

Theoretical Computer Science 263 (2001) 139–143

Theoretical **Computer Science**

www.elsevier.com/locate/tcs

Channel graphs of bit permutation networks

Li-Da Tong¹, Frank K. Hwang², Gerard J. Chang $*$ ¹

Department of Applied Mathematics, National Chiao Tung University, 1001 TA Hsueh Road, Hsinchu 30050, Taiwan

Accepted April 2000

Abstract

Channel graphs have been widely used in the study of blocking networks. In this paper, we show that a bit permutation network has a unique channel graph if and only if it is connected, and two connected bit permutation networks are isomorphic if and only if their channel graphs are isomorphic. \circled{c} 2001 Elsevier Science B.V. All rights reserved.

Keywords: Multistage interconnection network; Switching network; Channel graph

1. Introduction

Recently, Chang et al. [2] defined a class of $(m + 1)$ -*stage d*-nary bit permuta*tion networks* which are multistage interconnection networks using only $d \times d$ square switches. Such a network has N/d ($N = d^{n+1}$ is the network size) switches in a stage which are labeled by d -nary sequences of length n , and there is a link from switch x at stage i to switch y at stage $i + 1$ if the bits of y can be obtained from the bits of x , except one, by a permutation depending only on i . More precisely, the network has vertices $(x_n, x_{n-1},...,x_1)_i$ in stage i, S_i , where $x_i \in \{0, 1,..., d-1\}$ for $1 \leq i \leq n$ and $0 \le i \le m$. And, there exist m permutations f_1, f_2, \ldots, f_m on $\{0, 1, \ldots, n\}$ with $f_i(0) \ne 0$ for $1 \le i \le m$ such that $(x_n, x_{n-1},...,x_1)_{i-1}$ is adjacent to $(x_{f_i(n)}, x_{f_i(n-1)},...,x_{f_i(1)})_i$, where $x_0 \in \{0, 1, \ldots, d-1\}$ and $1 \le i \le m$. We use $N_d(n, f_1, f_2, \ldots, f_m)$ to denote the network defined above. For any vertex $(x_n, x_{n-1},...,x_1)_i$ in the network, x_i is called the *j*th *coordinate* of the vertex. Note that the popular class of binary $(n + 1)$ th-stage networks including Omega, baseline, banyan, etc., their inverses and their k-extra-stage extensions are all bit permutation networks. The above-mentioned class of $(n + 1)$ th-

[∗] Correspondingauthor. Tel.: +886-3-573-1945; fax: +886-3-542-2682.

E-mail address: gjchang@math.nctu.edu.tw (G.J. Chang).

¹ Supported in part by the National Science Council under grant NSC86-2115-M009-002.

² Supported in part by the National Science Council under grant NSC87-2119-M009-002.

Fig. 1. A bit permutation network and its channel graph.

stage networks are known [1, 7] to be topologically equivalent and will be referred to as the *Omega-equivalent class*. Fig. 1(a) shows a tertiary four-stage shuffle exchange network $N_3(2, f_1, f_2, f_3)$ with $f_1 = f_2 = f_3$ = the cyclic permutation (0.2.1); i.e., switch $(x_2, x_1)_{i-1}$ is adjacent to switch $(x_1, x_0)_i$ for $1 \le i \le 3$.

Switches in the 0th (respectively, m th) stage of an $(m+1)$ th-stage network are called *input* (respectively, *output*) switches. For a switch x^s in stage s and a switch x^t in stage $t \geq s$, an $x^s - x^t$ *channel-path* is a path $(x^s, x^{s+1},...,x^t)$, where each x^j is in stage j for $s \leq j \leq t$. The *channel graph* CG(I,O) between an input switch I and an output switch O is the union of all channel-paths in the network connecting the pair. If $CG(I, O)$ is independent of I and O, then it is called the *channel graph of the network*

Channel graphs have been widely used in the study of blocking networks (see [3] for a survey), and recently also used by Lea and Shyy [4–6] to determine the strict and rearrangeable nonblockingness of a network. In [5, 6], results were established for the k -extra-stage inverse banyan network, but implied to hold for all k -extra-stage Omegaequivalent networks. Hwang et al. [4] pointed out that the equivalence among the Omega-equivalent networks is not preserved under the extra-stage addition. However, the results of Lea and Shyy [5, 6] actually depend only on the channel graph of the network. Thus the question arises as to whether there exist nonisomorphic networks having isomorphic channel graphs; of course, the prior condition is that the channel graph of a k -extra-stage network always exists. In this paper we give an affirmative answer to the second question for the larger bit permutation class, and a negative answer to the first question.

2. The main results

A sequence $(k_1, k_2,...,k_m)$ is *canonical* if $\{k_1, k_2,...,k_m\} = \{1, 2,...,r\}$ for some positive integer $r \le n$, and for $k \in \{1, 2, \ldots, r-1\}$, the first appearance of k always precedes that of $k + 1$ in the sequence. A canonical sequence (k_1, k_2, \ldots, k_m) induces a bit permutation network, denoted by $N_d(n, k_1, k_2, \ldots, k_m)$, which is $N_d(n, f_1, f_2, \ldots, f_m)$ with f_i being the permutation (0 k_i) for $1 \le i \le m$. Note that in this case, a vertex in stage $i - 1$ is adjacent to a vertex in stage i if and only if all of their coordinates are identical except possibly the k_i th one. It was shown [2] that $(m+1)$ th-stage d-nary bit permutation networks can be characterized by canonical sequences.

Theorem 1 (Chang et al. [2]). *Any* $N_d(n, f_1, f_2, \ldots, f_m)$ *is isomorphic to* $N_d(n, k_1, k_2, \ldots, k_m)$ \ldots , k_m) *for some canonical sequence over* $\{1, 2, \ldots, n\}$ *. Moreover, two* $(m+1)$ *th-stage* d*-nary bit permutation networks are isomorphic if and only if their corresponding canonical sequences are the same.*

Lemma 2. *Suppose* $x = (x_n, x_{n-1},...,x_1)$ *is a switch in stage s and* $y = (y_n, y_{n-1},...;$ y_1)_t *a switch in stage* $t \geq s$, *and D is the set of subscripts i where* x_i *and* y_i *differ. Then, there is an* $x-y$ *channel-path in* $N_d(n, k_1, k_2, \ldots, k_m)$ *if and only if* $D \subseteq \{k_{s+1},$ k_{s+2},\ldots,k_t *.*

Proof. Immediate from the definition of $N_d(n, k_1, k_2, \ldots, k_m)$. \Box

Lemma 3. $N_d(n, k_1, k_2, \ldots, k_m)$ *is connected if and only if* $\{k_1, k_2, \ldots, k_m\} = \{1, 2, \ldots, n\}$ *.*

Proof. Suppose the network is connected. Then there is a path from $(0, 0, \ldots, 0)$ ⁰ to $(1, 1, \ldots, 1)_m$. Since a move from a vertex to a neighbor can only change on the k_i th coordinate, any j in $\{1, 2, \ldots, n\}$ is some k_i , i.e., $\{k_1, k_2, \ldots, k_m\} = \{1, 2, \ldots, n\}.$

Conversely, suppose $\{k_1, k_2, \ldots, k_m\} = \{1, 2, \ldots, n\}$. For any two switches x and y, let x' (respectively, y') be the input (respectively, output) switch whose coordinates are the same as x (respectively, y). By Lemma 2, there exist $x'-x$, $x'-y'$ and $y-y'$ channel-paths. Thus, the network is connected. \Box

Note that for $\{k_1, k_2, \ldots, k_m\} = \{1, 2, \ldots, n\}$, $\{1, 2, \ldots, n\}$ is the disjoint union of sets $\{k_1, k_2, \ldots, k_i\} \cap \{k_{i+1}, k_{i+2}, \ldots, k_m\}, \{1, 2, \ldots, n\} - \{k_1, k_2, \ldots, k_i\}, \{1, 2, \ldots, n\}$ – $\{k_{i+1}, k_{i+2}, \ldots, k_m\}.$

Lemma 4. *Suppose* x *is an input switch and* y *an output switch in a connected network* $N_d(n, k_1, k_2,...,k_m)$ *. Then, the vertex set of the channel graph* $CG(x, y)$ *is* $\bigcup_{0 \leq i \leq m} \{z \in S_i : z_j = x_j \text{ for } j \in \{1, 2, \ldots, n\} - \{k_1, k_2, \ldots, k_i\} \text{ and } z_j = y_j \text{ for } j \in \{1, 2, \ldots, n\}$:::,n} - { $k_{i+1}, k_{i+2},..., k_m$ }*.*

Proof. The lemma follows from Lemma 2 and the fact that z is a vertex of $CG(x, y)$ if and only if there exist $x-z$ and $z-y$ channel-paths. \square

Theorem 5. *The channel graph of a bit permutation network exists if and only if it is connected.*

Proof. The existence of the channel graph of a network necessarily implies the connectivity of the network. Now, suppose $CG(x, y)$ and $CG(x', y')$ are two channel graphs of a connected bit permutation network $N_d(n, k_1, k_2, \ldots, k_m)$. Define a function $f: V(CG(x, y)) \to V(CG(x', y'))$ according to Lemma 4 by $f(z) = z'$, where $z, z' \in S_i$ and

$$
z'_{j} = \begin{cases} z_{j} & \text{if } j \in \{k_{1}, k_{2}, \ldots, k_{i}\} \cap \{k_{i+1}, k_{i+2}, \ldots, k_{m}\}, \\ x'_{j} & \text{if } j \in \{1, 2, \ldots, n\} - \{k_{1}, k_{2}, \ldots, k_{i}\}, \\ y'_{j} & \text{if } j \in \{1, 2, \ldots, n\} - \{k_{i+1}, k_{i+2}, \ldots, k_{m}\}. \end{cases}
$$

For any two distinct vertices u and v in $V(CG(x, y)) \cap S_i$, there exists some $j \in \{k_1, k_2, \ldots, k_n\}$..., k_i } ∩ { $k_{i+1}, k_{i+2},..., k_m$ } such that $u_j \neq v_j$. Then, $u'_j = u_j \neq v_j = v'_j$ and so $u' \neq v'$. This proves that f is a one-to-one function. By Lemma 4, $|V(CG(x, y))| = |V(CG(x, y))|$ (x', y') and then f is a bijection.

For any edge $uw \in E(CG(x, y))$ with $u \in S_{i-1}$ and $w \in S_i$, $u_j = w_j$ for all $j \neq k_i$. Then, $u'_j = u_j = w_j = w'_j$ or $u'_j = x'_j = w'_j$ or $u'_j = y'_j = w'_j$, depending on $j \in \{k_1, k_2, \ldots, k_i\} \cap$ ${k_{i+1}, k_{i+2}, \ldots, k_m}$ or $j \in \{1, 2, \ldots, n\} - \{k_1, k_2, \ldots, k_i\}$ or $j \in \{1, 2, \ldots, n\} - \{k_{i+1}, k_{i+2}, \ldots, k_m\}$ k_m }. Hence, $u'w'$ is an edge of $E(CG(x', y'))$. Therefore, $CG(x, y)$ and $CG(x', y')$ are isomorphic. \square

Theorem 6. *Two connected bit permutation networks are isomorphic if and only if their channel graphs are isomorphic.*

Proof. The "only if" part is trivial. We prove the "if" part. Let $N_d(n, k_1, k_2, \ldots, k_m)$ and $N_d(n, k_1^*, k_2^*, \ldots, k_m^*)$ be two nonisomorphic connected networks. Then, by Theorem 1, there exists a smallest i such that $k_i \neq k_i^*$. By the definition of a canonical sequence, $k_i \in \{k_1, k_2, \ldots, k_{i-1}\}$ or $k_i^* \in \{k_1^*, k_2^*, \ldots, k_{i-1}^*\}$, say, the first case holds. Then, there exist $j < i$ such that $k_j = k_i$ and $k_i^* \notin \{k_j^*, k_{j+1}^*, \ldots, k_{i-1}^*\}$. Consider the switches $x = (0, 0, \ldots, 0)_{j-1}$ and $y = (0, 0, \ldots, 0)_{i}$ in stages j–1 and i, respectively. By Lemma 2, in the network $N_d(n, k_1, k_2,..., k_m)$, there exist two internal vertex-disjoint $x-y$ channelpaths, whose vertices have coordinates 0 except the k_i th coordinate of each internal vertex of second path is 1. However, since $k_i^* \notin \{k_j^*, k_{j+1}^*, \ldots, k_{i-1}^*\}$, it is impossible to find two vertices x^* and y^* in stage j and i, respectively, such that there exist two disjoint $x^* - y^*$ channel-paths isomorphic to the preceding ones in $N_d(n, k_1^*, k_2^*, \ldots, k_m^*)$. This proves the theorem. \Box

References

- [1] J.-C. Bermond, J.M. Fourneau, A. Jean-Marie, Equivalence of multistage interconnection networks, Inform. Process Lett. 26 (1) (1987) 45–50.
- [2] G.J. Chang, F.K. Hwang, L.D. Tong, Characterizing bit permutation networks, Networks, to appear.
- [3] F.K. Hwang, Superior channel graphs, Proc. 9th Internat. Teletraffic Congr., Torremolinos, Spain, 1979.
- [4] C.-T. Lea, Multi-Log₂ N networks and their applications in high speed electronic and photonic switching systems, IEEE Trans. Commun. 38 (1990) 1740–1749.
- [5] C.-T. Lea, D.-J. Shyy, Tradeoff of horizontal decomposition versus vertical stacking in rearrangeable nonblocking networks, IEEE Trans. Commun. 39 (1991) 899-904.
- [6] D.-J. Shyy, C.-T. Lea, $Log_2(N, m, p)$ strictly nonblocking networks, IEEE Trans. Commun. 39 (1991) 1502–1510.
- [7] C.-L. Wu, T.Y. Feng, On a class of multistage interconnection networks, IEEE Trans. Comput. C-29 (8) (1980) 694–702.