ or $l_{t}=l_{i}$, where $i=$ $\max \left\{j \mid k_{j}=k_{t-1}, 1 \leq j \leq t-2\right\}$ if $k_{t-1} \in\left\{k_{1}, \ldots, k_{t-2}\right\}$ for $t=2, \ldots, s$.

Proof. Since the characteristic vector of $N_{d}(n ; u$, $\left.v, f_{1}, \ldots, f_{s-1}\right)$ is $\left(k_{1}, \ldots, k_{s-1}\right)$, where $k_{t} \in\{1, \ldots, n-1\}$, by Theorems 2 and 4, we can prove that the characteristic vector of $G\left(N_{d}\left(n ; I_{k_{1}}, \ldots, I_{k_{j-1}}, f_{j}, \ldots, f_{s-1}\right)\right)^{+}$ equals that of $G\left(N_{d}\left(n ; I_{k_{1}}, \ldots, I_{k_{j-1}}, I_{k_{j}}, f_{j+1}^{\prime}, \ldots, f_{s-1}^{\prime}\right)\right)^{+}$ for $1 \leq j \leq s-1$. Hence, the characteristic vectors of $G\left(N_{d}\left(n ; u, v, f_{1}, \ldots, f_{s-1}\right)\right)^{+}$and $G\left(N_{d}\left(n ; I_{k_{1}}, \ldots, I_{k_{s-1}}\right)\right)^{+}$ are the same.

By Theorem 4, $G\left(N_{d}\left(n ; I_{k_{1}}, \ldots, I_{k_{s-1}}\right)\right)^{+}$is a bit permutation network represented by $N_{d}\left(n+1 ; u^{*}, v^{*}, h_{1}, \ldots, h_{s}\right)$, where $u_{1}^{*}=n, h_{1}=(1) \cdots(n), u_{t}^{*}=k_{t-1}$, and $h_{t}=$ (1) $\cdots\left(k_{t-1}-1\right)\left(k_{t-1}+1\right) \cdots(n-1)\left(k_{t-1}, n\right)$ for $t=2, \ldots, s$. Hence, $h_{j}(m)=m$ if $m \notin\left\{k_{j-1}, n\right\}$ for $m \in\{1, \ldots, n\}$ and $j=1, \ldots, s$. By Theorem 2, the characteristic vector of $G\left(N_{d}\left(n ; I_{k_{1}}, \ldots, I_{k_{s-1}}\right)\right)^{+}$is $\left(l_{1}, \ldots, l_{s}\right)$, where $l_{1}=n$ and $l_{t}=\left(h_{1} \circ \cdots \circ h_{t-1}\right)\left(k_{t-1}\right)$ for $t=2, \ldots, s$. Thus, $l_{t}=k_{t-1}$ if $k_{t-1} \notin\left\{k_{1}, \ldots, k_{t-2}\right\}$. If $k_{t-1} \in\left\{k_{1}, \ldots, k_{t-2}\right\}$, then $i=\max \left\{j \mid k_{j}=k_{t-1}, 1 \leq j \leq t-2\right\} \geq 1$ and $l_{t}=\left(h_{1} \circ \cdots \circ h_{t-1}\right)\left(k_{t-1}\right)=\left(h_{1} \circ \cdots \circ h_{i+1}\right)\left(k_{t-1}\right)=\left(h_{1} \circ \cdots \circ\right.$ $\left.h_{i+1}\right)\left(k_{i}\right)=\left(h_{1} \circ \cdots \circ h_{i}\right)(n)=\left(h_{1} \circ \cdots \circ h_{i-1}\right)\left(k_{i-1}\right)=l_{i} .-$

For example, if the characteristic vector of a bit permutation network N with d^{4} inputs (outputs) is $(1,3,3,2,2,3,1,3,1,1,2,3,2,2,1)$, then the characteristic vector of $G(N)^{+}$is $(4,1,3,1,2,1,3,4,1,3,1,2,4$,
$1,4,3)$. Here, $l_{1}=n=4, l_{2}=k_{1}=1, l_{3}=k_{2}=3$, and $l_{4}=l_{2}=1$ since $k_{3}=3=k_{2}$. The formula obtained from Theorem 5 can be useful for some well-studied bit permutation networks.

Let us consider the network obtained by adding k extra stages to the banyan network with 2^{n} inputs (outputs) and by specifying that the extra k stages should be identical to the first k stages (denote this way of adding extra stages by F). Represent the above network by $B Y_{F}(k, n)$. If the extra k stages are identical to the mirror image of the first k stages, then denote the network by $B Y_{F^{-1}}(k, n)$. Fig 5 shows the network $B Y_{F}(1,4)$.

Theorem 6. The network $G\left(B Y_{F}(k, n)\right)^{+}, 0 \leq k \leq n$, is equivalent to the network $B Y_{F}(k, n+1)$, where F can be replaced by F^{-1}.

Proof. Since $B Y_{F}(k, n)$ is represented by $N_{2}(n$; $I_{n-1}, I_{n-2}, \ldots, I_{1}, I_{n-1}, I_{n-2}, \ldots, I_{n-k}$), from Theorem 5, the characteristic vector of $G\left(B Y_{F}(k, n)\right)^{+}$is $(n, n-$ $1, n-2, \ldots, 1, n, n-1, \ldots, n-k+1)$. This means that $G\left(B Y_{F}(k, n)\right)^{+}$is equivalent to the network $N_{2}\left(n+1 ; I_{n}, I_{n-1}, I_{n-2}, \ldots, I_{1}, I_{n}, I_{n-1}, \ldots, I_{n-k+1}\right)$. Hence, $G\left(B Y_{F}(k, n)\right)^{+}$is equivalent to $B Y_{F}(k, n+1)$. Similarly, we can obtain the result if F is replaced by F^{-1}.

Let W^{-1} denote the inverse network of W, that is, the network obtained from W by reversing the order of the stages. It is easy to see that

Theorem 7. The network $G\left(B Y_{F}^{-1}(k, n)\right)^{+}, 0 \leq k \leq n$, is equivalent to the network $B Y_{F}^{-1}(k, n+1)$, where F can be replaced by F^{-1}.

Proof. Since $B Y_{F}^{-1}(k, n)$ is represented by $N_{2}\left(n ; I_{1}\right.$, $\left.I_{2}, \ldots, I_{n-1}, I_{1}, I_{2}, \ldots, I_{k}\right)$, from Theorem 5 , the characteristic vector of $G\left(B Y_{F}^{-1}(k, n)\right)^{+}$is $(n, 1,2, \ldots, n-1, n$, $1, \ldots, k-1)$. We can find the permutation $g=(1,2, \ldots, n)$ such that $N_{2}\left(n+1 ; I_{n}, I_{1}, I_{2}, \ldots, I_{n-1}, I_{n}, I_{1}, \ldots, I_{k-1}\right)$ is equivalent to $N_{2}\left(n+1 ; I_{1}, I_{2}, I_{3}, \ldots, I_{n}, I_{1}, I_{2}, \ldots, I_{k}\right)$ by Theorem 3. Hence, $G\left(B Y_{F}^{-1}(k, n)\right)^{+}$is equivalent to $B Y_{F}^{-1}(k, n+1)$. If F is replaced by F^{-1}, then we can also obtain the similar result.

Theorem 7 was crucially used in [2] to prove the crosstalk-free property of $B Y_{F^{-1}}^{-1}(k, n)$ essential to photonic switching.

REFERENCES

[1] G.J. Chang, F.K. Hwang, and L.-D. Tong, Characterizing bit permutation networks, Networks 33 (1999), 261-267.
[2] F.K. Hwang and W.-D. Lin, A general construction for nonblocking photonic switching networks, preprint, 2001.
[3] C.-T. Lea, Bipartite graph design principle for photonic switching systems, IEEE Trans Commun 38 (1990), 529538.

[^0]: Received January 2001; accepted April 2001
 Correspondence to: C.-H. Yen
 (c) 2001 John Wiley \& Sons, Inc.

