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Fuzzy classi® cation is one of the important applications of fuzzy logic. Fuzzy classi® cation
Systems are capable of handling perceptual uncertainties, such as the vagueness and
ambiguity involved in classi® cation problems. The most important task to accomplish a fuzzy
classi® cation system is to ® nd a set of fuzzy rules suitable for a speci® c classi® cation
problem. In this article, we present a new method for generating fuzzy rules from numerical
data for handling fuzzy classi® cation problems based on the fuzzy subsethood values between
decisions to be made and terms of attributes by using the level threshold value ¬ and the
applicability threshold value  , where ¬ 2 [0;1] and  2 [0;1]. W e apply the proposed
method to deal with the `̀ Saturday Morning Problem,’ ’ where the proposed method has a
higher classi® cation accuracy rate and generates fewer fuzzy rules than the existing
methods.

Fuzzy classi® cation is one of the important applications of fuzzy logic
(Zadeh, 1965, 1988). In a fuzzy classi® cation system (Yoshinari, Pedrycz,
& Hirota, 1993), a case can properly be classi® ed by applying a set of
fuzzy rules based on the linguistic terms (Zadeh, 1975) of its attributes.
Fuzzy classi® cation systems are capable of handling perceptual uncertainties,
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such as the vagueness and ambiguity involved in classi® cation problems
(Yuan & Shaw, 1995). The most important task to accomplish a fuzzy clas-
si® cation system is to ® nd a set of fuzzy rules suitable for a speci® c classi-
® cation problem. Usually, we have two methods to complete this task. One
approach is to obtain knowledge from experts and translate their knowledge
directly into fuzzy rules. However, the process of knowledge acquisition and
validation is di� cult and time-consuming. It is very likely that an expert may
not be able to express his or her knowledge explicitly and accurately. Another
approach is to generate fuzzy rules through a machine-learning process
(Castro & Zurita, 1997; Chen & Yeh, 1998; Chen, Lee, & Lee, 1999;
Hayashi & Imura, 1990; Hong & Lee, 1996; Klawonn & Kruse, 1997;
Nozaki, Ishibuchi, & Tanaka, 1997; Wang & Mendel, 1992; Wu & Chen,
1999, Yuan & Shaw, 1995; Yuan & Zhuang, 1996), in which knowledge can
be automatically extracted or induced from sample cases or examples. In
Castro and Zurita (1997) an inductive learning algorithm in fuzzy systems
is presented. In Chen and Yeh (1998) we have presented a method for
generating fuzzy rules from relational database systems for estimating null
values. In Hayashi and Imura (1990) a method to automatically extract fuzzy
if-then rules from a trained neural network is presented. In Hong and Lee
(1996) an algorithm to induce fuzzy rules and membership functions from
training examples is presented. In Klawonn and Kruse (1997) a method for
constructing a fuzzy controller from data is presented. In Nozaki, Ishibuchi,
and Tanaka (1997) a heuristic method for generating fuzzy rules from
numerical data is presented. In Wang and Mendel (1992) an algorithm for
generating fuzzy rules by learning from examples is presented. In Wu and
Chen (1999), we have presented a method for constructing membership func-
tions and fuzzy rules from training examples. In Yuan and Zhuang (1996) a
genetic algorithm for generating fuzzy classi® cation rules from training
examples is presented.

A commonly used machine-learning method is the induction of decision
trees (Quinlan, 1994) for a speci® c problem. The method of decision trees
induction has been expanded to induce fuzzy decision trees proposed by
Yuan and Shaw (1995), where fuzzy entropy is used to lead the search of
the most e� ective decision nodes. However, the method presented in Yuan
and Shaw (1995) has some drawbacks, i.e., (1) it generates too many fuzzy
rules and (2) its classi® cation accuracy rate is not good enough.

In this article, we present a new method based on the ® ltering of the fuzzy
subsethood values (Kosko, 1986; Yuan & Shaw, 1995) between decisions to
be made and terms of attributes by the level threshold value ¬ and the
applicability threshold value  for generating fuzzy rules from the numerical
data in a more e� cient manner, where ¬ 2 [0;1] and  2 [0;1]. We apply the
proposed method to deal with the Saturday Morning Problem (Yuan &
Shaw, 1995), where the proposed method has higher classi® cation accuracy
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and generates fewer fuzzy rules than the one presented in (Yuan & Shaw,
1995) .

FUZZY SET THEORY

In 1965, Zadeh proposed the theory of fuzzy sets (1965). Let U be a
universe of discourse, where U ˆ {u1;u2; . . . ;un}. A fuzzy set A of the
universe of discourse U can be represented by

A ˆ
Xn

iˆ1

·A…ui†=ui

ˆ ·A…u1†=u1 ‡ ·A…u2†=u2 ‡ ¢ ¢ ¢ ‡ ·A…un†=un; …1†

where ·A is the membership function of the fuzzy set A, ·A…ui† indicates the
degree of membership of ui in the fuzzy set A, ·A…ui† 2 [0;1], the symbol ``+ ’ ’
means the union operator, the symbol `̀ /’ ’ represents the separator, and
1 µ i µ n.

De® nition 2.1. Let A and B be two fuzzy sets of the universe of discourse
U with membership functions ·A and ·B, respectively. The union of the fuzzy
sets A and B is de® ned by

·A [ B…u† ˆ max{uA…u†; ·B…u†}; 8u 2 U: …2†

The intersection of A and B, denoted as A \ B, is de® ned by

·A \ B…u† ˆ min{·A…u†; ·B…u†}; 8u 2 U: …3†

The complement of A, denoted as AA, is de® ned by

·AA…u† ˆ 1 ¡ ·A…u†; 8u 2 U: …4†

De® nition 2.2. Let A and B be two fuzzy sets de® ned on the universe of
discourse U with membership functions ·A and ·B, respectively. The fuzzy
subsethood S…A;B† (Kosko, 1986; Yuan & Shaw, 1995) measures the degree
in which A is a subset of B:

S…A;B† ˆ M…A \ B†
M…A† ˆ

X

u 2 U

Min…·A…u†;·B…u††
X

u 2 U

·A…u†
; …5†

where S…A;B† 2 [0;1].

A New Method for Generating Fuzzy Rules 647
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A REVIEW OF YUAN AND SHAW’S METHOD FOR FUZZY
RULES GENERATION

In the following, we brie¯ y review Yuan and Shaw’s method for fuzzy
rules generation (1995). In a fuzzy classi® cation problem, a collection of cases
U ˆ {u} is represented by a set of attributes A ˆ {A1; . . . ;Ak} , where U is
called the object space (Yuan & Shaw, 1995). Each attribute Ak depicts some
important feature of a case and is usually limited to a small set of discrete
linguistic terms T …Ak† ˆ {T k

1 ; . . . ;T k
sk

} . In other words, T …Ak) is the domain
of the attribute Ak . Each case u in U is classi® ed into a class Ci , where Ci is a
member of classes C and C ˆ {C1; . . . ;CL } . In our discussions, both cases
and classes are fuzzy. The class Ci of C, i ˆ 1; . . . ;L , is a fuzzy set de® ned on
the universe of cases U. The membership function ·ci

…u† assigns a degree to
which u belongs to class Ci. The attribute Ak is a linguistic variable that takes
linguistic values from T …Ak† ˆ {T k

1 ; . . . ;T k
sk

}. The linguistic values T k
j are

also fuzzy sets de® ned on U. The membership value ·T k
j
…u† depicts the degree

to which case u’ s attribute Ak is T k
j . A fuzzy classi® cation rule (or abbreviated

into fuzzy rule) can be written in the form

IF …A1 is T1
i1† AND . . . AND …Ak is Tk

ik † THEN …C is Cj†: …6†

Using a machine-learning method from a training set of cases whose class
is known can induce a set of classi® cation rules. An example of a small
training data set of the Saturday Morning Problem (Yuan & Shaw, 1995)
with fuzzy membership values is shown in Table 1. In the Saturday Morning
Problem, a case is a Saturday morning’s weather which can have four attri-
butes:

Attribute ˆ {Outlook, Temperature, Humidity, Wind},

and each attribute has linguistic values

Outlook ˆ {Sunny, Cloudy, Rain},
Temperature ˆ {Hot, Mild, Cool},
Humidity ˆ {Humid, Normal},
Wind ˆ {Windy, Not windy}.

The classi® cation result (i.e., Plan) is the sport to be taken on that weekend day,

Plan ˆ {Volleyball, Swimming, Weightlifting}.

The fuzzy decision tree induction method presented in Yuan and Shaw
(1995) consists of the following steps:
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1. fuzzi® cation of the training data,
2. induction of a fuzzy decision tree,
3. conversion of the decision tree into a set of rules,
4. application of the fuzzy rules for classi® cation.

Using the data shown in Table 1, the generated fuzzy decision tree is
shown in Figure 1. From the fuzzy decision tree shown in Figure 1, we can
enumerate the number of routes from root to leaf. Each route can be con-
verted into a rule, where the condition part represents the attributes on the
passing branches from the root to the leaf and the conclusion part represents

650 S.-M. Chen et al.

FIGURE 1. The induced fuzzy decision tree and fuzzy rules of Yuan and Shaw’s method (1995) .

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 2

2:
53

 2
7 

A
pr

il 
20

14
 



the class at the leaf with the highest classi® cation truth level. The generated
fuzzy rules after conversion from the fuzzy decision tree are also shown in
Figure 1. Yuan and Shaw (1995) pointed out that Rule 3: `̀ IF Temperature is
Hot AND Outlook is Rain THEN W eightlifting’ ’ can be simpli® ed into Rule
3 ¢: ` ÌF Outlook is Rain THEN W eightlifting.’ ’ The truth level of Rule 3 ¢ is
0.89 and is not less than 0.73 (the truth level of the original Rule 3) . With the
generated six fuzzy rules in Figure 1, the classi® cation results for the training
data shown in Table 1 are shown in Table 2. Among 16 training cases, 13
cases (except cases 2, 8, 16) are correctly classi® ed. The classi® cation accuracy
of Yuan and Shaw’s method is 13

16 £ 100% ˆ 81%.

A NEW METHOD FOR GENERATING FUZZY RULES FROM
NUMERICAL DATA

In the following, we present a new method for generating fuzzy rules
from numerical data. The data set we use to introduce the concepts of
fuzzy rules generation is shown in Table 3. In Table 3, we have nine
cases with three attributes for each case and three kinds of decisions for
each plan:

Attribute= {A, B, C}

A New Method for Generating Fuzzy Rules 651

TABLE 2 Learning Result from the Small Training Data Set (Yuan & Shaw, 1995)

Classi® cation Known in Training Data Classi® cation with Learned Rules

Case Volleyball Swimming W-lifting Volleyball Swimming W-lifting

1 0.0 0.8 0.2 0.0 0.9 0.0
2 1.0 0.7 0.0 0.4 0.6 0.0
3 0.3 0.6 0.1 0.2 0.7 0.3
4 0.9 0.1 0.0 0.7 0.3 0.3
5 0.0 0.0 1.0 0.3 0.1 0.9
6 0.2 0.0 0.8 0.3 0.0 0.7
7 0.0 0.0 1.0 0.0 0.0 1.0
8 0.7 0.0 0.3 0.2 0.0 0.8*
9 0.2 0.8 0.0 0.0 1.0 0.0

10 0.0 0.3 0.7 0.1 0.0 0.7
11 0.4 0.7 0.0 0.0 0.7 0.0
12 0.7 0.2 0.1 0.7 0.0 0.3
13 0.0 0.0 1.0 0.0 0.2 0.8
14 0.0 0.0 1.0 0.3 0.0 0.7
15 0.0 0.0 1.0 0.0 0.0 1.0
16 0.8 0.6 0.0 0.5 0.5 0.0y

* Wrong classi® cation
y Cannot distinguish between two or more classes.
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and each attribute has linguistic terms

A ˆ {A1, A2, A3}
B ˆ {B1, B2, B3}
C ˆ {C1, C2}.

The classi® cation is the decision to be made on a case with attributes Ai, Bj ,
and Ck , respectively, to carry out one of the plans X, Y, or Z:

Plan ˆ {X,Y,Z}.

We want to generate fuzzy classi® cation rules from the given numerical
data in Table 3. The generated fuzzy classi® cation rules are in the form of
formula (6). For example,

Rule 1: IF A is A1 THEN Plan is X,
Rule 2: IF B is NOT B3 AND C is C2 THEN Plan is Y,
Rule 3: IF MF(Rule 1)<  AND MF(Rule 2)<  THEN Plan is Z,

are the rules that satis® ed our purpose, where MF means `̀ membership
function value’ ’ (Yuan & Shaw, 1995),  is an applicability threshold
value, and  2 [0;1].

All the attributes and classi® cations are vague by nature, since they
represent a human’s cognition and desire. For example, peoples’ feeling of
cool, mild, and hot are vague and there are no de® nite boundaries between
them. Assume that attributes `̀ A,’ ’ ``B,’ ’ and `̀ C’ ’ stand for some attributes of
weather, respectively, and assume that `̀ X,’ ’ `̀ Y,’ ’ and `̀ Z’ ’ stand for sport
plans of `̀ volleyball, ’ ’ `̀ Swimming,’ ’ and ``Weightlifting’ ’ for a special day,
respectively. Although there are distinctions between the sport plans such as
`̀ Swimming’ ’ or ``Volleyball, ’ ’ the classi® cation when it is interpreted as the

652 S.-M. Chen et al.

TABLE 3 A Small Data Set for Illustrating the Proposed Fuzzy Rules Generation Method

A B C Plan

Case A1 A2 A3 B1 B2 B3 C1 C2 X Y Z

1 0.3 0.7 0 0.2 0.7 0.1 0.3 0.7 0.1 0.9 0
2 1 0 0 1 0 0 0.7 0.3 0.8 0.2 0
3 0 0.3 0.7 0 0.7 0.3 0.6 0.4 0 0.2 0.8
4 0.8 0.2 0 0 0.7 0.3 0.2 0.8 0.6 0.3 0.1
5 0.5 0.5 0 1 0 0 0 1 0.6 0.8 0
6 0 0.2 0.8 0 1 0 0 1 0 0.7 0.3
7 1 0 0 0.7 0.3 0 0.2 0.8 0.7 0.4 0
8 0.1 0.8 0.1 0 0.9 0.1 0.7 0.3 0 0 1
9 0.3 0.7 0 0.9 0.1 0 1 0 0 0 1
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desire to play can still be vague. For example, the weather can be excellent or
just okay for swimming. The classi® cation has the same situation. For
example, the weather could be suitable for both swimming and playing
volleyball and one may feel that it is di� cult to select between the two.

As shown in Table 3, we have nine cases, where each case has three
attributes to describe it. For each attribute, we have two or three terms to
choose. In addition to the attribute part, we have to decide on a plan. One of
decisions `̀ X,’ ’ ``Y,’ ’ or ``Z’ ’ is the plan to be decided for a speci® c case. The
value accompanying each term or decision of plan is in the range [0, 1]. For
each case, we can decide which decision of plan (with the highest possibility
value) is most likely to be chosen. For example, in Case 6, the possibility to
choose decision `̀ X’ ’ is 0, to choose decision `̀ Y’ ’ is 0.7, to choose decision
`̀ Z’ ’ is 0.3, and the ® nal decision is plan `̀ Y.’ ’

From the possibility values of decisions ``X,’ ’ ``Y,’ ’ and ``Z,’ ’ for each
case, we can decide which decision to make for a speci® c case. If we divide the
nine cases into three subgroups according to the classi® cation results, i.e.,
`̀ X,’ ’ `̀ Y,’ ’ and `̀ Z,’ ’ we can get another table as shown in Table 4. As Table 4
depicts, there are three instances for `̀ X,’ ’ three instances for `̀ Y,’ ’ and three
instances for `̀ Z,’ ’ respectively. After carefully examining the table, it seems
that there are close relationships between classi® cation results (decision of
plan for that subgroup) and some terms of the attributes. Making use of the
fuzzy subsethood concept (Kosko, 1986; Yuan & Shaw, 1995), we can get
information about the relationship between the decision of the plan and every
distinct term of the attributes.

In each subgroup, we calculate the fuzzy subsethood values between
decisions of that subgroup and every term of each attribute. After the com-
putations of subsethood values, we can get a set of subsethood values for
each decision. In this set of values, the larger the value, the closer the rela-
tionship between the decision of the plan and the term. For each subgroup,
we can attain the most important factors that result in the decision of the

A New Method for Generating Fuzzy Rules 653

TABLE 4 Three Subgroups According to the Decision to be Made

A B C Plan

Subgroup Case A1 A2 A3 B1 B2 B3 C1 C2 X Y Z

Subgroup_1 2 1 0 0 1 0 0 0.7 0.3 0.8 0.2 0
4 0.8 0.2 0 0 0.7 0.3 0.2 0.8 0.6 0.3 0.1
7 1 0 0 0.7 0.3 0 0.2 0.8 0.7 0.4 0

Subgroup_2 1 0.3 0.7 0 0.2 0.7 0.1 0.3 0.7 0.1 0.9 0
5 0.5 0.5 0 1 0 0 0 1 0.6 0.8 0
6 0 0.2 0.8 0 1 0 0 1 0 0.7 0.3

Subgroup_3 3 0 0.3 0.7 0 0.7 0.3 0.6 0.4 0 0.2 0.8
8 0.1 0.8 0.1 0 0.9 0.1 0.7 0.3 0 0 1
9 0.3 0.7 0 0.9 0.1 0 1 0 0 0 1
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plan of that subgroup. We can use these terms to form the condition part of
the classi® cation rule for that decision of the plan. The consequent part of the
rule is the decision of the plan for that subgroup.

From Table 4, we can see that there are three subgroups of cases. In each
subgroup, the decision to be made is ® xed. To ® nd the closeness between the
decision and each term of the three attributes, we ® rst calculate the subset-
hood values for them. The meaning of fuzzy subsethood value is de® ned by
using formula (5), A is a subset of B, de® ned by

S…A;B† ˆ M…A \ B†
M…A† :

Take Subgroup_1 as an example (`̀ X’ ’ is the decision of Subgroup_1), the
denominator and the numerator of the subsethood formula for S(X, Al) are
as follows:

M…X† ˆ 0:8 ‡ 0:6 ‡ 0:7 ˆ 2:1;

M…X \ A1† ˆ Min…0:8;1† ‡ Min…0:6;0:8† ‡ Min…0:7;1†

ˆ 0:8 ‡ 0:6 ‡ 0:7

ˆ 2:1:

The value of S(X, A1) is

S…X;A1† ˆ M…X \ A1†=M…X†

ˆ 2:1=2:1

ˆ 1;

where S…X;A1† stands for the subsethood of ``X’ ’ to `̀ A1’ ’ of `̀ A’ ’ in
Subgroup_1.

Using the same formula (i.e., formula (5)), we can compute all the subset-
hood values as summarized in Figure 2. From Figure 2, we can ® nd that some
terms are closely related to the decision to be made in that subgroup and some
are not. We need a standard to distinguish close or not close enough between
the decision and terms of attributes. We use the level threshold value ¬ as the
standard to measure close enough or not on fuzzy subsethood values between
the decision of the subgroup and all terms of attributes, where ¬ 2 [0;1].
Assume that the value we assigned to the level threshold ¬ is 0.9. For each
attribute, we can select at most one term. If there are two or more terms
belonging to the same attribute which have a fuzzy subsethood value not less
than 0.9, the one with the largest fuzzy subsethood value will be chosen. If there
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are two terms with subsethood values not less than 0.9 at the same time, the
term which is the original term of the attribute will have privilege over the one
which is a complemented term of the same attribute.

Referring to Figure 2 the fuzzy subsethood values (including those for the
complement terms) not less than the level threshold value ¬ , where ¬ ˆ 0:9,
in Subgroup_1 are S(X, A1) = 1, S(X, NOT A2) = 0.9, and S(X, NOT A3)
= 1. Because `̀ A1, ’ ’ `̀ A2,’ ’ and `̀ A3’ ’ are all terms of attribute `̀ A,’ ’ only one
of them will be chosen. In this condition, `̀ A1’ ’ is the only original term that
belongs to attribute ``A,’ ’ and it is the one we choose among them. From this
term we can generate the ® rst fuzzy rule as follows:

Rule 1: IF A is A1 THEN Plan is X:

Likewise, the fuzzy subsethood values that are not less than 0.9 in
Subgroup_2 are S(Y, NOT B3)= 0.96 and S(Y, C2)= 0.92. The generated
fuzzy rule is as follows:

Rule 2: IF B is NOT B3 AND C is C2 THEN Plan is Y:

For a rule to be generated, there must be at least one original term not
less than ¬ . From Subgroup_3, we can see that the subsethood values are
quite average. In this condition, no term is outstanding among them (no term
has a value not less than 0.9 in Subgroup_3). This means that for decision
`̀ Z,’ ’ those terms of attributes are average and no terms are representative
enough. Thus, Rule 3 is unable to be generated at this time.

We use MF(Rule i)= MF(condition part of Rule i), where 1 µ i µ 2 and
MF means `̀ membership function value’ ’ (Yuan & Shaw, 1995). If we want

A New Method for Generating Fuzzy Rules 655

Subgroup_1(X):

Subgroup_2(Y):

Subgroup_3(Z):

FIGURE 2. The list of the fuzzy subsethood values for small data set.
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to classify Case 3 of Table 3, then we can get

MF…condition part of Rule 1†ˆMF…A1† ˆ 0;

MF…condition part of Rule 2†ˆMF…NOT B3 \ C2†ˆ …1 ¡ 0:3† \ 0:4 ˆ 0:4;

MF…Rule 1† ˆ MF…condition part of Rule 1† ˆ 0;

MF…Rule 2† ˆ MF…condition part of Rule 2† ˆ 0:4:

Because both membership values of the existing rules are not high enough to
choose decision ``X’ ’ or decision `̀ Y,’ ’ it is very possible that decision `̀ Z’ ’ is
more appropriate than the other two decisions. In this situation, we need
another applicability threshold value  , where  2 [0;1], to judge the applic-
ability of the existing rules. The existing rules are applicable to a case if
MF(Rule i) ¶  , where i 2 {1; . . . ;n} and n is the number of existing rules.

As an alternative, we can conclude that a case that is not well classi® ed by
Rule 1 and Rule 2 will be classi® ed into the plan with decision `̀ Z.’ ’ Thus, the
third fuzzy rule is generated as follows:

Rule 3: IF MF…Rule 1† <  AND MF…Rule 2† <  THEN Plan is Z;

where MF(Rule i)= MF(condition part of Rule i) , where 1 µ i µ 2 and MF
means `̀ membership function value’ ’ (Yuan & Shaw, 1995), and  is an
applicability threshold value that MF(Rule 1) or MF(Rule 2) must exceed
if that rule is applicable to a case, where  2 [0;1].

To apply the generated fuzzy rules to each case of the data sets shown in
Table 3, we must assign the applicability threshold value  in advance, where
 2 [0;1]. For each case, calculate MF(Condition part of Rule 1) and
MF(Condition part of Rule 2), respectively, and then assign MF(Rule 1) ˆ
MF(Condition part of Rule 1), MF(Rule 2) ˆ MF(Condition part of Rule 2).
The applicability threshold value  is used to compare MF(Rule 1) and
MF(Rule 2), respectively, for the speci® ed case. If both MF(Rule 1) and
MF(Rule 2) are less than  , then we let MF(Rule 3)ˆ1. Otherwise, we let
MF(Rule 3) ˆ 0.

In the example of Table 3, the classi® cation results of Rule 1, Rule 2, and
Rule 3 are ``X,’ ’ `̀ Y,’ ’ and `̀ Z,’ ’ respectively. The possibility values of the
classi® cation result for a speci® c case with respect to ``X,’ ’ ``Y,’ ’ and `̀ Z’ ’ are
represented by ``Plan(X),’ ’ `̀ Plan(Y),’ ’ and ``Plan(Z)’ ’ for a speci® c case, we
can assign

Plan…X† ˆ MF…Rule 1†;
Plan…Y† ˆ MF…Rule 2†; …7†
Plan…Z† ˆ MF…Rule 3†:
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The generated fuzzy rules at the level threshold value ¬ ˆ 0:9 are listed as
follows:

Rule 1: F A is Al THEN Plan is X:

Rule 2: IF B is NOT B3 AND C is C2 THEN Plan is Y:

Rule 3: IF MF…Rule 1† <  AND MF…Rule 2† <  THEN Plan is Z:

Assume that the applicability threshold value  in the explained example
is 0.6 (i.e.,  ˆ 0:6), then

1. From Case 1 of Table 3, we can get

MF…condition part of Rule 1† ˆ MF…A is Al† ˆ 0:3;

MF…condition part of Rule 2† ˆ MF…B is NOT B3 AND C is C2†

ˆ MF…B is NOT B3 \ C is not C2†

ˆ MF…B is NOT B3† \ MF…C is C2†

ˆ Min{…l ¡ 0:l†;0:7}

ˆ 0:7;

MF…Rule 1† ˆ MF…condition part of Rule 1† ˆ 0:3;

MF…Rule 2† ˆ MF…condition part of Rule 2† ˆ 0:7:

Because MF(Rule 1) <  and MF(Rule 2)>  , where  ˆ 0:6, thus MF(Rule
3) ˆ 0.

From formula (7), the possibility values of the decisions of plan for Case
1 are

Plan…X† ˆ MF…Rule 1† ˆ 0:3;

Plan…Y† ˆ MF…Rule 2† ˆ 0:7;

Plan…Z† ˆ MF…Rulea3† ˆ 0;

and we ® ll Plan(X), Plan(Y), and Plan(Z) (i.e., 0.3, 0.7, and 0) into the last
three columns of Case 1 in Table 5. Because Plan(Y) is the one with the
highest possibility value among the values of Plan(X), Plan(Y), and
Plan(Z), the decision to be made for Case 1 is `̀ Y.’ ’
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2. From Case 2 of Table 3, we can get

MF…condition part of Rule 1† ˆ MF…A is Al† ˆ 1;

MF…condition part of Rule 2† ˆ MF…B is NOT B3 AND C is C2†

ˆ MF…B is NOT B3 \ C is C2†

ˆ MF…B is NOT B3† \ MF…C is C2†

ˆ Min{…l ¡ 0†;0:3} ˆ 0:3;

MF…Rule 1† ˆ MF…condition part of Rule 1† ˆ 1;

MF…Rule 2† ˆ MF…condition part of Rule 2† ˆ 0:3:

Because MF(Rule 1) >  and MF(Rule 2) <  , where  ˆ 0:6, thus MF(Rule
3) = 0.

From formula (7), the possibility values of the decisions of plan for Case
2 are

Plan…X† ˆ MF…Rule1† ˆ 1;

Plan…Y† ˆ MF…Rule 2† ˆ 0:3;

Plan…Z† ˆ MF…Rule3† ˆ 0;

and we ® ll Plan(X), Plan(Y), and Plan(Z) (i.e., 1, 0.3, and 0) into the last three
columns of Case 2 in Table 5. Because Plan(X) is the one with the highest
possibility value among the values of Plan(X), Plan(Y), and Plan(Z), the
decision to be made for Case 2 is `̀ X.’ ’

658 S.-M. Chen et al.

TABLE 5 Results After Applying the Generated Fuzzy Rules to Table 3

A B C Plan

Case A1 A2 A3 B1 B2 B3 C1 C2 X Y Z

1 0.3 0.7 0 0.2 0.7 0.1 0.3 0.7 0.3 0.7 0
2 1 0 0 1 0 0 0.7 0.3 1 0.3 0
3 0 0.3 0.7 0 0.7 0.3 0.6 0.4 0 0.4 1
4 0.8 0.2 0 0 0.7 0.3 0.2 0.8 0.8 0.7 0
5 0.5 0.5 0 1 0 0 0 1 0.5 1 0
6 0 0.2 0.8 0 1 0 0 1 0 1 0
7 1 0 0 0.7 0.3 0 0.2 0.8 1 0.8 0
8 0.1 0.8 0.1 0 0.9 0.1 0.7 0.3 0.1 0.3 1
9 0.3 0.7 0 0.9 0.1 0 1 0 0.3 0 1
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3. From Case 3 of Table 3, we can get

MF…condition part of Rule 1† ˆ MF…A is Al† ˆ 0;

MF…condition part of Rule 2† ˆ MF…B is NOT B3 AND C is C2†

ˆ MF…B is NOT B3 \ C is C2†

ˆ MF…B is NOT B3 \ MF…C is C2†

ˆ Min{…l ¡ 0:3†;0:4}

ˆ 0:4;

MF…Rule 1† ˆ MF…condition part of Rule 1† ˆ 0;

MF…Rule 2† ˆ MF…condition part of Rule 2† ˆ 0:4:

Because MF(Rule 1) <  and MF(Rule 2) <  , where  ˆ 0:6, thus MF(Rule
3) = 1.

From equation (7), the possibility values of the decisions of plan for Case
3 are

Plan…X† ˆ MF…Rule1† ˆ 0;

Plan…Y† ˆ MF…Rule2† ˆ 0:4;

Plan…Z† ˆ MF…Rule3† ˆ 1;

and we ® ll Plan(X), Plan(Y), and Plan(Z) (i.e., 0, 0.4, and 1) into the last three
columns of Case 3 in Table 5. Because Plan(Z) is the one with the highest
possibility value among the values of Plan(X), Plan(Y), and Plan(Z), the
decision to be made for Case 3 is `̀ Z.’ ’

The other cases are treated in a similar way. We summarize the result in
Table 5.

Based on the generated fuzzy classi® cation rules, the classi® cation results
for the training data in Table 3 are shown in Table 5. Among nine training
cases, all cases are correctly classi® ed. The classi® cation accuracy rate is
100%.

EXPERIMENT RESULTS

In the following, we use an example (Yuan & Shaw, 1995) (i.e., the
Saturday Morning Problem) to illustrate the fuzzy rules generation process.

Example. Assume that the small data set we use here is the same as Yuan
and Shaw (1995) and shown in Table 1. From Table 1, we can see that there
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are four attributes for each case and there are three kinds of sport for each
plan:

Attribute ˆ {Outlook, Temperature, Humidity, Wind),

and each attribute has terms shown as follows:

Outlook {Sunny, Cloudy, Rain),

Temperature ˆ {Hot, Cool, Mild),

Humidity ˆ {Humid, Normal),

Wind ˆ {Windy, Not-windy).

The classi® cation result is the sport plan to be played on the weekend day:

Plan ˆ {Volleyball, Swimming, Weightlifting}.

Assume that the values for level threshold value ¬ and applicability
threshold value  are 0.9 and 0.6, respectively (i.e., ¬ ˆ 0:9 and  ˆ 0:6).
From Table 1, we divide the 16 cases into three subgroups according to the
sport plan with the highest possibility value in each case. The result of the
division is as follows (refer to Table 6):

1. Subgroup_1 with ``Volleyball’ ’ as the activity to be taken: Cases 2, 4, 8, 12,
and 16.

2. Subgroup_2 with `̀ Swimming’ ’ as the activity to be taken: Cases 1, 3, 9,
and 11.

3. Subgroup_3 with `̀ Weightlifting’ ’ as the activity to be taken: Cases 5, 6, 7,
10, 13, 14, and 15.

According to formula (5) , the calculations for subsethood for all three
subgroups are shown in Figure 3.

According to the previous discussions, there are three fuzzy rules to be
generated for ¬ ˆ 0:9 and  ˆ 0:6 which are summarized as follows:

Rule 1: IF Outlook is NOT Rain AND Humidity is Normal AND Wind
is Not-windy
THEN Plan is Volleyball.

Rule 2: IF Outlook is NOT Rain AND Temperature is Hot
THEN Plan is Swimming.

Rule 3: IF MF(Rule 1) <  AND MF(Rule 2) < 
THEN Plan is Weightlifting.
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Subgroup_1(Volleyball):

Subgroup_2(Swimming):

Subgroup_3(Weight-lifting):

FIGURE 3. The list of the fuzzy subsethood values for the Saturday Morning Problem.

TABLE 7 Learning Result of the Saturday Morning Problem with the Generated Fuzzy Rules

Classi® cation Known in Training Data Classi® cation with Learned Rules

Case Volleyball Swimming W-lifting Volleyball Swimming W-lifting

1 0.0 0.8 0.2 0.2 1 0
2 1.0 0.7 0.0 1 0.6 0
3 0.3 0.6 0.1 0.7 0.7 0*
4 0.9 0.1 0.0 0.7 0.3 0
5 0.0 0.0 1.0 0.1 0.1 1
6 0.2 0.0 0.8 0.3 0 1
7 0.0 0.0 1.0 0.3 0 1
8 0.7 0.0 0.3 0.8 0 0
9 0.2 0.8 0.0 0.3 1 0

10 0.0 0.3 0.7 0.1 0 1
11 0.4 0.7 0.0 0 1 0
12 0.7 0.2 0.1 0.7 0 0
13 0.0 0.0 1.0 0 0.2 1
14 0.0 0.0 1.0 0.3 0 1
15 0.0 0.0 1.0 0 0 1
16 0.8 0.6 0.0 1 0.5 0

* Cannot distinguish between two or more classes.
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Based on the previous discussions, we can apply the generated fuzzy rules
to Table 1. The classi® cation results of the application of the generated fuzzy
rules are summarized in Table 7. From Table 7, we can see that among 16
training cases, 15 cases (except Case 3) are correctly classi® ed. The classi® ca-
tion accuracy rate is 15

16 £ 100%ˆ 93:75%.
A comparison of the number of generated fuzzy rules and accuracy rate

between the proposed method and Yuan and Shaw’s method (1995) is listed
in Table 8.

From Table 8, we can see that the accuracy rate of the proposed method
is better than that of Yuan and Shaw’s method under ¬ ˆ 0:9 and  ˆ 0:6.
The number of rules generated by the proposed method is less than the
number of rules generated by Yuan and Shaw’s method.

CONCLUSIONS

We have presented a new method for generating fuzzy rules from numer-
ical data for handling fuzzy classi® cation problems based on the fuzzy sub-
sethood values between the decisions to be made and terms of attributes of
subgroups by using the level threshold value ¬ and the applicability threshold
value  , where ¬ 2 [0;1] and  2 [0;1]. We also apply the proposed method
to deal with the Saturday Morning Problem (Yuan & Shaw, 1995). The
proposed method has the following advantages:

1. The proposed method gets a better accuracy rate than the one presented in
Yuan and Shaw (1995). From Table 8, we can see that the accuracy rate of
the proposed method is 93.75% (for ¬ ˆ 0:9 and  ˆ 0:6), while the accu-
racy rate of the Yuan and Shaw’s method is 81.25%.

2. The proposed method generates fewer fuzzy rules than the one presented
in Yuan and Shaw (1995). From the experimental results, we can see
that the number of fuzzy rules generated by the proposed method is 3,
but the number of fuzzy rules generated by Yuan and Shaw’s method is 6.

3. The proposed method needs less calculations than the one presented in
Yuan and Shaw (1995).
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