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Beam-propagation-dominant instability in an
axially pumped solid-state laser

near degenerate resonator configurations
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Propagation-dominant instabilities and chaos were found under so-called good-cavity conditions in an axially
pumped solid-state laser operated near the 1/3-degenerate cavity configuration that had not previously been
studied numerically. By using the generalized Huygens integral together with rate equations, we obtained a
V-shaped configuration that depends on a quasi-periodic threshold. We call the propagation dominant be-
cause the laser behaves as a conservative system governed by beam propagation. Although it had previously
been predicted that chaos would be impossible under nearly degenerate conditions, we have recognized that
the laser is transformed into chaos as a result of the interplay of beam propagation and gain dynamics as the
cavity is tuned close to degeneracy. © 2001 Optical Society of America
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1. INTRODUCTION
On the basis of beam propagation in a laser cavity that
contains a homogeneously broadened gain medium,
Melnikov et al.1 constructed and analyzed a three-
dimensional point map that presented the evolution of the
beam parameters (spot size and wave-front curvature) to-
gether with the field intensity with which to model the
nonlinear laser dynamics. They found that in a uni-
formly pumped laser with a high-loss cavity the laser has
a continuously smooth quasi-periodic threshold through-
out the geometrically stable region, except that some sin-
gular points that correspond to transverse mode
degeneration2 may become chaotic at high-power pump-
ing.

However, by using a diffraction integral and a rate
equation, Hollinger and co-workers3–5 studied the insta-
bility of single-longitudinal but multitransverse modes.
They found that, in a laser with a high-loss cavity and
uniform high-power pumping, the laser’s output appears
to be chaotic at the configurations that have a g1g2 pa-
rameter equal to 0.4 but to be only quasi-periodic at
g1g2 5 0.5, which corresponds to the 1/4-degenerate con-
figuration. In the former case, chaotic behavior was con-
sidered a condition in which the phase shift between ad-
jacent transverse modes per round trip is an irrational
multiple of p and does not lie close to any rational number
with a small denominator. As in the configuration at
g1g2, whose phase shift is a rational multiple of p, the la-
ser output behaves quasi-periodically, even with much
higher pumping. This result contradicts the conclusion
described in Ref. 1 that the laser behaves chaotically as
the transverse mode degenerate configurations.

Lugiato et al.6,7 expressed the Maxwell–Bloch equa-
tions in terms of modal amplitudes by using a suitably cy-
lindrically symmetric empty-cavity-mode expansion.
They presented a variety of spatiotemporal instabilities,
including chaos and cooperative frequency locking, that
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occur under uniform and low-power pumping, by tuning
the mode spacing. They were able to do this because the
Laguerre–Gauss modes are a set of good bases only when
the uniform-field limit is applied for a so-called good cav-
ity with small gain. Thus their results are valid only for
a laser in which the pump size is larger than the mini-
mum cavity beam waist.8

By applying Greene’s residue theorem9 to analyze the
iterative map of a Gaussian beam q parameter of a gen-
eral optical resonator,10 we found that, even when only
fundamental mode propagation is considered, some spe-
cific configurations that have so-called low-order
resonance9 may become unstable under the influence of
persistent nonlinear effects.10–12 These configurations
with g1g2 parameters equal to 1/2, 1/4, and 3/4 corre-
spond to 1/4, 1/3, and 1/6 transverse-mode degenerate
configurations, respectively. When only the optical Kerr
effect is considered as the nonlinear dynamic parameter
and the gain saturation effect is excluded, optical
bistability11 and multiple-period bifurcation12 are possible
for Kerr-lens mode-locked lasers. However, gain satura-
tion provides an inherently nonlinear effect. When the
pump size was smaller than the waist of the cold cavity,
peculiar lasing behavior13,14 was observed in an end-
pumped Nd:YVO4 laser near these degenerate configura-
tions. Low lasing threshold and beam waist shrinkage
accompanied by multiple-pass transverse modes were
exhibited.14

In this paper we focus on the configuration-dependent
instabilities near 1/4, 1/3, and 1/6 transverse-mode degen-
erate configurations and consider only gain saturation as
the nonlinear effect that occurs when the pump size is
larger than the waist of the cold cavity, as described by
Lugiato et al.6,7 The generalized Huygens integral and
the rate equations were used to model dynamics of the
Gaussian end-pumped solid-state laser. We found that a
good-cavity laser exhibits a V-shaped quasi-periodic insta-
2001 Optical Society of America
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bility threshold rather than a smooth variation about
these transverse-mode degenerate configurations, as the
pump size is one to two times that of the waist of the cold
cavity. Here a ‘‘good cavity’’ means that the cavity loss
per round trip is ,10% and also that a class-B laser
condition15 rather than a bad-cavity condition produces
Lorentz–Haken instability.15 With higher Gaussian
pumping at the point of degeneration, the laser output
cannot lead to chaotic behavior, unlike the result de-
scribed by Melnikov et al.1 but the same as that of
Hollinger and Jung. However, the chaotic region is close
to degeneration, a result that is different from the results
of Ref. 3 because the phase shift between adjacent trans-
verse modes in a round trip is close to 2p/3 for the 1/3-
degenerate configuration. Moreover, a variety of insta-
bilities were found near the 1/3-degenerate configuration,
and a frequency characterized by precession in phase
space has been used to recognize them. We have orga-
nized the remainder of this paper as follows: In Section 2
we formulate the equations of motion. The numerical re-
sults are discussed and compared with previous research
in Sections 3–6. In Section 7 we summarize our conclu-
sions.

2. MODELING
Consider the plano–concave axially pumped solid-state
laser shown in Fig. 1. It consists of a laser crystal with
one of its end faces (I) high-reflection coated as the flat
mirror and with a curved mirror with radius of curvature
R separated from it by a distance L. Let the reference
plane be the place where the light beam just leaves the
laser crystal in the direction of the curved mirror. Under
cylindrical symmetry, propagation of the light field to-
ward the curved mirror and back to the flat mirror (end
face I of the crystal) according to the generalized Huygens
diffraction integral is

Em11
2~r ! 5

2pj

Bl
E exp~ jk2L !Em

1~r8!exp@2~ jp/Bl!

3 ~Ar82 1 Dr2!#J0~2prr8/Bl!r8dr8, (1)

with round-trip transmission matrix

FA B

C DG .
Here Em

1(r8) and Em11
2(r) are the electric fields of the

mth and the (m 1 1)st round trips at the planes imme-
diately after and before the gain medium (denoted by the

Fig. 1. Configuration of the laser system.
superscripts 1 and 2), where r8 and r are the correspond-
ing radial coordinates, l is the wavelength of laser, and J0
is the Bessel function of zero order. In a thin-slab ap-
proximation, we can relate the electric fields Em11

1 to
Em11

2 (after and before the gain medium) in the same
round trip as

Em11
1~r ! 5 rEm11

2~r !exp~sDNd !P~r/a !, (2)

where 1 2 r2 is the round-trip energy loss, s is the
stimulated-emission cross section, DN is the population
inversion per unit volume, d is the length of the active
medium, and P(r/a) is an aperture function that equals 1
for r less than aperture radius a and equals 0 otherwise.
Furthermore, assuming that the evolution of the popula-
tion inversion follows the rate equation of a four-level sys-
tem, we can write the rate equation as

DNm11 5 DNm 1 Rpm~N0 2 DNm!Dt 2 gDNmDt

2 ~ uEmu2/Es
2!DNmDt, (3)

where Rpm is the pumping rate, Dt is the travel time
through the gain medium, Es is the saturation parameter,
g is the spontaneous decay rate, and N0 is the total den-
sity of the active medium. This method was used to
model a single-longitudinal multitransversal high-power
solid-state ring laser3–5 and to analyze the decay rate of
standing-wave laser cavities in the linear regime.16 It
was found that a standing-wave resonator can be approxi-
mated by a ring resonator if a thin gain medium is placed
close to one of the end mirrors.17 For a continuous
Gaussian pump profile Rpm 5 Rp0 exp(2r2/2wp

2) with
constant pumping beam radius wp throughout the active
medium (thin slab), the total pumping rate over the entire
active medium is

E RpmdV 5 Pp /hnp , (4)

where Pp is the effective pumping power and hnp is the
photon energy of the pumping laser. Because we consid-
ered only single-longitudinal-mode dynamics, we have
omitted the dispersion of the active medium, so the gain
is assumed to be real. Therefore we have four control pa-
rameters: r, R, wp , and Pp , which play important roles
in the laser system and are investigated in detail as fol-
lows.

In an ordinary axially pumped solid-state laser, the
round-trip propagation time is many orders of magnitude
shorter than the spontaneous decay time, especially in a
short cavity. As a result, it would take a large number of
iterations to arrive at the final state (which may be stable
or unstable). To reduce computation time and because
the quasi-periodic bifurcation point is just above the
stable continuous-wave solution, we used the scaling
method16 to magnify g by 104 times to determine the bi-
furcation points. We also checked some important points
without scaling that showed no promising change in the
quasi-periodic threshold. To reduce the influence of the
diffraction loss, we slightly varied R of the curved mirror
rather than changing cavity length L to simulate tuning
the laser cavity across the point of degeneration.
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3. BEAM-PROPAGATION-DOMINANT
DYNAMICS
As mentioned above, in the low-order-resonance configu-
rations within the geometrically stable region the laser
may become unstable under the influence of persistent
nonlinear effects.10–12 Thus we concentrate our simula-
tion on these configurations, using the parameters of an
axially pumped Nd:YVO4 laser, a class B laser with
l 5 1.064 mm, 1/g 5 50 ms, s 5 25 3 10219 cm2,
N0 5 1.7 3 1020 cm23, d 5 1 mm, a refractive index of
1.96, and L 5 6 cm at 808-nm pumping and setting aper-
ture radius a 5 1 mm, which is large enough for g1g2
5 1/4. In as much as our results are ascribed mainly to
the dependence of laser dynamics on configuration as dis-
cussed below, we chose the cavity parameter product
g1g2 5 1 2 L/R to be 1/2, 1/4, and 3/4 for studying non-
linear dynamics. These configurations correspond to R
5 8, 12, 24 cm, respectively.

In the numerical simulations we set the initial values
of E and DN to zero and added to Eq. (2) a term that
simulates the spontaneous emission whose amplitude is
given by the spontaneous decay term in Eq. (3) and a
phase obtained from a random generator. To implement
the generalized Huygens integral by the Romberg method
we divided a 1-mm aperture into 1024 segments.

As expected, when the laser is continuously pumped
slightly above the lasing threshold it starts with relax-
ation oscillation and eventually converges to the
continuous-wave steady state. Because Dt is 1/30 of the
round-trip time Tcav under magnification of g by p times,
the actual relaxation oscillation frequency fr is equal to
the numerical frequency multiplied by @(Tcav /Dt)/p#1/2.
When one increases the pump power beyond a certain
level, bifurcation, or instability threshold, the laser out-
put is no longer stable but becomes multiperiodic. Fig-
ure 2(a) shows the evolution of the laser pumped with
Gaussian pump radius wp 5 330 mm at Pp 5 313 mW
above the bifurcation and wp 5 309 mW at the configura-
tion g1g2 5 1/2 with r 5 0.95. Note that cavity beam ra-
dius w0 is ;142 mm and that C, defined as wp /w0 , equals
2.32. The laser begins with the relaxation oscillation
(;6.08 MHz, corresponding to fr 5 333 kHz) followed by a
short period of metastable output and finally develops
into a flip-flopping steady-state period-2 solution. The
corresponding field intensity profile, like the spot size on
the plane-mirror end shown in Fig. 2(b), also flip-flops to
repeat itself after two round trips, in contradiction to the
regular situation of self-consistency after only one round
trip. This result is equivalent to what is obtained from a
stability analysis of a conservative map involving only
Gaussian beam propagation, as in Fig. 4(a) of Ref. 10,
where the rotation angle in phase space (spanned by spot
size w and the curvature 1/Rg) per round trip equals p for
g1g2 5 1/2.

Similarly, both of the transverse-mode-degenerate
configurations for the 1/3-degenerate configuration at
g1g2 5 1/4 and the 1/6-degenerate configuration at g1g2
5 3/4 belong to the third-order resonance and need three
round trips to repeat themselves (or period-3 solutions) in
phase space.10 For the configuration slightly tuned away
from its corresponding point of degeneration, e.g., at
g1g2 5 0.25466 or R 5 8.05 cm, the laser shows nonde-
caying quasi-periodic oscillation [Fig. 3(a) and its inset].
We can see that the laser emission successively circulates
in the resonator to form three branches of oscillation with
a period of roughly 293 iterations. This is similar to the
evolution of spot size in Fig. 3(b) of Ref. 10.

This period can be determined from 2p/uu 2 2p/nu,
where u is the rotation angle in phase space per round
trip,10 2p/n is the closest rational fraction rotation angle
in phase space, and n 5 3 in this case. In Fig. 3(b) we
plot the evolution of the three consecutive states, 1, 2, and
3, in (w, 1/Rg) space for the quasi-periodic case. Assume
that the initial state is state 1 and that it will evolve in
sequence and rotate at an angle u per iteration (or per
round trip). If u/2p is a rational number, the dynamics
is periodic. Contrarily, if u/2p is irrational, the initial
state will never repeat itself but will precess an angle
n(u 2 2p/n) (or recede for a negative angle) in phase
space after n iterations. As a consequence, an arbitrary
initial state will nearly return to itself but will precess (or
recede) a minimal angle after Tp 5 2p/(nuu 2 2p/nu) it-
erations. We therefore define the precession frequency fp
as c/2LTp .

The power spectrum [see Fig. 3(c)] of Fig. 3(a) shows
that a low-frequency peak at 25.6 MHz is fp , which
equals the beat frequency (fb) of the two nearly degener-

Fig. 2. (a) Output power evolution and (b) beam profile of the
period-2 steady state for g1g2 5 1/2 with r 5 0.95 above the in-
stability threshold.
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ate Laguerre–Gauss modes, LGn,0,0 and LGn22,3,0 . Al-
though there is a lower-order LGn21,1,1 mode that degen-
erates with the fundamental mode, it will not be excited
under cylindrical symmetry. The highest peak at 842
MHz results from circulating among those three oscillat-
ing branches and returning to the initial branch every
three round trips (as the longitudinal mode spacing is 2.5
GHz). This peak is accompanied by a sideband owing to
beating with a 25.6-MHz peak. We say that the laser is
beam-propagation dominant because it behaves as a con-
servative system governed by Gaussian beam propaga-

Fig. 3. (a) Evolution of the output power of the quasi-periodic
oscillation at g1g2 5 0.25466, r 5 0.95, C 5 2.32, and Pp
5 210 mW. The inset is the magnification of six precession pe-
riods. (b) Phase space of (w, 1/R), as in Ref. 10, provides an ex-
planation. The numbered filled circles stand for the number of it-
erations. (c) The corresponding spectrum of (a).
tion. Therefore, when the laser is axially pumped a bit
above the quasi-periodic threshold about the point of de-
generation, the laser behaves as if the beam propagation
were dominant.

It is interesting to note that the laser output behaves
the same as in a lossless optical resonator described by a
conservative map. It seems that the laser will become a
conservative system, although it does include dissipative
elements such as gain and Gaussian (pump) aperture.
For low pumping, the Gaussian gain profile is a weak
Gaussian aperture and provides the damping mechanism;
however, because there is already saturated gain above
the instability threshold, the effective radius of the aper-
ture increases. As a result, cavity field propagation
dominates the laser dynamics and behaves as conserva-
tive propagation as illustrated in Ref. 10.

4. THRESHOLD OF A QUASI PERIOD
A. Good Cavity
Figure 4(a) is a three-dimensional bifurcation diagram
that shows quasi-periodic instability threshold P2 at vari-
ous values of C near g1g2 5 1/4 for r 5 0.95. It is obvi-
ous that the system has a V-shaped quasi-periodic thresh-
old with a local minimum at the point of degeneration
over 1 , C < 2. The farther the cavity is tuned away
from degeneration, the higher the quasi-periodic thresh-
old is. This result confirms our previous prediction10

that the degenerate configuration is unstable under the
nonlinear effect. Moreover, the V-shaped threshold is
deeper as C is close to 1 and becomes flat for large C.
This shows that the quasi-periodic threshold is indepen-
dent of cavity configuration if a uniform pump is used, as
reported in Ref. 6. Similar results can be obtained with
other degeneration configurations.

Fixing g1g2 5 1/4, we plotted the ratio (P2 /P1) of
quasi-periodic threshold P2 to lasing threshold P1 versus
C [Fig. 4(b)]. The ratio approaches 1 with uniform
pumping for C approaching infinity, and it increases
sharply as C becomes close to 1. The result is the same
as that derived by Lugiato et al.,6 namely, that instability
in terms of the threshold ratio favors a cavity operated
with large C, where it is easier to excite multitransverse
modes to develop spatiotemporal instabilities. However,
as the lasing threshold increases monotonically as a func-
tion of C, a minimal quasi-periodic threshold power of 175
mW occurs at C ' 2.3, where P2 /P1 ' 1.8. Further-
more, the lasing threshold is almost independent of g1g2
about the point of degeneration as C . 1; thus the lowest
quasi-periodic threshold at degeneration that is due to
sensitivity to nonlinear effects is demonstrated in Ref. 10.

B. High-Loss Cavities
We have discussed cavity-configuration-dependent laser
dynamics under the good-cavity condition with
r 5 0.95. To examine the influence of cavity loss on laser
dynamics, we have chosen values of r of 0.95, 0.9, 0.8, and
0.7 for C 5 1.3. From Fig. 4(c) we found that the
V-shaped threshold behavior disappears as r decreases to
0.7. It develops into a monotonically increasing smooth
curve with respect to g1g2 , and the threshold at degen-
eration is no longer a local minimum. This smooth curve
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is similar to that described in Ref. 1 for 50% mirror reflec-
tion or r2 5 0.5. As mentioned above, the laser with
high mirror reflectivity mimics a conservative system and
becomes propagation dominant when it is operated in a
quasi-periodic state. Thus the V-shaped quasi-periodic
threshold will not be found in the research reported in
Ref. 1, where a high-loss cavity was considered, nor in
Ref. 7, with uniform pumping. Note that these curves
are asymmetric. Normally, if the aperture radius and
the cavity length are both constant, the larger the g1g2
parameter, the larger the spot size is on the flat mirror,
which is also a gain medium. Because diffraction loss is
minimized by choice of a sufficiently large aperture, in
our simulation the asymmetry is ascribed mainly to a
change in the overlap integral of the cavity field with the
pumping as g1g2 varies.

Fig. 4. (a) Three-dimensional quasi-periodic bifurcation dia-
gram in terms of Pp , C, and g1g2 for r 5 0.95. (b) Dependence
of the ratio of the instability threshold (P2) to the lasing thresh-
old (P1) on parameter C for g1g2 5 1/4 and r 5 0.95. (c) De-
pendence of P2 /P1 on g1g2 for C 5 1.3 with different values of r
as indicated.
5. BIFURCATION DIAGRAM
It is worth noting that, when the laser is pumped just
above the bifurcation, the stripe denoted for quasi-
periodic oscillation in Fig. 3(a) has less than a 1% varia-

Fig. 5. (a) Bifurcation diagram for higher pumping with r
5 0.95 and C 5 2.78 near g1g2 5 1/4, (b) power evolution of a

modulated quasi period, (c) modulated pulsing, (d) chaos.
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tion. Raising the pump power makes the stripe wider.
When the pump power is further increased, the laser is
operated far away from the linear regime, and its highly
saturated gain may cause serious instabilities. Because
the instabilities induced by higher pumping may depend
on the spontaneous decay rate, we magnify g only 10
times to investigate the high-pumping condition. In fact,
there are minor differences compared with scaling g by 10
times and 100 times if we simply want to classify the
types of instability.

With a spatially inhomogeneous pump, because of com-
petition between two transverse modes a laser can pro-
duce chaotic emission.18 Thus we suspect that it might
be easier to obtain chaos at a minimal quasi-periodic
threshold where C 5 2.32. Indeed, we tried the pump
power up to 7 P1 at C 5 2.32, but chaos was not found.
By using C 5 2.78 we can classify the many kinds of in-
stability shown in Fig. 5(a) for r 5 0.95. For instance,
we defined the so-called modulated quasi-periodic state
shown in Fig. 5(b) for R 5 8.0075 cm and Pp 5 400 mW.
Further increasing the pump power, we found so-called
modulated pulsing and chaos when R 5 8.0075 cm, as
shown in Figs. 5(c) and 5(d) for Pp 5 500 and
Pp 5 600 mW, respectively. In the region where
R . 8.015 cm, the laser is in the so-called precession os-
cillation state, showing three overlapped sinusoidallike
oscillations, as illustrated in Fig. 6(a) for R 5 8.05 cm
and Pp 5 650 mW. Its corresponding power spectrum is
shown in Fig. 6(b). We can see the power spectrum that

Fig. 6. (a) Precession oscillation and (b) power spectrum at
g1g2 5 0.25466 with r 5 0.95, C 5 2.78, and Pp 5 650 mW.
has a precession frequency of 24.75 MHz that is close to
25.6 MHz for lower pumping as in Fig. 3(c). The preces-
sion oscillation appears to be soft in amplitude and hard
in frequency, even for Pp as much as 1 W. The inset in
Fig. 6(b) is the expansion of a high-frequency spectrum.
The main peak at 841.6 MHz again corresponds to one
third of the longitudinal mode spacing, and the peak at
816.6 MHz, which has downshifted ;25 MHz, corre-
sponds to fp . The presence of small peak, located
150 6 25 kHz beside the main peaks, is ascribed to beat-
ing with the subharmonics of the relaxation oscillation.
Note that the numerical relaxation oscillation frequency
is now ;350 kHz.

We have plotted in Fig. 7(a) the frequencies of the spec-
tral peaks as Pp increases for R 5 8.05 cm. At low
pump, we had only two peaks, separated by fp , until
Pp 5 400 mW, a sideband attributed to frequency beating
with relaxation oscillation, appeared in the high-
frequency region. To show how the spectrum develops as
Pp increases, we used a filled circle bisected by a shortline
to mark the highest peak in that group of spectral peaks.
We found not only that the precession frequency is
slightly redshifted but also that the subharmonic of the
relaxation oscillation appears as increasing Pp ; for in-
stance, the frequency spacing of the main peak and its
sideband at Pp 5 600 mW is half that at Pp 5 500 mW.
Figure 7(b) shows the bifurcation diagram for
R 5 8.0075 cm, which is closer to the 1/3-degenerate con-

Fig. 7. Frequency bifurcation plot using Pp as the parameter for
(a) R 5 8.05 cm and (b) R 5 8.0075 cm.
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figuration. As Pp 5 350–400 mW, the difference be-
tween the two peaks near 834 MHz approaches the third
harmonic of the relaxation oscillation frequency. Each of
the three main peaks shows sideband frequencies owing
to beating with the relaxation oscillation at
Pp 5 450 mW. Further increasing the pumping, we ob-
served increasingly more sidebands caused by beating
with the subharmonics of the relaxation oscillation; fi-
nally, the laser became chaotic. We believe that either
increasing the pumping or tuning the cavity configuration
toward the point of degeneration will enhance the gain
dynamic effect and will cause subharmonic bifurcation
owing to nonlinear gain. A transition from a mechanism
that is dominated by beam propagation to one dominated
by gain dynamics will result. We can also suppress the
diffraction effect by reducing the reflectance; for example,
when r 5 0.8, the region of chaos becomes wider and far-
ther away from degeneration than for r 5 0.95.

6. INTERPLAY OF BEAM PROPAGATION
AND GAIN DYNAMIC BIFURCATION
If we maintain proper pump power and scan over the
whole range of R in Fig. 5(a) we will obtain instabilities
similar to those described in Ref. 7, in which the trans-
verse mode spacing varies about g1g2 5 1. We can also
achieve the results of Fig. 5(a) by using Fig. 6 of Ref. 19
where chaos exists within small ranges of phase differ-
ence (which corresponds to R in our case) and round trip
loss (or 1 2 r2).

Maintaining Pp at 650 mW, we show in Fig. 8 the trans-
verse beat frequency (fb) of the cold cavity and the pre-
cession frequency (fp) relative to R for r 5 0.95. We
have found that the numerical precession frequency
nearly equals the transverse beat frequency when the la-
ser is propagation dominant as R > 8.03 cm. Another
evidence that propagation- dominant instability is surely
governed by the diffraction integral is that the precession
frequency is independent of the spontaneous-emission
rate or gain. As R is tuned toward the degenerate or the
chaotic region, however, precession frequency fp deviates
from the transverse beat frequency because the gain dy-
namics, like the rate equations, begin to play a crucial
role in change of the precession frequency. The gain ap-
erture and saturation effects take control of the dynamics
when the precession frequency declines to several times
the relaxation oscillation frequency as R ' 8.01 cm. In
Fig. 7(b), for small Pp , two frequencies, ;834 and ;831
MHz, appear to be quasi-periodic, mainly because of beam
propagation or diffraction, so their difference is under-
stood as fp . The laser has increasingly sideband fre-
quencies as a result of period multiplication owing to the
nonlinear gain through the rate equations for larger Pp .
It seems that the route to chaos close to degeneration is
the interplay (or the mixing effect) of the quasi-period and
the period multiplied as shown in Fig. 7(b).

We believe that the cavity loss 1 2 r2 is the key factor
that differentiates the results of Melnikov et al.1 and
Hollinger et al.5,19 from ours. The V-shaped threshold
becomes as smooth as Melnikov’s result [Fig. 4(c)] for a
high-loss cavity. Hollinger et al. obtained their results
with a high-loss cavity, but they did not investigate how
close g1g2 should be to 0.5 for the laser output to be quasi-
periodic but not to become chaotic,3 however, in our good-
cavity case the chaotic region becomes narrower and can
be close to degeneracy.

7. CONCLUSIONS
Numerically propagating a cavity field through the gener-
alized Huygens integral and using the atomic rate equa-
tions for a homogeneously broadened gain medium with
Gaussian pumping, we obtained propagation-dominant
laser instabilities. We have investigated in detail the
temporal behavior of the instabilities near the 1/3-
degenerate configuration. We determined the quasi-
periodic threshold as the cavity was tuned across the de-
generate configurations. A laser with a good cavity
including a saturated gain medium shows a V-shaped
quasi-periodic threshold; however, a high-loss cavity has
not a V shape but a smooth monotonic curve. Further-
more, the propagation-dominant V-shaped threshold de-
pends not only on the resonator configuration but also on
the pump size. There is a best value C in a good cavity to
produce the lowest-instability pump power. In addition
to a quasi-periodic region, we obtained another region of
propagation-dominant instability outside the chaotic re-
gion near the 1/3-degenerate configuration in the good-
cavity conditions. We ascribed this type of instability to
the special dependence of the geometrical configuration.

Furthermore, chaos was found in a good cavity close to
the 1/3-degenerate configuration. Although the phase
shift between adjacent transverse modes in one round
trip is irrational multiples of p and lies close to 2p/3, the
laser output can become chaotic in a good cavity under
Gaussian pumping. This result is different from the re-
sults of Hollinger et al.5,19 We believe that, as the cavity
is tuned toward 1/3 degeneration, the beam-propagation-
dominant laser dynamics is transformed into an interplay
of beam propagation and gain dynamics. Thus the route
to chaos close to the degenerate configuration involves the
mixing effect of quasi-period- and period-multiplying bi-
furcation.

Fig. 8. Transverse beat frequency of the cold cavity and the pre-
cession frequency versus R for Pp fixed at 650 mW.
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