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Abstract

Channel graphs have been widely used in the study of blocking networks. In this paper, we
show that a bit permutation network has a unique channel graph if and only if it is connected,
and two connected bit permutation networks are isomorphic if and only if their channel graphs
are isomorphic. c© 2001 Elsevier Science B.V. All rights reserved.

Keywords: Multistage interconnection network; Switching network; Channel graph

1. Introduction

Recently, Chang et al. [2] de:ned a class of (m + 1)-stage d-nary bit permuta-
tion networks which are multistage interconnection networks using only d× d square
switches. Such a network has N=d (N =dn+1 is the network size) switches in a stage
which are labeled by d-nary sequences of length n, and there is a link from switch
x at stage i to switch y at stage i + 1 if the bits of y can be obtained from the bits
of x, except one, by a permutation depending only on i. More precisely, the network
has vertices (xn; xn−1; : : : ; x1)i in stage i, Si, where xj ∈{0; 1; : : : ; d−1} for 16j6n and
06i6m. And, there exist m permutations f1; f2; : : : ; fm on {0; 1; : : : ; n} with fi(0) �=0
for 16i6m such that (xn; xn−1; : : : ; x1)i−1 is adjacent to (xfi(n); xfi(n−1); : : : ; xfi(1))i,
where x0 ∈{0; 1; : : : ; d−1} and 16i6m. We use Nd(n; f1; f2; : : : ; fm) to denote the
network de:ned above. For any vertex (xn; xn−1; : : : ; x1)i in the network, xj is called
the jth coordinate of the vertex. Note that the popular class of binary (n+ 1)th-stage
networks including Omega, baseline, banyan, etc., their inverses and their k-extra-stage
extensions are all bit permutation networks. The above-mentioned class of (n + 1)th-
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Fig. 1. A bit permutation network and its channel graph.

stage networks are known [1, 7] to be topologically equivalent and will be referred to
as the Omega-equivalent class. Fig. 1(a) shows a tertiary four-stage shuJe exchange
network N3(2; f1; f2; f3) with f1 =f2 =f3 = the cyclic permutation (0 2 1); i.e., switch
(x2; x1)i−1 is adjacent to switch (x1; x0)i for 16i63.
Switches in the 0th (respectively, mth) stage of an (m+1)th-stage network are called

input (respectively, output) switches. For a switch xs in stage s and a switch xt in stage
t¿s, an xs− xt channel-path is a path (xs; xs+1; : : : ; xt), where each xj is in stage j for
s6j6t. The channel graph CG(I; O) between an input switch I and an output switch
O is the union of all channel-paths in the network connecting the pair. If CG(I; O) is
independent of I and O, then it is called the channel graph of the network
Channel graphs have been widely used in the study of blocking networks (see [3]

for a survey), and recently also used by Lea and Shyy [4–6] to determine the strict and
rearrangeable nonblockingness of a network. In [5, 6], results were established for the
k-extra-stage inverse banyan network, but implied to hold for all k-extra-stage Omega-
equivalent networks. Hwang et al. [4] pointed out that the equivalence among the
Omega-equivalent networks is not preserved under the extra-stage addition. However,
the results of Lea and Shyy [5, 6] actually depend only on the channel graph of the
network. Thus the question arises as to whether there exist nonisomorphic networks
having isomorphic channel graphs; of course, the prior condition is that the channel
graph of a k-extra-stage network always exists. In this paper we give an aKrmative
answer to the second question for the larger bit permutation class, and a negative
answer to the :rst question.
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2. The main results

A sequence (k1; k2; : : : ; km) is canonical if {k1; k2; : : : ; km}= {1; 2; : : : ; r} for some pos-
itive integer r6n, and for k ∈{1; 2; : : : ; r−1}, the :rst appearance of k always precedes
that of k + 1 in the sequence. A canonical sequence (k1; k2; : : : ; km) induces a bit per-
mutation network, denoted by Nd(n; k1; k2; : : : ; km), which is Nd(n; f1; f2; : : : ; fm) with fi
being the permutation (0 ki) for 16i6m. Note that in this case, a vertex in stage i−1
is adjacent to a vertex in stage i if and only if all of their coordinates are identical ex-
cept possibly the kith one. It was shown [2] that (m+1)th-stage d-nary bit permutation
networks can be characterized by canonical sequences.

Theorem 1 (Chang et al. [2]). Any Nd(n; f1; f2; : : : ; fm) is isomorphic to Nd(n; k1; k2;
: : : ; km) for some canonical sequence over {1; 2; : : : ; n}. Moreover; two (m+1)th-stage
d-nary bit permutation networks are isomorphic if and only if their corresponding
canonical sequences are the same.

Lemma 2. Suppose x=(xn; xn−1; : : : ; x1)s is a switch in stage s and y=(yn; yn−1; : : : ;
y1)t a switch in stage t¿s; and D is the set of subscripts i where xi and yi di6er.
Then; there is an x–y channel-path in Nd(n; k1; k2; : : : ; km) if and only if D⊆{ks+1;
ks+2; : : : ; kt}.

Proof. Immediate from the de:nition of Nd(n; k1; k2; : : : ; km).

Lemma 3. Nd(n; k1; k2; : : : ; km) is connected if and only if {k1; k2; : : : ; km}= {1; 2; : : : ; n}.

Proof. Suppose the network is connected. Then there is a path from (0; 0; : : : ; 0)0 to
(1; 1; : : : ; 1)m. Since a move from a vertex to a neighbor can only change on the kith
coordinate, any j in {1; 2; : : : ; n} is some ki, i.e., {k1; k2; : : : ; km}= {1; 2; : : : ; n}.
Conversely, suppose {k1; k2; : : : ; km}= {1; 2; : : : ; n}. For any two switches x and y,

let x′ (respectively, y′) be the input (respectively, output) switch whose coordinates
are the same as x (respectively, y). By Lemma 2, there exist x′–x, x′–y′ and y–y′

channel-paths. Thus, the network is connected.

Note that for {k1; k2; : : : ; km}= {1; 2; : : : ; n}, {1; 2; : : : ; n} is the disjoint union of
sets {k1; k2; : : : ; ki}∩ {ki+1; ki+2; : : : ; km}, {1; 2; : : : ; n} − {k1; k2; : : : ; ki}, {1; 2; : : : ; n} −
{ki+1; ki+2; : : : ; km}.

Lemma 4. Suppose x is an input switch and y an output switch in a connected
network Nd(n; k1; k2; : : : ; km). Then; the vertex set of the channel graph CG(x; y) is⋃

06i6m{z ∈ Si : zj = xj for j∈{1; 2; : : : ; n} − {k1; k2; : : : ; ki} and zj =yj for j∈{1; 2;
: : : ; n} − {ki+1; ki+2; : : : ; km}}.

Proof. The lemma follows from Lemma 2 and the fact that z is a vertex of CG(x; y)
if and only if there exist x–z and z–y channel-paths.
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Theorem 5. The channel graph of a bit permutation network exists if and only if it
is connected.

Proof. The existence of the channel graph of a network necessarily implies the con-
nectivity of the network. Now, suppose CG(x; y) and CG(x′; y′) are two channel
graphs of a connected bit permutation network Nd(n; k1; k2; : : : ; km). De:ne a function
f :V (CG(x; y))→V (CG(x′; y′)) according to Lemma 4 by f(z)= z′, where z; z′ ∈ Si
and

z′j =



zj if j∈{k1; k2; : : : ; ki} ∩ {ki+1; ki+2; : : : ; km};
x′j if j∈{1; 2; : : : ; n} − {k1; k2; : : : ; ki};
y′j if j∈{1; 2; : : : ; n} − {ki+1; ki+2; : : : ; km}:

For any two distinct vertices u and v in V (CG(x; y))∩Si, there exists some j∈{k1; k2;
: : : ; ki}∩ {ki+1; ki+2; : : : ; km} such that uj �= vj. Then, u′j = uj �= vj = v′j and so u′ �= v′.
This proves that f is a one-to-one function. By Lemma 4, |V (CG(x; y))|= |V (CG
(x′; y′))| and then f is a bijection.
For any edge uw∈E(CG(x; y)) with u∈ Si−1 and w∈ Si, uj =wj for all j �= ki.

Then, u′j = uj =wj =w
′
j or u

′
j = x

′
j =w

′
j or u

′
j =y

′
j =w

′
j , depending on j∈{k1; k2; : : : ; ki}∩

{ki+1; ki+2; : : : ; km} or j∈{1; 2; : : : ; n}−{k1; k2; : : : ; ki} or j∈{1; 2; : : : ; n}−{ki+1; ki+2; : : : ;
km}. Hence, u′w′ is an edge of E(CG(x′; y′)). Therefore, CG(x; y) and CG(x′; y′) are
isomorphic.

Theorem 6. Two connected bit permutation networks are isomorphic if and only if
their channel graphs are isomorphic.

Proof. The “only if ” part is trivial. We prove the “if” part. Let Nd(n; k1; k2; : : : ; km) and
Nd(n; k∗1 ; k∗2 ; : : : ; k∗m) be two nonisomorphic connected networks. Then, by Theorem 1,
there exists a smallest i such that ki �= k∗i . By the de:nition of a canonical se-
quence, ki ∈{k1; k2; : : : ; ki−1} or k∗i ∈{k∗1 ; k∗2 ; : : : ; k∗i−1}, say, the :rst case holds. Then,
there exist j¡i such that kj = ki and k∗i �∈ {k∗j ; k∗j+1; : : : ; k

∗
i−1}. Consider the switches

x=(0; 0; : : : ; 0)j−1 and y=(0; 0; : : : ; 0)i in stages j−1 and i, respectively. By Lemma 2,
in the network Nd(n; k1; k2; : : : ; km), there exist two internal vertex-disjoint x–y channel-
paths, whose vertices have coordinates 0 except the kjth coordinate of each internal
vertex of second path is 1. However, since k∗i �∈ {k∗j ; k∗j+1; : : : ; k

∗
i−1}, it is impossible to

:nd two vertices x∗ and y∗ in stage j and i, respectively, such that there exist two
disjoint x∗–y∗ channel-paths isomorphic to the preceding ones in Nd(n; k∗1 ; k∗2 ; : : : ; k∗m).
This proves the theorem.
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