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Path Planning of 3-D Objects Using a New
Workspace Model
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Abstract—This paper proposes a collision avoidance algorithm to solve
the problem of (local) path planning for a three-dimensional (3-D) object
moving among polyhedral obstacles. The algorithm is based on a gener-
alized potential model of workspace [1] which assumes that the boundary
of every 3-D object is uniformly charged. According to the proposed ap-
proach, the repulsive force and torque between the moving object and the
obstacles due to the above model is used to adjust the position and orien-
tation of the object so as to keep it away from the obstacles while passing
through a bottleneck in the free space. Simulation results demonstrate that
the path of a 3-D object thus obtained is indeed safe and spatially smooth.
The adopted potential field is analytically tractable which makes the path
planning efficient.

Index Terms—Collision avoidance, generalized potential model, path
planning.

I. INTRODUCTION

In planning a path of a robot, a repulsive potential function is usually
used to keep a safe distance between the robot and obstacles. A colli-
sion-free path of a robot can be obtained by adjusting its configuration
to minimize the potential experienced by the robot. In general, a po-
tential function used to model the workspace can be a scalar function
of the distances between the boundary points of the robot and those of
obstacles. The gradient of such a scalar function can be used as a re-
pulsive force between the robot and obstacles, making potential-based
methods simple. (For a survey of related works see [2] and [3].) An
artificial repulsive potential whose value is determined by the Yukawa
function [4] and whose isopotential contours are modifiedn-ellipses
is used in [5] for local planning of linked line segments. The potential
from an obstacle is given by

U(K) = A
e��K

K
(1)

where the pseudodistanceK is made to change linearly along the
x-axis and is used to specify each contour. Ideally, as mentioned in
[5], a potential field should have the following attributes.

1) The magnitude of potential should be unbounded near obstacle
boundaries and should decrease with range. (This property cap-
tures the basic requirement of collision avoidance.)

2) The potential should have a spherical symmetry far away from
the obstacle.

3) The equipotential surface near an obstacle should have a shape
similar to that of the obstacle surface.

4) The potential, its gradient, and their effects on paths must be
spatially continuous.

A potential function which is a cubic function of the distance be-
tween a point object and the obstacles is used in [6] for moving a
point object in the two–dimensional (2-D) space. The potential func-
tion ranges from zero at some maximum distance to a maximum value
(<1) at zero distance. In [7], local planning similar to that discussed
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in [5] is done using an artificial potential function which is a function
of the shortest distance between the moving object and the obstacles.
The potential function is described by

U(r) = A
1

r
�

1

r0

2

(2)

wherer is the shortest distance andr0 is the effective range. Clearly,
the cubic function mentioned in [6] does not have the first (unbounded)
attribute. Furthermore, at the locations where the shortest distance cor-
responds to multiple obstacle points, the gradient of the potential func-
tion will be undefined (the same problem exists for the potential func-
tion used in [7]).

Harmonic functions which do not exhibit local minimum in the free
space are used in [8] to find object trajectories in the configuration
space. Since the potential along an obstacle of nonzero extent is finite,
the only obstacle structure for which collision avoidance can be guar-
anteed is a point itself (see [1] for a more detailed discussion). For each
given source/goal pair in the configuration space, an iterative method
is used to generate a discrete regular sampling of a potential field on a
grid numerically such that following the gradient from the start point
will move the robot to the goal safely. A potential function, called a
navigation function, is constructed in [9] for a point object to navigate
among disk obstacles toward the goal position. By adjusting a param-
eter of the potential function, all local minima can be removed. This
algorithm is later generalized to star-shaped sets [10]. Harmonic po-
tential due to an electric charge in the 2-D space

U(r) = q ln
1

r
(3)

is used for obstacle avoidance in [11]. Similar potential function is used
in a sensor-based 2-D potential panel method for robot motion planning
in both a static and dynamic environment [12]. The approach in [11] is
later generalized in [13] to the 3-D space by considering the 2-D plane
determined by the source and goal points as well as the point charge
representing the closest obstacle.

Boundary equations of polytopes are used in [14] to create an artifi-
cial potential function. Let

g(x) � 0 x 2 R
n (4)

be the set of linear inequalities describing a convex region. Assuming
there areN boundary polytopes, the potential function is defined as

p(x) =
1

� + f(x)
(5)

where� is a small number and the scalar function

f(x) =

N

i=1

gi(x) + jgi(x)j (6)

is zero inside the region and grows linearly as the distance from the
region increases. In [15], an efficient and simple method for finding a
collision-free object path in a dynamically observable 3-D environment
is developed by combining the above potential function and the octree
representation [16].

It is easy to see that the potential functions described in (2) and (5) do
not have the attribute of spherical symmetry. For example, the equipo-
tential contour of (2) due to a rectangle never converges to a circular
shape in far field in the sense that the difference between the max-
imum and minimum distances from points on any contour to the cen-
troid of the rectangle is always equal to the length difference between
two neighboring edges of the rectangle [see Fig. 1(a)]. Similarly, the
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(a) (b)

Fig. 1. Equipotential contours of the potential functions specified by (a) (2)
and (b) (5) due to a rectangle.

equipotential contours of (5) due to a rectangle always consist of sets
of parallel line segments [see Fig. 1(b)].

The Newtonian potential which is inversely proportional to the dis-
tance between two point-charges is used in [17] for the path planning in
the 2-D space. By assuming that the polygonal obstacle boundaries are
uniformly charged, it is shown that the resultant potential field have
the above attributes. Moreover, such a workspace model is unique in
the following ways.

1) The resultant potential field is obtained by superposing the
potential due to individual boundary point directly, instead of
intermediate representation of the obstacle boundaries such
as boundary equations. Furthermore, each boundary point
contributes to the potential field in an independent and identical
fashion.

2) An analytic expression of the potential function due to a line
segment enables the computation of the exact potential for the
obstacles, avoiding the need to discretize the obstacle boundary
into a set of points.

3) The potential field and its gradient are analytically computable
throughout the free space. Therefore, establishing a database of
the potential function, e.g., a distance map, upon a discrete rep-
resentation of the free space is not necessary.

It is not hard to see that the potential field established in [5] is not
obtained by superposing the potential due to individual boundary point
directly. Thus, whether each boundary point is contributing to the po-
tential field in an independent and identical fashion is out of the ques-
tion. In fact, since the definition of the pseudodistance depends on the
orientation of the coordinate system, the potential field is not rotational
invariant except for circularly symmetric obstacles, e.g., disks, in the
2-D space.

In [17], an algorithm is developed to compute a safe and smooth
object path by minimizing the potential function locally for obstacle
avoidance, while the gross robot movement is subject to the constraints
derived from the topology of the path givena priori. Since the potential
gradient is not used directly as the direction of object path, like many
potential-based approaches, the potential minima, in general, will not
cause an object to get stuck during the path planning.

A 3-D extension of the above potential-based path planning ap-
proach is proposed in this paper. It is shown that with the analytically
tractable, potential-based free space model proposed in [1], collision
avoidance can be achieved effectively and efficiently. Although this
paper mainly considers path planning for a single rigid object among
stationary and rigid obstacles in the 3-D space, the concept of obstacle
avoidance using potential fields can be extended easily to more general
path planning problems. The remainder of this paper is organized as
follows. The above generalized potential model in the 3-D space is
briefly reviewed in the next section. A path planning algorithm using
the closed-form expressions of repulsive force and torque between the
moving object and the obstacles due to the generalized potential model
to ensure collision avoidance is proposed in Section III. In Section IV,

(a) (b)

Fig. 2. Two-dimensional (2-D) path planning example. (a) Initial conditions.
(b) Resulting object path.

simulation results are shown for several 3-D objects moving among
polyhedral obstacles. Section V summarizes the paper.

II. REVIEW OF GENERALIZED POTENTIAL FIELDS IN THE 3-D SPACE

In [1], a potential-based modeling of 3-D workspace for collision
avoidance is proposed. It is shown that the Newtonian potential, being
harmonic in the 3-D space, cannot prevent a point charge from running
into an object surface which is uniformly charged. This is because the
value of such a potential function is finite at the continuously charged
surface. Subsequently, generalized potential models are developed to
assure collision avoidance between 3-D objects. The potential function
is inversely proportional to the distance between two point charges to
the power of an integer (m) and the potential and thus its gradient due
to a 3-D polygon can be calculated analytically.

In particular, it is shown that the repulsive force exerted on a point
charge due to polyhedral surfaces can be obtained analytically by eval-
uating the gradient of the following function

�(x; y; z) =
1

z
tan�1

xz

y x2 + y2 + z2
(7)

at some (x; y; z)s form = 3.
In general, the force exerted on a point due to polyhedral object sur-

faces, which will be used in the proposed 3-D path planning algorithm
discussed next, can be obtained by summing the forces due to indi-
vidual polygonal object faces. Finally, it is also shown in [1] that the
generalized potential will diverge for a point charge located on the sur-
face of a polyhedral object, i.e., the basic requirement for the proposed
path planning algorithm is satisfied.

III. L OCAL PLANNING ALGORITHM

In the previous section, it is shown that the repulsive force exerted
on a point due to polyhedral surfaces can be obtained by evaluating
the gradient of (7). In this section, the above results will be used to
achieve collision avoidance for path planning in the 3-D space. To that
end, the obstacles are represented as polyhedra, while a moving object
is represented by a set of sampling points obtained from its surfaces.1

The repulsive force and torque between the moving object and the
obstacles can thus be obtained by superposing the repulsive force and
torque between individual sampling points and obstacle surfaces.

For a path planning problem, the places where the moving object is
more likely to collide with obstacles are bottlenecks in the free space.
In [20], free space bottlenecks in the 2-D space are represented by the
minimal distance links (MDLs) among obstacles, which also connect
(convex) obstacle nodes in the obstacle neighborhood graph. In [17], a
local planner is developed to obtain a local path around an MDL, e.g.,
the dashed line segment shown in Fig. 2(a). With the leading skeleton
point of the object initially located on the MDL, the local planner deter-
mines the optimal location and orientation of the object, as successive

1Unless otherwise specified, it is assumed that the point samples are fairly
uniformly distributed over the object surfaces.
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skeleton points are moved onto the MDL, such that the potential expe-
rienced by the object is minimized. Fig. 2(b) shows the path planning
results thus obtained. The effectiveness of the local planner in gener-
ating safe and smooth object path is readily observable.

In this section, the above local planner is generalized to the 3-D space
using the potential-based workspace model reviewed in the previous
section. For simplicity, each bottleneck region in the 3-D space is rep-
resented by a polygon. The topology of a local path, given as input to
the local planner, is described in terms of the associated bottleneck and
the object skeleton. The description is of a very concise form which
only specifies the sequence in which the skeleton points should cross
the bottleneck. If such a description corresponds to a feasible object
path, the local planner will generate a sequence of object configura-
tions along the path, each of minimum potential; otherwise, a failure
will be reported. In the latter case, the failure may also result from a
violation of a predetermined safe margin.

Letsi; 1 � i � Ndenote the sequence ofN selected skeleton points
to cross the bottleneckP . The local path begins whens1 reachesP
and ends whensN leavesP . The following algorithm developed for
the local planner performs the path planning by sequentially ensuring
that as each skeleton point moves ontoP , it stays onP while the loca-
tion and orientation of the object are adjusted to minimize the potential
function using repulsive force (F) and torque (T), respectively, experi-
enced by the object. Additional skeleton points may be added (see algo-
rithm) to reduce the step size along the path, allowing for finer adjust-
ments in the object configuration to avoid collision. The total number
of skeleton points used directly determines the number of optimal ob-
ject configurations computed along the path and, thus, the computation
time; therefore, it is desirable to use as few skeleton points as possible.
To restrict the total amount of computation, a limit is placed upon the
minimum spacingsmin between adjacent skeleton points used in the
simulation, which effectively serves as a feasibility test of the local
plan.

ALGORITHMLOCAL_PLAN

1. (Begin with the first skeleton point)

Initialize i = 1.

2. (Find the minimal potential object configuration)

Translate the object on P and rotate it with re-

spect to s until T and the projection of F on P

are both zero.

3. (End when done with the last skeleton point)

If i = N , the local planning is completed.

4. (Try for the next skeleton point)

Translate the object such that s is shifted to

its projection on P . If there is no collision

during the translation, then let i i+1, and go to

Step 2.

5. (Use an intermediate skeleton point)

Find the smallest n � 1 such that s = s +(s �s )=2

can be shifted to its projection on P without

collision between the object and obstacles. If

js � s j > s , then let s  s , and go to Step 2.

6. (End abnormally)

Exit with failure due to the need for less than

allowed spacing of skeleton points.

An object configuration obtained in Step 2 is not only collision-free
but also the safest with respect to the generalized potential under the
constraint that the corresponding skeleton point stays onP . For the im-
plementation of Step 2, the minimal potential configuration is identified

(a) (b)

Fig. 3. Path planning example. (a) Side view of the initial conditions.
(b) Resulting object path.

efficiently by performing two gradient-based searches: one for the ob-
ject location usingF and the other for the object orientation usingT.
Different from the 2-D local planner developed in [17], the translation
and rotation are both performed in three dimensions instead of one and
two dimensions, respectively, for the 2-D case. The precisions required
for specifying the final object location and orientation determine the
number of iterations needed for solving the corresponding constrained
optimization problems. For the simulation results presented in the next
section, the minimal potential configurations are specified to within
1/160 of the length of the maximal distance between the vertices ofP

in location and within 1� in orientation.

IV. SIMULATION RESULTS

In this section, simulation results are presented for path planning of
objects moving around bottleneck regions in the free space. The algo-
rithm is written in the C programming language and all examples are
tested on a Sun Sparc Ultra-1 workstation. In order to make the obser-
vation easy, a local path obtained withLOCAL_PLANmay be shown
in different perspectives.

Fig. 3 shows a rectangular solid, represented by a set of 58 sam-
pling points uniformly distributed over its surfaces, moving through a
stairlike region with a rectangular bottleneck. The safe and smooth ob-
ject path is represented by 11 object configurations which correspond
to 11 skeleton points equally spaced on a linear skeleton, as shown in
Fig. 3(a). No additional skeleton point is added while running the algo-
rithm, i.e., Step 5 ofLOCAL_PLANis not necessary because sufficient
skeleton points are used.

Fig. 4 shows an L-shaped solid with 48 sampling points moving
through a V-shaped bottleneck region. While the two L-shaped faces of
the object lie inz = �0:5 planes, respectively, the two largest obstacle
faces lie inz = �1 planes, respectively, and pointsA; B; C; D, and
E lie in thez = 0 plane, as shown in Fig. 4(a). For pointsA; B, and
C chosen as skeleton points of the object, the local path derived by
the LOCAL_PLAN is shown in Fig. 4(b). Five intermediate skeleton
points, and thus five additional object configurations, are required to ac-
complish the local planning. The robustness of the proposed approach
with respect to the selected object skeleton is illustrated with Fig. 4(c)
and (d) wherein pointsD andE, respectively, are used in place ofB.
It is not hard to see that the two object paths are very similar to the one
shown in Fig. 4(b) except for different numbers and locations of inter-
mediate samples of object configurations taken along the underlying
continuous object path.

In each of the above two examples, because there is a plane of sym-
metry for both the moving object and the obstacles, and the plane also
contains the skeleton points of the object, the corresponding path plan-
ning problems are essentially two-dimensional. In Fig. 5, a truly 3-D
problem is established by tilting outward part of two obstacle faces
shown in Fig. 4. The object path, shown in four different perspectives, is
derived byLOCAL_PLANfor seven equally spaced point samples ob-
tained along the skeleton determined by pointsA; B, andC. A twisting
movement of the object in accordance with the tilts to reduce the like-
lihood of collision can be seen clearly.
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(a) (b)

(c) (d)

Fig. 4. Single-bottleneck path planning examples. (a) Side view of initial
conditions and different sets of skeleton points. (b) Local path obtained for
A; B; C. (c) Local path obtained for A; D; C. (d) Local path obtained for
A; E; C.

(a) (b)

(c) (d)

Fig. 5. Single-bottleneck path planning example shown in four different
perspectives.

In general, the computational complexity of the path planning is
determined by the shape of the object and obstacles, the number of
skeleton points used, the number of sampling points of the object, the
number of obstacle faces, and the precisions in specifying final object
configurations. For example, it takes 47.78, 21.72, and 27.94 s to gen-
erate object paths shown in Figs. 3, 4(b), and 5, respectively. Fig. 6
shows a spiral with an angular range of 720� with respect to its axis
going through a small rectangular hole on the right side of a box. The
skeleton, which is the spiral itself, has 64 equally spaced sampling
points. The complexity of this example is much higher than the pre-
vious three examples that it takes 1943.48 s to generate the local path
of the object.

Figs. 7 and 8 show path planning examples involving multiple local
paths. In each example, it is assumed that the order in which the local
paths should be connected to form a global path is given in advance.
Furthermore, it is assumed that each local path is relatively close to

(a) (b)

Fig. 6. Single-bottleneck path planning example shown in two different
perspectives.

Fig. 7. Multibottleneck path planning example.

(a) (b)

Fig. 8. Multibottleneck path planning example.

its neighbors that the path planning for connecting adjacent local paths
into a global one is straightforward.

Fig. 7 shows a rectangular solid with eight sampling points (its
vertices) moving through a piecewise linear passage. The passage
corresponds to the swept volume obtained by translating a square
cross-section, from right to left, along the horizontal(�1; 0; 0) di-
rection, the(�4; 1; 0) direction, the(�2; 0; 1) direction, and finally
the (�8; 2; �1) direction. The shape of the object is represented by
a single skeleton point and its centroid; each local path, consisting
of a single object configuration, is obtained for the skeleton point
constrained on the square cross-section at one of the nine selected
locations. (Unlike a bottleneck, these square cross-sections do not
really reflect local narrowness of the free space along such a passage.
Nonetheless, as the bottlenecks considered so far, each of these
cross-sections does provide similar constraint forLOCAL_PLANto
derive an object configuration of minimum potential.) It is easy to see
that the object stays pretty close to the center line of the passage while
keeping away from its boundaries.

In Fig. 8, a similar rectangular solid is moved inside a Y-shaped
pipe consisting of 170 polygons. The object is moved from the lower
end of the slim pipe to the upper end of the wider one, as shown in
Fig. 8(b), through the identification of local paths obtained for seven
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Fig. 9. More realistic example.

cross-sections. There is essentially no change in object orientation, due
to the local symmetry in the shape of a pipe, except near the junction of
the two pipes where the object undergoes a composition of 1) a turning
movement due to the change in the passage direction and 2) a twisting
movement, i.e., a rotation of about 45�, due to the wideness of the free
space. Fig. 9 shows a more realistic example of moving a desk out of a
room. Intelligent maneuvering of the desk at the doorway (bottleneck
region) is necessary to generate a collision-free path.

A. Computational Complexity

The proposed approach is not only easy to implement, but the asso-
ciated algorithm is also of low time complexity because the general-
ized potential field is analytically tractable. Suppose the obstacles are
represented by totallyn polygonal surfaces and the moving object is
represented bym sampling points. The time complexity for calculating
the repulsive force and torque exerted on each sampling point of the ob-
ject isO(n). Thus, the time complexity for obtainingF andT exerted
on the moving object in Step 2 ofLOCAL_PLANisO(nm). However,
the total number of translations (and rotations) required in adjusting
the position (and orientation) of the object for minimum potential, and
thus the total number of calculations made forF (andT), is, in gen-
eral, dependant on the shape of the object and that of the free space,
and cannot be expressed analytically. For example, consider the local
paths shown in Figs. 4(b) and 5 which have the samem andn. While
an additional object configuration is required to derive the local path
shown in Fig. 4(b) compared with that in Fig. 5, because the latter has
a more open free space, it takes less time on the average to compute an
object configuration in the former wherein the free space has a simpler
shape.

As for a rough comparison of overall performance in terms of effi-
ciency, most of the examples presented so far in this paper are computed
in less than a minute, except for the curved object/obstacle shown in
Figs. 6 and 8. Such results compare favorably to those obtained with the
potential-based approach presented in [14] for 3-D problems of similar
complexity. In [14], without giving the computation time for individual
examples, the times spent on path planning are reported to range from
5 to 30 min on a Sun 3/260 computer.

B. Unsuccessful Path Planning Results

While satisfactory path planning results are obtained in the above
examples, there are certain situations in which the path planning per-
formed by the proposed local planner can be problematic. Fig. 10 shows
a path planning example similar to that shown in Fig. 4 but uses less
sampling points, the 12 vertices, to represent the L-shaped object. Al-
though these points are free from collision along the derived object
path, it is not the case for this polyhedral object as a whole since the
distribution of them over the object surfaces is too sparse.

On the other hand, the way the simple topological description of an
object path is used by the local planner does not always yield mean-
ingful path planning results. Fig. 11(a) shows the side view of a path

Fig. 10. Problematic path planning example due to insufficient sampling
points.

(a) (b)

(c) (d)

Fig. 11. (a) Side view of another problematic path planning example. (b) Path
planning results obtained with a simplified version ofLOCAL_PLAN(see text).
(c) Side view of (b). (d) Path of the first skeleton point obtained from (c).

obtained for the same spiral used in Fig. 6 but with different obstacles.
With object configurations of minimum likelihood of collision obtained
for the specified sequence of skeleton points, the object ends up on the
same side of the bottleneck. This is because no restriction is imposed
upon the motion of a skeleton point that, once it reaches the bottleneck,
it should move forward and stay on the other side of the bottleneck.
To further examine the influence of different potential minimization
approaches on path planning, on an empirical basis, Fig. 11(b) shows
successful path planning results obtained with a simplified version of
LOCAL_PLANwhich only allows object translation. One can see easily
from the side view of the path, as shown in Fig. 11(c), that the object
path is safe and smooth. The object, in fact, undergoes a 2-D sinusoidal
movement, as illustrated by the path of the first skeleton point shown
in Fig. 11(d).

V. CONCLUSION AND FUTURE WORKS

A local path planning algorithm based on a new workspace model is
presented in this paper. The effectiveness of such a model for ensuring
collision avoidance in path planning problems is demonstrated by con-
sidering the local path going through a free space bottleneck in which
careful maneuvering of the object is required. A local planner is devel-
oped to identify the optimal (minimum potential) object configuration
along the object path around a free space bottleneck. Unlike approaches
that only work for a point or spherical object, possibly in the C-space,
the object considered in the proposed approach, which is represented
by point samples from its surface, is allowed to have arbitrary shape.
The optimal object configurations can be obtained with efficient search
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methods because the repulsion between the object and obstacle is avail-
able in closed-form. According to the simulation results, not only can
an object configuration obtained with the proposed approach avoid ob-
stacles with satisfactory (optimal) margins, a sequence of object con-
figurations thus obtained also connect naturally into a spatially smooth
object path. Preliminary results of connecting local paths obtained with
the proposed local planner into a global one are also included.

Despite the aforementioned success in applying the proposed algo-
rithm in 3-D path planning, several related issues are yet to be ad-
dressed. For example, the sampling of the object surface is not a trivial
problem. There is certainly a tradeoff between the computation effi-
ciency and the correctness in the resultant object path. Other issues
include the developments of a systematic way of identifying free space
bottlenecks of more complex geometry, suitable global planning strate-
gies to connect the local paths, and other local planning algorithms.
On the other hand, it is possible to combine the proposed algorithm
with some other global path planning approaches, e.g., a probabilistic
roadmaps method presented in [21]. Extensions of the proposed ap-
proach to more general problems, other than the one involvinga single
rigid object among stationary obstacles, are also under investigation.

REFERENCES

[1] J.-H. Chuang, “Potential-based modeling of three dimensional
workspace for obstacle avoidance,”IEEE Trans. Robot. Automat., vol.
14, pp. 778–785, Oct. 1998.

[2] Y. K. Hwang and N. Ahuja, “Gross motion planning: A survey,”ACM
Comput. Surv., vol. 24, no. 3, pp. 219–291, 1992.

[3] J. C. Latome,Robot Motion Planning. Norwell, MA: Kluwer, 1991.
[4] B. Cohen-Tannoudji, C. Diu, and F. Laloe,Quantum Mechanics. New

York: Wiley, 1977, vol. 2.
[5] P. Khosla and R. Volpe, “Superquadric artificial potentials for obstacle

avoidance and approach,” inProc. IEEE Int. Conf. Robot. Automat.,
1988, pp. 1778–1784.

[6] C. E. Thorpe, “Path planning for a mobile robot,” inProc. AAAI, 1984,
pp. 318–321.

[7] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” inProc. IEEE Int. Conf. Robot. Automat., 1985, pp. 500–505.

[8] C. I. Connolly, J. B. Burns, and R. Weiss, “Path planning using
Laplace’s equation,” inProc. IEEE Int. Conf. Robot. Automat., 1990,
pp. 2102–2106.

[9] D. E. Koditschek, “Exact robot navigation by means of potential func-
tions: Some topological considerations,” inProc. IEEE Int. Conf. Robot.
Automat., 1987, pp. 1–6.

[10] E. Rimon and D. E. Koditschek, “The construction of analytic diffeo-
morphism for exact robot navigation on star worlds,” inProc. IEEE Int.
Conf. Robot. Automat., 1989, pp. 21–26.

[11] J. Guldner and V. I. Utkin, “Sliding mode control for gradient tracking
and robot navigation using artificial potential fields,”IEEE Trans.
Robot. Automat., vol. 11, pp. 247–254, Apr. 1995.

[12] Y. Zhang and K. P. Valavanis, “Sensor-based 2-D potential panel method
for robot motion planning,”Robotica, vol. 14, pp. 81–89, 1996.

[13] J. Guldneret al., “Obstacle avoidance inR based on artificial harmonic
potential fields,” inProc. IEEE Int. Conf. Robot. Automat., 1995, pp.
3051–3056.

[14] Y. K. Hwang and N. Ahuja, “A potential field approach to path plan-
ning,” IEEE Trans. Robot. Automat., vol. 8, pp. 23–32, Feb. 1992.

[15] Y. Kitamuraet al., “3-D path planning in a dynamic environment using
an octree and an artificial potential field,” inProc. IEEE/RSJ Int. Conf.
Intell. Robot. Syst., vol. 2, 1995, pp. 474–481.

[16] M. Herman, “Fast, three-dimensional, collision-free motion planning,”
in Proc. IEEE Int. Conf. Robot. Automat., 1986, pp. 1056–1063.

[17] J.-H. Chuang and N. Ahuja, “An analytically tractable potential field
model of free space and its application in obstacle avoidance,”IEEE
Trans. Syst., Man, Cybern. B, vol. 28, pp. 729–736, Oct. 1998.

[18] D. R. Wilton et al., “Potential integrals for uniform and linear source
distributions on polygonal and polyhedral domains,”IEEE Trans. An-
tennas Propagat., vol. AP-32, pp. 276–281, Mar. 1984.

[19] L. Bers and F. Karal,Calculus. New York: Holt, Rinehart, and Win-
ston, 1976.

[20] D. T. Kuan, J. C. Zamiska, and R. A. Brooks, “Natural decomposition of
free space for path planning,” inProc. IEEE Int. Conf. Robot. Automat.,
1985, pp. 168–173.

[21] L. E. Kavrakiet al., “Probabilistic roadmaps for path planning in high-
dimensional configuration spaces,”IEEE Trans. Robot. Automat., vol.
12, pp. 566–580, Aug. 1996.

Adaptive Control of a Class of Nonlinear Systems With a
First-Order Parameterized Sugeno Fuzzy Approximator

Mohanad Alata, Chun-Yi Su, and Kudret Demirli

Abstract—In this paper, an adaptive fuzzy control scheme for tracking
of a class of continuous-time plants is presented. A parameterized Sugeno
fuzzy approximator is used to adaptively compensate for the plant nonlin-
earities. All parameters in the fuzzy approximator are tuned using a Lu-
apunov-based design. In the fuzzy approximator, first-order Sugeno con-
sequents are used in the IF–THEN rules of the fuzzy system, which has
a better approximation capability than those using constant consequents.
Global boundedness of the adaptive system is established. Finally, a simu-
lation is used to demonstrate the effectiveness of the proposed controller.

Index Terms—Adaptive control, fuzzy approximator, nonlinear systems,
robustness, stability, Sugeno fuzzy systems.

I. INTRODUCTION

The weakness of traditional quantitative techniques to adequately
describe and control complex and ill-defined phenomena was sum-
marized in the well known principle of incompatibility formulated by
Zadeh [1]. This principle states that “as the complexity of a system in-
creases, our ability to make precise and yet significant statements about
its behaviors diminishes.” The idea of fuzzy modeling first emerged
in Zadeh [1], and has subsequently been pursued by many others. Al-
though fuzzy modeling and control is thought of as an alternative ap-
proach compared with traditional control methods, its effectiveness is
now well proven. Over the past two decades, engineers have applied
fuzzy modeling and control methods very successfully [2]–[7].

Recently, in [11], [12], and [18]–[20] fuzzy controllers have been
justified by universal approximation theorems. In other words, these
fuzzy controllers are general enough to perform any nonlinear control
action. Therefore, by carefully choosing the parameters of the fuzzy
controller, it is always possible to design a fuzzy controller that is suit-
able for the nonlinear system under consideration. Based on this fact,
a global stable adaptive fuzzy controller is firstly synthesized from a
collection of fuzzy IF–THEN rules [10]. The fuzzy system, used to ap-
proximate an optimal controller, is adjusted by an adaptive law based
on Luapunov synthesis approach. An adaptive tracking control archi-
tecture is proposed in [8] for a class of continuous time nonlinear dy-
namic systems, where an explicit linear parameterization of the uncer-
tainty in the dynamics is not possible. The architecture employs fuzzy
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