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Abstract

We give a survey on double-loop networks with emphasis on new development since the
surveys in 1986, 1991 and 1995. c© 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

Wong and Coppersmith [29] introduced the multiloop networks ML(N ; s1; : : : ; sl) for
organizing multimodule memory devices. The network can be viewed as a directed
graph with N nodes 0; 1; : : : ; N − 1 and lN links of l types, where the type-i links,
i=1; : : : ; l, are

v → v+ si (modN ); v = 0; 1; : : : ; N − 1:

Wong and Coppersmith set s1 = 1. Thus ML(s1) is simply a ring, which is known
to have long delay and low reliability. On the other hand, ML(N ; s1; : : : ; sl) for l¿3,
besides consuming a lot of hardware, would require each node to have sophisticated
control ability in switching the l inlinks to the l outlinks. Thus the double loop,
which will be denoted by DL(N ; a; b) (with s1 = a; s2 = b), is a happy medium for
most practical purposes. For examples, DL(N ; 1; N − 1) was :rst proposed by Liu
[24], called a distributed double-loop computer network, and is the topology of the
SONET ring, the :ber distributed data interface network and distributed queue dual
bus. The class DL(N ; 1; s) for 26s6N − 1 was proposed by Raghavendra et al. [26]
for computer networks. In particular, DL(N ; 1; N −2), called a daisy chain, was highly
acclaimed by Grnarov et al. [14]. Fiol et al. [13] proposed double-loop networks for
data alignment in SIMD processors.
Several surveys [2, 17, 27] have been published. The current survey will minimize

its overlapping with them by focusing on new material. These include not just updated
versions of important results, but also results being somewhat overlooked before or
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Fig. 1. Some L-shapes.

presented only in non-English literature, or simply results which we :nd a new way
to organize.

2. The L-shape

It is well known that a regular digraph is strongly connected if and only if it is
connected. Since DL(N ; a; b) is a 2-regular diagraph, we will substitute connectivity
for strong connectivity throughout the paper for brevity.

Theorem 2.1. DL(N ; a; b) is connected if and only if gcd(N; a; b)= 1.

Proof. If gcd(N; a; b)=d¿1, then clearly a node i cannot reach a node j if i �≡
j (mod d). On the other hand, suppose gcd(N; a; b)= 1. Then there exist nonnegative �
and � such that

�a+ �b≡ 1 (modN ):

Assume

j − i≡ k (modN );

where k is nonnegative. Then i can reach j by taking k� a-steps and k� b-steps.

When DL(N ; a; b) is connected, we can de:ne a minimum distance diagram (MDD)
as an array with node 0 in cell (0; 0) and node v in cell (i; j) (i is the column index
and j the row index) if and only if ia + jb≡ v (modN ) and i + j is minimum (in
case of tie, take the minimum j). Since DL(N ; a; b) is node-symmetric, the minimum
distance from u to v is same as from 0 to v− u.
Wong and Coppersmith proved that an MDD is always an L-shape (see Fig. 1(a))

which can be characterized by six parameters l, h, m, n, p, q (4 of them independent).
Fig. 1(b) gives the MDD of DL(10; 1; 3) in its L-shape.
Fig. 1(c) gives the MDD of DL(10; 1; 5) in its L-shape which degenerates into a

rectangle by having p=0. Unlike the nondegenerate case, the determination of m, n,
p, q is not automatic. This will be discussed later.
Fiol et al. [13] observed that an L-shape always tessellates the plane (see Fig. 2)

regardless of the L-shape is degenerate or not.
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Fig. 2. Tessellation.
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Fig. 3. Parameters for degenerate L-shapes.

By noting the location of cells containing element 0, Fiol et al. [13] obtained the
following equations:

la− nb≡ 0 (modN );

−pa+ hb≡ 0 (modN ):
(2.1)

Chen and Hwang [5] used this observation to prove that an L-shape is degenerate
if and only if exactly one of the two congruences: la≡ 0 (modN ) and hb≡ 0 (modN )
is satis:ed. They de:ned m, n, p, q using the following rules:
(i) Suppose hb �≡ la≡ 0 (modN ). Let the zero immediately above the L-shape be at

column j. Then m= j, n=0, p= l− j, q= h.
(ii) Suppose la �≡ hb≡ 0 (modN ). Let the zero immediately to the right of the L-shape

be at row i. Then m= l, n= h− i, p=0, q= i.
(iii) Suppose la≡ hb≡ 0 (modN ). If h¿l, follow rule (i); otherwise, follow rule (ii).
See Fig. 3 for examples.
This de:nition satis:es Eqs. (2.1) which are basic to many developments.
Wong and Coppersmith gave an O(N ) time algorithm to construct the MDD (hence

the L-shape) diagonally starting from the (0; 0) cell. Namely, at step i we :ll in the
cells which are distance i away from node 0, unless the node to be :lled in is already
used. Fig. 4(a) shows how the MDD of DL(50; 1; 19) is constructed this way.

It should be noted that any distance function can be obtained from the L-shape
directly, without the MDD. For example, the diameter of DL(N ; a; b), written as
D(N ; a; b), is l+ h−min{n; p} − 2, and the average distance ID(N ; a; b) is

1
N

[(
lh
2

− np
)
(l+ h− 2) +

np(n+ p− 2)
2

]
:
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Fig. 4. The MDD of DL(50; 1; 19) and its L-shape.

Cheng and Hwang [6] gave an O(log N ) time algorithm, based on the Euclidean
algorithm, to compute the L-shape:
Assume gcd(N; a)= 1 (if gcd(N; a)=d¿1, replace N by N=d; a by a=d and b by

b(modN=d)).
Step 1. set s−1 =N . Let 06s0¡N be the integer satisfying

as0 + b≡ 0 (modN );

and let si; qi; 16i6m+ 1, be recursively de:ned by

si = si−2 − qisi−1; 06si ¡ si−1;

where m is chosen such that sm+1 =0.
Step 2. De:ne U−1 = 0; U0 = 1 and

Ui+1 = qi+1Ui + Ui−1; 06i6m:

Note that si is decreasing in i and Ui increasing. Hence

0 =
sm+1

Um+1
¡

sm
Um

¡ · · · ¡ s0
U0

¡
s−1

U−1
= ∞:

Step 3. Let u be the largest odd integer such that su=Uu¿1. De:ne

v =
⌈

su − Uu

su+1 + Uu

⌉
− 1;

Then l= su − vsu+1, h=Uu + (v+ 1)Uu+1, n=Uu − vUu+1, p= su − (v+ 1)su+1.
J.C. Chang (private communication) observed that Cheng–Hwang algorithm actually

only requires O(log b) time since in the Euclidean algorithm, N is reduced to b in one
step.
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Example 1. For DL(50;1,19), we have

50 = 1 · 31 + 19; U1 = 1 · 1 + 0 = 1;
31 = 1 · 19 + 12; U2 = 1 · 1 + 1 = 2;
19 = 1 · 12 + 7; U3 = 1 · 2 + 1 = 3;
12 = 1 · 7 + 5; U4 = 1 · 3 + 2 = 5;
7 = 1 · 5 + 2; U5 = 1 · 5 + 3 = 8;
5 = 2 · 2 + 1; U6 = 2 · 8 + 5 = 21;
2 = 2 · 1 + 0; U7 = 2 · 21 + 8 = 50;

From

0
50

¡
1
21

¡
2
8
¡

5
5
¡

7
3
¡

12
2

¡
19
1

¡
31
1

¡
50
0
;

we :nd u=3. Hence v=0, l=7 − 0 · 5=7, h=3 + 1 · 5=8, n=3 − 0 · 5=3, p=
7− 1 · 5=2.

Cheng and Hwang also extended their results to the weighted link case, i.e., the two
types of edges have diKerent costs.
There is the dual question of :nding (a; b) from a given (l; h; n; p) L-shape. Fiol

et al. [13] (also see Chen and Hwang [3]) proved

Theorem 2.2. Necessary and su1cient conditions that L(l; h; n; p) can be implemented
is that l¿n; h¿p and gcd(l; h; n; p)= 1.

Note that Eqs. (2.1) can also be written as(
l −n

−p h

)(
a
b

)
= N

(
�
�

)
;

or (
a
b

)
=
(

h n
p l

)(
�
�

)

for some integers �; �. Fiol et al. [1, 11] proposed the Smith normalization method to
solve for a and b. They proved:

Theorem 2.3. There exists unimodular; integral 2× 2 matrices L and R such that

L
(

l −p
−n h

)
R = S =

(
1 0
0 N

)
(the Smith normal form):

Furthermore; let

L =
(
w x
y z

)
:

Then DL(N ;y; z) implements L(h; l; n; p) and (y; z) is unique up to isomorphism.
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6 7 8
3 4 5
0 1 2

6 8 1
3 5 7
0 2 4

Fig. 5. Two nonisomorphic double loops.

The computation of L and R involves solving for q1; q2 in

q1u− q2v = 1

for various pairs of (u; v).
For general L(l; h; n; p), Chen and Hwang [3] gave the following method to :nd a

and b.
For k =0; 1; : : : ; de:nes

ak = h+ kn; bk = p+ kl:

Let Fk denote the set of prime factors of gcd(ak ; bk) and F the set of prime factors
of N . They used the sieve method in number theory to show the existence of a k
such that f =∈Fk for all f∈F . Then (ak ; bk) is a solution of (2.1). For L(6; 4; 3; 2),
we easily :nd the solution a= h=4 and b=p=3. The following example shows that
sometimes we have to explore a few k.

Example 2. Consider L(187; 112; 22; 7) with N =20790. Then f∈{2; 3; 5; 7; 11}
divides N .

k 0 1 2 3 4 5 6
ak 112 134 156 178 200 222 244
bk 7 194 381 568 755 942 1129
f ∈ F ∩ Fk 7 2 3 2 5 2; 3 H

Hence DL(20790; 244; 1129) implements L(187; 112; 22; 7).

3. Isomorphism and equivalence

DL(N ; a; b) and DL(N ; a′; b′) are isomorphic (in the graph sense) if {a; b}=
h · {a′; b′} for some h prime to N . Clearly, isomorphic double loops have the same
L-shape, but the converse is not true. Fig. 5 shows two nonisomorphic double loops
with the same L-shape.
It is of interest to determine the necessary and suLcient conditions that two noni-

somorphic double loops have the same L-shape.
Two L-shapes are called equivalent if they have the same number of cells which

are distance-k away from cell (0; 0) for every k. Clearly, equivalent L-shapes have the
same diameter, same average distance and same value for any distance function. Hwang
and Xu [22] :rst introduced this notion of equivalence and proved that DL(N ; 1; s) is
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Fig. 6. The 3-rectangle transformation.

Fig. 7. Four geometrical transformations.

equivalent to DL(N ; 1; N +1− s). They showed that the two L-shapes can be obtained
from each other through a 3-rectangle transformation as shown in Fig. 6.
RNodseth [28] gave an equivalence theorem for the multiloop. Its double-loop version

is as follows:

Theorem 3.1. DL(N ; a; b) is equivalent to DL(N ;N−a; b−a) and DL(N ; a−b; N−b).

Note that the Hwang–Xu result is half of the special case a=1. Recently, Chen and
Hwang [4] characterized all equivalent nondegenerate L-shapes, and showed that they
can be obtained through four geometric transformations F (Oipping), T (top turning),
B (bottom turning) and E (empty turning) (see Fig. 7).
It is of interest to :nd out the algebraic transformation (a; b) to (a′; b′) corresponding

to a geometric transformation. Hwang et al. [16] showed that RNodeseth’s transforma-
tions correspond to the 3-rectangle transformation, denoted by H . Chen and Hwang
proved

FH = TFE = BT = FEB:
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Since (a′; b′)= (b; a) for F , a solution of algebraic transformation for any of T; B; V
will solve the others through the above equations. Chen and Hwang gave such a
solution for E.

Theorem 3.2. Suppose 16a; b6N−1. Let x and y be integers such that bx−ay=1.
Then DL(N; a′; b′) with a′ =px− hy (modN ) and b′ = lx− ny (modN ) realizes E(L).

Proof. Suppose 16a; b6N − 1. If gcd(a; b)=d, take a∗= a=d and b∗= b=d. Since
gcd(N; a; b)= 1 implies gcd(d; N )= 1, DL(N ; a; b) is isomorphic to DL(N ; a∗; b∗).
Therefore, we may assume d=1 since otherwise we could work with (a∗; b∗). Let

L =
( hb−pa

N
−la+nb

N
px − hy lx − ny

)
; M =

(
l −n

−p h

)
; and R =

(
x a
y b

)
:

By Eqs. (2.1), (hb − pa)=N and (−la + nb)=N are integers. M is the corresponding
matrix of FV (L). It is easily veri:ed that both L and R are nonsingular unimodular
integral matrices and LMR=diag(1; N ), the Smith normal form S(M) of M . By Theo-
rem 3:3 given later, DL(N ; a′; b′) with a′ =px−hy (modN ) and b′ = lx−ny (modN )
realizes FV (L).

Note that (x; y) can be solved by the Euclidean algorithm which takes O(logN )
time.

4. Diameter and average distance

The diameter represents the worst delay in the communication between two nodes,
and the average distance the average delay. Wong and Coppersmith [29] proved

Theorem 4.1. D(N ; a; b)¿
√
3N − 2 and ID(N ; a; b)¿

√
25N=27− 1.

A double loop is called tight if it achieves the lower bound �√3N � − 2.
Since the diameter and the average distance can be obtained from the L-shape

directly, one approach to the problem of determining a and b such that D(N ; a; b)
(or ID(N ; a; b)) is minimized is to determine the desirable L-shapes :rst, then solving
for (a; b). This actually motivated Theorem 2.2.
Note that by setting h and l as integers close to 2

√
N=3, and n and p as integers close

to
√
N=3, then the diameter would be close to the lower bound �√3N �− 2. For many

N , this approach can quickly :nd L-shapes with short diameters. In particular, EsquQe
et al. [11] developed a method to characterize all tight L-shapes. For general N , AguilQo
and Fiol [1] gave an algorithm to search an L-shape with diameter �√3N � − 2 + k in
the order k =0; 1; 2; : : : : The :rst-found L-shape must have minimum diameter. They
estimated the time complexity of this algorithm to be O(k3)O(logN ) for each :xed k,
where k is upper bounded by O(N 1=4) by a result of Hwang and Xu [22].
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A second approach to :nd double loops with short diameters with a given N is
to determine a and b directly, not via the determination of an L-shape :rst. Three
heurisitics have been proposed.
Wong and Coppersmith [29] proposed setting a=1 and b= �√N �. The diameter is

about 2
√
N . Hwang and Xu [22] proposed setting a=1 and b= �(N − 1)=�� initially,

where �= �√N=3�, then a calibration which can be computed in constant time results
in a double loop whose diameter is upper bounded by

√
3N + 2(3N )1=4 + 5 for N¿6348:

RNodseth [28] gave a better calibration which upper bounds the diameter by
√
3N + (3N )1=4 + 5

2

and the average distance by

5
9

√
3N + 5

3(3N )1=4 + 21
2

for N¿1200.
Suppose the N nodes are arranged into a cycle. A routing algorithm is called a

k-pass algorithm if a path (as seen going around the cycle) is allowed to pass the
source at most k times. Write

N = �b+ � where 06� ¡ b:

ErdNos and Hsu [9] proved.

Theorem 4.2. The diameter of an optimal 1-pass algorithm for DL(N ; 1; b) is upper
bounded by max{b+ �− � − 2; 2�+ � − 1}.

Proof. Without loss of generality, assume node 0 is the source and node t is the
destination. Note that if the path takes � + i b-steps for 16i6�, i.e., the path passes
the source once, then it lands in the interval [(i− 1)b; ib) since (i− 1)b¡(�+ i)b¡ib.
Thus the interval is partitioned into two subintervals [(i−1)b; (�+i)b) and [(�+i)b; ib)
with lengths b− � and �. If t is in the :rst subinterval, then a 0-pass path has length

(i − 1) + [t − (i − 1)b]6�− 1 + b− � − 1;

if t is in the second subinterval, then a 1-pass has length

(�+ i) + � − 162�+ � − 1:

Selecting a=1 and b to minimize max{b+�−�−2; 2�+�−1} can be viewed as a
heuristic for :nding a double loop with short diameter. ErdNos and Hsu claimed that by
selecting b=(1 + o(1))

√
3N , the bound in Theorem 4.2 is (1 + o(1))

√
3N . They also

quoted a private communication from Coppersmith who had proved that there exists an
in:nite number of N for which the diameter is lower bounded by

√
3N + c(logN )1=4.
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Fig. 8. The change of origin.

Cheng et al. [7] gave the fault diameter DF when either a node or a link is the only
failed component. A revision was recently given by Hwang [18]. Let df(s; t) denote
the distance from node s to node t when node f is faulty.

Lemma 4.3. df(s; t)=d(s; t) except when 0; f; t are collinear in the L-shape (with
origin s) and f precedes t. In the exception case; for q¿2;

df(s; t) = 1 + d(s+ b; t)
{
h+ m− l+ t=a if l− t=a6m;
1 + m+ l− t=a if l− t=a ¿ m:

For q=1 let

l− t=a = xm− y where 06y ¡ m:

Then

df(s; t) = x + h− 1 + y:

Proof. If the case is not the exception, then clearly there exists a path in the L-shape
from s to t by passing f. In the exception case, assume without loss of generality that
s; f; t are in the same row. Then the path has to take a b-step and we may assume
the :rst step is a b-step. Therefore, after the :rst step, the new source is the node
s + b. Notice that the L-shape with origin s + b can be obtained from the L-shape
with origin s by moving the :rst p entries of the bottom row to the top of the last p
columns, and the last m entries to the top of the :rst m columns (see Fig. 8). For
q¿2; s+b; f; t are no longer collinear. By tracking whether t is moved to the top and
its exact location, we obtain df(s; t). For q=1 (see Fig. 9), repeat such moves until t
is moved to the top of the :rst m columns; then there exists a shortest path from the
origin to t not blocked by f. In Lemma 4.3, x counts the number of moves, and y
the column index of t at the end.

Corollary 4.4. DF(N ; a; b) = max{�+ h+ m− 2; � + l+ q− 2}; where

� =



⌈
l− 2
m

⌉
if q = 1;

1 otherwise
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Fig. 9. Fault-tolerant distance with q=1.

and

� =



⌈
h− 2
q

⌉
if m = 1;

1 otherwise:

Proof. For q=1; maxt df(s; t) occurs when t is the node located at cell (h; m) after
�(l− 2)=m� b-steps. By Lemma 4.3,

DF(N ; a; b)¿�+ h+ m− 2:

By symmetry of the vertical and the horizontal directions, we also have

DF(N ; a; b)¿� + l+ q− 2:

Example 3. Consider DL(10; 1; 8). Suppose f=1. df(0; i) for 26i67 is marked under
node i (Fig. 9).

Corollary 4.5. DL(N ; a; b) is 2-connected if and only if gcd(N; a; b)= 1.

Proof. Since DL(N ; a; b) is a 2-regular digraph, its connectivity is at most 2. On the
other hand, since the fault diameter is not in:nity, DL(N ; a; b) is at least
2-connected.

5. Embedding

Certain data structures are preferred by certain classes of algorithms. For example,
the existence of a Hamiltonian path facilitates the running of a pipeline algorithm;
while the existence of a Hamiltonian circuit preserves the facility even when there is
a faulty element.
In the following, the y in gcd(x; y) will be interpreted as the residue of y (mod x).

De:ne gcd(N ; b− a)=d. Fiol and Yebra [12] proved.

Theorem 5.1. DL(N ; a; b) contains a Hamiltonian circuit if and only if there exists
a k; 06k6d; such that gcd(N=d; a+ k(b− a)=d)= 1.
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Proof. Let F denote a 1-factor (a 1-regular digraph) of DL(N ; a; b). Suppose the b-link
i→ i+b is in F . Then the a-link i+b−a→ i+b is not in F , which in turn forces the
b-link i+ b− a→ i+2b− a to be in F . Repeating this argument N=d times, we obtain
the statement that the a-link i→ i+ a is not in F . At this time, we obtain a subset of
N=d b-links of F , called a module. If F has other links, we choose an arbitrary link
to start and obtain another module (could consist of a-links now). Thus F consists of
d modules each having N=d links.
Let p be a path which starts from node x of module M , visits every other module

once and ends at node y �= x of module M . Suppose p consists of k b-links and
d− k a-links. Then

y≡ x + kb+ (d− k)a≡ x + da+ k(b− a) (mod N ):

Hence

y − x = da+ k(b− a):

If (y− x)=d is prime to N=d, then running p N=d times with x+( j− 1)(y− x) as the
starting point for the jth time yields a Hamiltonian circuit.

A digraph is said to be LFT (link fault-tolerant) Hamiltonian if it is Hamiltonian
with any link fault. Similarly we can de:ne NFT (node fault-tolerant). Recently, Lin
[23] proved the following two results concerning LFT and NFT Hamiltonian circuits
of double loops.

Theorem 5.2. DL(N ; a; b) is LFT-Hamiltonian if and only if either (a) there exists
a k; 06k6d; such that gcd(N=d; a+k(b−a)=d)= 1 or (b) gcd(N; a)= gcd(N; b)= 1.

Proof. Necessity: Clearly, the necessary condition given in Theorem 5.1 of being
Hamiltonian is also necessary for being LFT Hamiltonian. But if no Hamiltonian circuit
using both types of links exists, then both a-links and b-links must form Hamiltonian
circuits to be LFT.
Su1ciency. (b) is trivial. Suppose (a) is satis:ed. Then there exists a Hamilto-

nian circuit H using both types of link. Since DL(N ; a; b) is node-symmetric, the
Hamiltonian property is preserved by rotating the nodes on H . Without loss of gen-
erality, assume a type-a link (i; i + a) is faulty. Let (j; j + b) be a type-b link in H .
Then we can obtain H ′ from H by rotating j to i (hence j+ b to i+ b). Note that H ′

does not contain the faulty link.

To discuss NFT , we assume without loss of generality that node 0 is the faulty
node. Construct two sets A=(a0; a1; : : :) and B=(b0; b1; : : :) such that

ai ≡N − b+ i(a− b) (modN ); i = 0; 1; : : : ;min{N − 2; j − 1: j(a− b)≡ 0

or b (modN )};
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bi ≡N − a− i(a− b) (modN ); i = 0; 1; : : : ;min{N − 2; j − 1: j(a− b)≡ 0

or − a (modN )}:

For example, for N =8, a=1, b=2, A=(6; 5; 4; 3; 2; 1), B=(7).

Lemma 5.3. Suppose gcd(N; a− b)= 1. Then (i) |A|(a− b)≡ b (modN ); |B|(a− b)≡
− a (modN ); (ii) |A|+ |B|=N − 1; (iii) A∩B= ∅ and (iv) A∪B= {1; : : : ; N − 1}.

Proof. (i) gcd(N; a− b)= 1 implies j(a− b)≡ 0 (modN ) has no solution for j¿1.
(ii) From (i),

(|A|+ |B|)(a− b)≡ b− a (modN )

or

(|A|+ |B|)≡ − 1 (modN ):

But

26|A|+ |B|62(N − 1):

(ii) follows immediately.
(iii) Suppose to the contrary that ai = bj. Then

N − b+ i(a− b)≡N − a− j(a− b) (modN )

or

(i + j + 1)(a− b)≡ 0 (modN ):

Since gcd(N; a− b)= 1, we have

i + j + 1≡ 0 (modN ); contradicting the fact 26i + j6N − 4:

(iv) From (ii) and (iii), it suLces to prove 0 �∈ A∪B. But ai =0 implies

i(a− b)≡ b (modN ); contradicting the fact A sequence stops before i:

Similarly we can prove 0 �∈ B.

Theorem 5.4. DL(N ; a; b) is NFT-Hamiltonian if and only if (a) gcd(N; b − a)= 1;
(b) gcd(|A|; N − 1)=1.

Proof. Necessity. For any Hamiltonian circuit C on {1; : : : ; N − 1}, we prove by
induction that ai uses a-links and bi uses b-links. Since a0 + b≡ 0 (modN ) �∈C, a0
must use an a-link. Suppose ak−1 uses an a-link. We show ak must use an a-link:

ak + b = [ak−1 + (a− b)] + b = ak−1 + a:
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So the b-link of ak ends at the node ak−1 + a, which already received an a-link from
ak−1, contradicting the fact that C is Hamiltonian.
(a) Suppose to the contrary that gcd(N; a − b)=d¿1. Then a≡ b (mod d). Conse-

quently,

ai ≡ bj (mod d) for all i; j;

contradicting the fact that ai use a-links and bj b-links on C.
(b) De:ne (C0; : : : ; CN−2)= (a0; : : : ; a|A|−1; b|B|−1; : : : ; b0) where the subscripts of Ci

are modulo N−1. Then

Ci + a≡N − b+ i(a− b) + a

≡N + (i + 1)(a− b)− a− |B|(a− b) by Lemma 5:3(i)

≡N−a−(|B|− i−1)(a−b)=b|B|−i−1=Ci+|A| for 06i6|A| − 1

Ci + b≡ b|B|−(i−|A|+1) + b≡N − a− (|B| − i + |A| − 1)(a− b) + b

≡N − a− (|B| − i − 1)(a− b)≡N − a+ (i − |B|)(a− b) = ai−|B|

= ai+|A|−(N−1) = Ci+|A|−(N−1) = Ci+|A| for all |A|6i6N − 2− |A|:
Therefore C0 →C|A| →C2|A| → · · · →C(N−2)|A| →C0, i.e., gcd(|A|; N−1)=1.

Su1ciency. Since gcd(N; a−b)= 1, A∪B= {1; : : : ; N−1} by Lemma 5.3(iv). De:ne
(C0; : : : ; CN−2) as before. Since gcd(|A|; N−1)=1, C0 →C|A| →C2|A| →· · ·→C(N−2)|A|
→C0 is a Hamiltonian circuit.

6. Routing

First we discuss 2-terminal routing. Since the double loop is node symmetric, we
may assume the routing is from node 0 to node t. The Cheng–Hwang algorithm, as
discussed in Section 2, determines the L-shape by :rst :nding a shortest path from
node 0 to node 0. The same procedure can be used to compute a shortest path from
node 0 to node t by simply changing the starting congruence to

as0 + b≡ t (modN ):

Therefore a shortest path can be found in O(logN ) time.
Cheng et al. [7] followed the above reasoning to give a routing algorithm which

requires O(logN ) time for preprocessing and constant processing time at each node on
the route.
Guan [15] simpli:ed the above procedure by noticing that there is no need to com-

pute the shortest path to t. Call a path a-path (b-path) if it involves only a-steps
(b-steps). As long as the a-path from s to t is not longer than the b-path, there exists
a shortest path which takes an a-step at s, and vice versa. Computing the length of
a-path and b-path also involves Euclidean algorithm and requires O(log N ) time. Guan
also extended his algorithm to the weighted case.
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In case of a node failure known at f, the algorithm of Cheng et al. can be applied
twice to locate both t and f. If 0; f; t are not collinear and lined up in that order in
L(N ; a; b), then the routing is same as before except that any path through f should be
avoided (one of the two basic paths, one taking all a-steps :rst and the other taking
all b-steps :rst, will bypass f).
Suppose 0; f; t are collinear in that order. Without loss of generality, assume they

are in the same row. Then the path will start with b-steps such that 0; f; t are no
longer collinear. Then the non-collinear routing applies. Note that the time complexity
is still O(log N ).
Guan’s algorithm is well suited to the case that f is unknown. Follow the algorithm

until the next step, say, an a-step, hits f. Then take a b-step instead. If the length
of the a-path is at least l, then t is not at the bottom row of the current L-shape;
hence after the b-step, all shortest paths to t does not encounter f (which is at the
bottom row). If the length of the a-path is less than l, then the algorithm enters
the fault mode in which the location of f is known. In this mode, in addition to
computing the lengths of the a-path and the b-path to t, the length of the a-path to
f is also computed. Take a b-step unless the :rst length is shorter than the other
two.
A survival graph has the N modes as the vertex set and an edge from u to v

if there exists a shortest path from u to v not containing f. Escudero et al. [10]
proved that the survival graph of a double-loop network with one faulty node has
diameter 2.
The case of a simple faulty edge is analogous to the single faulty node case.
A permutation routing is to route N pairs of source-destination where the sources

are all distinct and so are the destinations. A (permutation) routing is called minimum
if every path is a shortest path, called tight if the number of steps required equal
to the maximum distance of the N pairs, and called oblivious if the routing of each
pair assumes no knowledge of other pairs. Hwang et al. [19] gave a surprising result
that there exists a minimum, tight, oblivious permutation routing, which they called a
big-foot algorithm because each path is basic with the big-steps :rst.

The Big-foot Algorithm
1. Construct the L-shape to determine the number of b-steps bi and the number of

a-steps ai in a shortest path for the ith pair.
2. Each path is basic with the b-steps :rst.
3. If several paths compete for the same a-link, the path with the longest distance

to go gets the priority. All other paths stay put during this step.

Theorem 6.1. The big-foot algorithm works.

Proof. Since all paths start from distinct sources, they end at distinct nodes after a
big step. Therefore, all paths to take a big step next are at distinct nodes and do not
compete with each other.
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Paths competing for an a-link have only small steps left. Thus their remaining
distance to their destinations are all diKerent since the destinations are distinct. There-
fore there exists a unique path with the longest remaining distance to go.

Theorem 6.2. The big-foot algorithm is minimum; tight and oblivious.

Proof. “Minimality” follows from rule 1. “Obliviousness” follows from rule 2. “Tight-
ness” follows from rule 3 since a path with the maximum distance moves at each step
while a path with a distance k less than the maximum distance stays put in at most k
steps.

We can construct the MDD (with base 0) in O(N ) time and obtain (ai; bi) for
all i by changing bases in another O(N ) time. Or if we have N processors, then we
can simultaneously compute (ai; bi) using the 2-terminal routing in O(log b) time. On
the other hand, each path can contain at most b − 1 small steps (any b small steps
can be replaced with big steps). Hence at most b − 1 paths traverse an a-link since
all destinations are distinct and bounded by b − 1 small steps. In the worst scenario
(which actually cannot happen) that all traversings of an a-link occur simultaneously,
it takes O(b log b) time to order b distances at each node. So the ordering time for N
nodes in O(Nb log b) with a single processor and O(b log b) for N processors.

A fault-tolerant big-foot algorithm remains an open problem.

7. Reliability

In the general reliability model, each node and each link has an individual probability
to fail. A simpli:cation in expression (though not in theory) is achieved by assuming
all nodes have the same failure probability p, all a-links pa and all b-links pb which
is called the node-link model. Some special cases are

(i) The uniform node-link model: pa =pb.
(ii) The node model: pa =pb =0.
(iii) The link model: p=0.
(iv) The uniform link model: p=0; pa =pb.

The node model and the uniform link model are the most-studied in the literature.
We de:ne reliability R(N ; a; b) as the probability that all working nodes are strongly

connected. Computing the exact reliability of a double loop is a diLcult problem, even
for the node model or the uniform link model. We summarize all known results in the
following (see [20, 21]):

(i) DL(N ; 1; N − 1) under the general model.
(ii) DL(N ; 1; 2) under the general model.
(iii) DL(N ; 1; N − 2) under the general model.
(iv) DL(N ; 1; 1 + N=2) for N even under the general model.
(v) DL(N ; 2; 3) for N odd under the uniform node-link model with pa = 0.
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Hwang and Wright [20] gave a general approach to compute exact reliability under
the general model. However, there is still a part of the computation which is speci:c
to each individual double loop.
An element is either a node or a link. The state of an element is either working or

failed. A part is simply a subgraph of DL(N ; a; b). The state of a part is the set of
states of its elements.
Consider a state S of DL(N ; a; b). Let G(S) denote the digraph obtained from

DL(N ; a; b) by deleting all failed nodes and links, as well as links to and from failed
nodes. A node is called an island if it has neither inlink nor outlink.

Lemma 7.1. S is a working state for the double loop if and only if G(S) contains
neither an island nor two disconnected circuits.

Proof. Suppose to the contrary that there exist two nodes u and v such that u cannot
reach v. Let U be the set of nodes u can reach, and V the set of nodes which can
reach v. Then U and V are disconnected. Since every node has an inlink and an
outlink, both U and V contain a circuit. Then these two circuits are disconnected.

Let S1 denote the set of states S containing no island and S2 the set containing no
two disconnected circuits. De:ne

P1(N ; a; b) =
∑
S∈S1

Prob(S);

P2(N ; a; b) =
∑
S∈S2

Prob(S):

Then

R(N ; a; b) = P1(N ; a; b)− P2(N ; a; b):

P1 can be computed by a divide-and-conquer method.
Let 31; : : : ; 3l, denote a partition of DL(N ; a; b) into l parts such that the outlinks

of 3j go to either 3j or 3j+1 for 16j6l (3l+1 ≡31). Let Sj = {Sji} denote the set
of states of 3j containing no island. If 3j ∪3j+1 contains no island under the joint
state (Sji; S( j+1)i′) for all i and i′, then G(S) contains no island where S =(S1; : : : ; Sl).
De:ne a |Sj| × |Sj+1| matrix Mj be setting the element in row Sji and column S( j+1)i′

mj(Sji; S( j+1)i′) =

{
Prob(Sji) if (Sji; S( j+1)i′) contains no island;

0 otherwise:

Then

P1(N ; a; b) =
∑
S1i∈S1

: : :
∑
Sli∈Sl

m1(S1i ; S2i)m2(S2i ; S3i) : : : ml(Sli; S1i)

= Trace

(
l∏

i=1

Mi

)
:
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Fig. 10. A self-healing node.

If a and b are of order O(1), then 3j can be chosen such that |Sj|=O(1) (and
l=O(N )). Hence each Mj can be computed in O(1) time, and P1(N ; a; b) in O(N )
time. If Mj =M , then P1(N ; a; b) can be computed in O(log N ) time. Note that the
complexity does not change if a constant number of 3j are nonisomorphic to or have
diKerent failure probabilities than the rest.
Therefore, the problem of computing the reliability for a double-loop is reduced to

:nding a method to compute P2(N ; a; b):
Reliability can of course be measured in other ways. Peha and Tobagi [25] considered

the expected number of nodes reachable from a working node, and gave lower and
upper bounds. Dao and Silio [8] introduced circular connectivity, u and v are circularly
connected if there exists a circuit containing u and v, which is the relevant measure in
SONET. A fault-tolerant node has the capacity of self-avoiding in a path when being
faulty (see Fig. 10). They gave the probability that all working nodes are circularly
connected for DL(N ; 1; N − 1) with fault-tolerant nodes.
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