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1 Introduction
Finding trajectories of moving objects in a monocular image
sequence is a vital technique in the field of motion analysis.
A major step in finding such trajectories is to identify images
of the same physical point in a sequence of frames; this step
is usually called the correspondence problem. This technique,
which successively refines the structure of the object as more
frames are acquired, frees us from assumptions of rigidity
and relies on natural assumptions about motion character-
istics. Many correspondence algorithms' have been intro-
duced in the past few years. Most research for establishing
correspondence2'3 uses only two frames ofa sequence to solve
this problem. However, two-frame algorithms require as-
sumptions about the nature of the objects. Recently, a cor-
respondence algorithm based on a sequence of frames was
proposed by Sethi and Jam.' In their method, smoothness of
motion is used to relax the need for assumptions about the
rigidity of the object. The path coherence function is used to
formulate the correspondence problem as an optimization
problem. For instance, if we are given a sequence of m frames
that have n feature points each, then basically there will be
C(nm,n) solutions of combinations, i.e., n trajectories from
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Abstract. A neural network approach to finding trajectories of feature
points in a monocular image sequence is proposed. In conventional
methods, this problem is formulated as an optimization problem and
solved using heuristic algorithms. The problem usually involves lengthy
computations, making it computationally difficult. We apply the Hopfield
neural network to image sequence correspondence. The design and de-
velopment of the Lyapunov function for this problem are discussed in
detail. Furthermore, the neural-network-based image correspondence
scheme is extended to the case of successive image frames, in which
some feature points are allowed to be occluded. Examples and simula-
tion results are presented to illustrate the design process and the con-
vergence characteristics of the proposed neural network. By using the
massive parallel-processing power of neural networks, a real-time and
accurate solution can be obtained.
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,rn possible trajectories. After comparing measurements of
motion smoothness and velocity continuity calculated from
the defined coherence functions for each solution, optimal n
trajectories can be obtained. However, a large amount of
computation time is usually necessary to identify the optimal
solution with n true paths from among all legal solutions. To
expand the computation power applied to this problem, we
shall introduce a Hopfield neural network algorithm5'6 for
finding trajectories of feature points in a monocular image
sequence. The parallel nature of the neural network matches
nicely the high-speed computation requirements ofthe image
correspondence problem.

The Hopfield neural network has been used in a wide range
of applications. Most engineering optimization problems, in-
cluding image processing algorithms, can be solved using
the minimum energy searching property of the Hopfield
model.7'2 When the neural network is used to solve an op-
timization problem, the problem is usually formulated as
minimization of a constrained cost function, where all the
constraints on the solution can be explicitly incorporated into
the cost function. For example, an image restoration
technique'° has been developed where the cost function is
minimized by the Hopfield network. Using the Hopfield net-
work to match the subgraph features for object recognition"
has also been discussed. Recently, the use of a Hopfield
network for the feature point matching of left and right
images'2 has also been reported. Note that this stereo vision
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correspondence task is quite different from our image se-
quence correspondence, i.e. , trajectory-finding, problem.

2 Smoothness of Motion
It is generally believed that, due to inertia, the motion of a
physical object cannot be changed abruptly. If a frame se-
quence is acquired with enough sampling rate, the trajectories
of moving objects in a sequence of images are smooth. Thus,
in a real-world analysis of dynamic scenes, it seems reason-
able to assume that the motion of an object is smooth at any
instant of time.'

Let T, represent one of the ntm possible trajectories and let
Xjkk be the coordinate of the ikth feature point on this chosen
trajectory T in the k'th frame of m frames. Then one possible
trajectory T, can be represented by

Ti=[XiiiXi22"Ximm1

Let the deviation dk in the path of the point in the k'th frame
be measured by the path coherence function , as follows:

dk =(Xjk_ i,k— lXik,;, XikkXik+ ,k+,)

where Xjk i,k — ,X is the displacement vector of the k' th
feature point in the k'th frame, and the path coherence func-
tion is given by

+
w2(1

-3 -9.
where v V2 15 the inner product of two vectors.

Path coherence function 4 contains two terms: directional
coherence and speed coherence, and w1 and w2 are the relative
weights for these two terms, respectively. Note that function

accounts for the direction and speed continuity during the
displacement of the feature point in an image sequence but
does not take acceleration continuity into consideration. We
are given n feature points in each of m successive frames,
and n trajectories must be determined. The value
D(i, representing the measurement of continuity for
any chosen trajectory t, is given by

rn-i
dk

In a scene, several objects may be undergoing random mo-
tion. If there are n points in a sequence of m frames, n tra-
jectories will result, and the deviation of all n trajectories is
given by

n

t= 1

where t is the index of the paths.
The problem we now face is how to determine the cor-

respondence so that the total deviation of these resulting tra-
jectories will be minimal. This has been formulated by Sethi
and Jam' as an optimization problem, in which is mini-
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mized by faster variants of conventional optimization algo-
rithms. Below, we apply the Hopfield neural network model
to solve this optimization problem. The following sections
treat two cases: the first is processing of an image sequence
without acquiring new frames and the second is finding cor-
respondences with frames coming in continuously.

3 Finite Image Sequence Correspondence Using
The Hopfield Model

Tobegin this section, we briefly review the Hopfield network.
The Hopfield model is a recurrent neural network consisting
of N mutually interconnected processing units, called neu-
rons, whose states v, are taken as their outputs. The i'th neuron
state of v, is changed according to the following equation:

N

(1) u= W,v1+I1 , (6)

where W,1 is the connection weight from nodej to node i and
Ii is the bias input to the i'th neuron. Furthermore,

(2) vi =f(u) , (7)

where the nonlinear function f(.) is the so-called sigmoid
function, which has the following form:

f(X)=i+e_xx (8)

in which X denotes the gain of the sigmoid function. This
function takes the value one as x approaches + and zero

(3)
as x approaches —oo As X increases, f(S) approaches a step
function. Consider the following energy function:

E=— Wvv— I,v, . (9)

Minimal energy convergence has been proven5 if W,3 = l47
andW = 0 because

E=_Zv( w,1+ij)o
. (10)

Hence, the evolution of the dynamic system will seek the
minima of the energy surface E. Moreover, if Eq. (9) is a
local positive definite function around some neighborhood

(4) of the equilibrium points of the system, then Eq. (9) is a valid
Lyapunov function to prove that the equilibrium point is
stable.

We are now in a position to introduce the Hopfield network
into the image sequence correspondence problems. If a dy-
namic scene is sampled at a proper sampling rate so as to
capture all significant events in the scene and there are n
points in each of m successive frames, n trajectories will

(5)
result. For purposes of our application, we use a neural net-
work containing n" interconnected neurons, where n is the
number of feature points in one frame and m is the number
of image frames. Let V= {Vjj2...jm 1 i, be a
binary state set of the neural network denoting the state of
the (i,2,",rn)'tIl neuron.

Each possible path T, = [X1 ,,X2 2,,Xj,nrn] is associated
with an activation value of the neuron A value of

-> -
— V1 V2

-> -4
liv, i1V2i1

1

-9-9
2[iiv,Il iiv2iiIh/2\

-9
lviii+ liIi
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v1 = f(u1)

(b)

Fig. 1 (a) Hopfield neural network for finding trajectories of four fea-
ture points with five image planes and (b) the function of each neu-
ron.

one stands for a trajectory; zero means not a trajectory. A
neural network of this type is shown in Fig. 1, for the case
of n=4, m=5.

We construct an error function, Eq. (11), for our problem
as follows:

2

E= ( ...
ii=1 i21 1m1

1/n/n n n \2

+kL(
...

Vfi...i,_1)fil i21 i31 lm1

/ n /n n n \2

+
—1)f21 ii=1 i31 1m1

/n n n \2
—

i)ii = 1 12 1 i,n—i = 1

+ ... (mk+D(ii,i2,..,im))ii=1 i21 1m1

X vj...im(1 — V,1121) (11)

The purpose of the first term in Eq. (11) is to minimize the
error of the set of all currently activated paths. To choose n
correct trajectories, we make use of the terms in the bracket
to inhibit illegal correspondences at each frame. Consider the
first index f1 of the m neuron dimensions. The term

n n \2

VfIi2...im i)i21 i31 lm—1

for f1 = 1, 2, ..., n will be zero when the feature point f1 of
frame 1 appears in only one of n trajectories; otherwise, this
term will introduce a large error proportional to the constant
k. In the other dimensions, similar lines of reasoning apply.
Hence, when the energy of Eq. (11) reaches the minimum,
each feature point will appear in one and only one trajectory

and then n trajectories can be obtained by adjusting the in-
hibiting constant k appropriately. It is easy to see that the
terms in the bracket will be zero, the minimal value, only
when all feature points in the same frame are assigned to
distinct trajectories and no feature point is missing. The very
last term of Eq. (11) is introduced to cancel the self-feedback
connections for the consideration of stability; as stated in
Eq. (10), the diagonal elements of the connection weighting
matrix should be zero. In constructing the energy function
for the Hopfield neural network, we can see that the energy
function is a local positive definite function satisfying the
requirement mentioned above. Therefore, the system dynam-
ics will seek the minimum of the defined energy surface.5

Expanding Eq. (11), we obtain

E=- :...±2 iil i21 1m1 jil j21 1,17=1

X (— 2)(ck+ Dt(ji,2,",m)

Dr(Ji,I2,",Jm)) Viii2...,imVji,j2,...,j,n)

— ... (mk—D(ii,i2,,im))vjj7...jii=1 i21 lm'l

—

ii=1 i21 1m1

+mnk,

where

c = eql(i1 ,j1) + eql(i2,j2) + + eql(i,j)

Ii if
eql(x,y) = 0 if

x=y
x1y

(13)

(14)

Comparing Eq. (13) with Eq. (9) and ignoring the constant
term, we have

W71,72 ,'77;J1,J2,,J

2(Ck+Dt(ji,j2,",jm)Dt(Ji,12,",Jm))

if(i1,i2,.,i17)=(j1,j2,...,j,17)

and

hii,i2,,immD(ui,j2,.",jm)

(15)

(16)

From Eq. (15), one can see that the interconnection weights
are determined by the path coherence function and the con-
stant k. Hence, Tjij2...jm;11j2...jm and can be computed

(1 2) without error from the coordinates of objects within a frame.
The state of the neural network will be stable after a certain
number of evolutionary iterations, according to Eq. (6). Then
n neurons with an activation value of one will be obtained.
The proposed algorithm is illustrated by the following ex-
ample. Note that feature point correspondence of synthetic
and real images by minimizing the path coherence function
has been tested and justified.' In light of this success, only
synthetic images are analyzed in this paper.

OPTICAL ENGINEERING /JuIy 1993 / Vol. 32 No. 7/1533
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(f)

Fig. 2 Searching evolution of the neural network: (a) initial trajectories, (b) trajectories after 500 iter-
ations, (c) trajectories after 1000 iterations, (d) trajectories after 1500 iterations, (e) trajectories after
2000 iterations, and (f) the completed correspondence.

Finite image frame example. We tried to find the tra-
jectories of four moving targets from five successive frames.
According to Eqs. (15) and (16), the weights of intercon-
nection and the external inputs corresponding to each neuron
were obtained as follows:

=

if(i1,i2,",i5)(J1,J2,,J5)
to if(i1,i2,,i5)=(j1,j2,,j5)

and

(17)

'iI,i2,,i5 5k—D(i1,i2,i3,i4,i5) . (18)

Since the network constructed was symmetric and zero di-
agonal, the algorithm could be expected to be stable. The
four nodes of the stabilized network that have maximum
value will be chosen as the optimal solution. By adjusting
the inhibiting constant k of Eq. (11), we were able to obtain
the correct solution. In our experiment, we generated four
feature points of objects in space. The objects were exhibiting
different rational motions. The experiment was carried out
under the following parameter assignments: the sigmoid
function constant X =5, the inhibiting constant k = 15, and

the coherence function constant w1 =70 and w2 = 30. The
initial trajectories, i.e., the active states of the neural network,
were given randomly, as shown in Fig. 2(a). After --2500
iterations of updating the nodes, the trajectories of the so-
lution were found. The evolution of the searching is shown
in Fig. 2. The evolution of monotone decreasing energy is
shown in Fig. 3.

1534/OPTICAL ENGINEERING/July 1993/Vol. 32 No.7
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Fig. 3 The evolution of monotone decreasing energy.
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(q — 2)'th processing
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q -1
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(q — 1 )'th processing

x
x

x

x

x

Fig. 4 (a) An image sequence is divided into sets of successive frames to be processed and the result
of the previous frames is used to guide the correspondence of the current frame, and (b) the newly
acquired points and the point set to be processed are indicated in the dash-line box and the solid-line
box, respectively.

4 Correspondence of Image Sequence with
Successive Input Frames

So far, the proposed correspondence algorithm has worked
successfully. That the whole system will possess m neurons
and (m)2 m interconnections in the case of n trajectories
in m frames is shown. Thus, the components and computation
of iterations will increase exponentially as the number of
image frames m increases. This makes it troublesome to ex-
ploit the above algorithm directly.

In this section we propose a modified image sequence
correspondence algorithm, which will lead to a faster and
more flexible solution for the case of successive input frames.
On receiving the first three frames, the algorithm establishes
the correspondences of these three frames, as described in

the previous section. When the fourth image frame is re-
ceived, the algorithm takes advantage of the correspondence
relations obtained in the previous image frames by deleting
the first frame, shifting the second and third frames to be the
first and second frames of a new set of frames, and taking
the image just received to be the third frame of the new set.
The correspondence is complete if the correspondence re-
lation for the second and third images of the set is constructed,
which determines the execution cycle of the approach. This
operation is like an execution window that covers three frames
at a time instant, as shown in Fig. 4(a). Proceeding in this
fashion, every time we have a new image frame, we will
invoke an execution cycle. In this way, during each time
instant the neural network will deal with the correspondences

OPTICAL ENGINEERING I July 1 993 I Vol. 32 No. 711535
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between the new second and third frames of three image
sequences. Hence, the network components and computa-
tional cost can be reduced dramatically.

Let us now explain this concept in more detail. As men-
tioned above, the first three frames will be processed by the
algorithm in Sec. 3. Once the initial correspondence of the
first three frames is constructed, we will have the coordinates
of n constructed trajectories, as follows:

T1 = [X,1,X2,X3]
P _ [VP V VI 2 V2,1"2,2"2 3

T = [X1,X2,X3]

where X1,',k5 the computed coordinate of the feature point of
the k'th frame on the p'th trajectory.

A newly acquired frame together with the previous two
images forms a new frame set, as shown in Fig. 4(b). We are
required to determine how the feature points of the new frame
should be assigned to the constructed trajectories. By using
the correspondence relation of the two previous frames, we
can reduce the complexity of the neural network. A neural
network for dealing with the correspondences of three frames,
in which the correspondences of the first two are known, is
presented below.

We define a new binary state set of the neural network,
V= {v1Il p, in}, where vi,, denotes the state of the (p,i)'th
neuron. If the i'th point in the new frame is associated with
the p'th path, then activation value one is assigned to neuron
vu,; otherwise, zero is assigned. Thus, we can formulate the
correspondence problem between the new frame and the pre-
vious two frames as an optimization problem similar to that
examined earlier. For the currently processed frame set num-
bered (q —2, q — 1, q), we will have

E= ( v,D,'(p,i,q)\p=l i=i
2

+k[ ( VfI,1) + ( -)]fj=1 i=1 J=1 p=l

+ (2k + D2(p,i,q))v(1 —v)p=I i=1

where

D(p,i,q) = Xj,q_2X,j,q_i, Xj,q_ 1X,q)

for q=4,5,••

Expanding Eq. (20), we obtain

E= _! (—2)(c'k+D,(p1,i1,q)2 iil p21 i21

—
(2k—D;2(p1,i1,q))v,

p1=! ii=1

1536/OPTICAL ENGINEERING / July 1993 / Vol. 32 No. 7

and

n n
— (2k + D2(p1,i1,q)). v1,1 + 2nk (22)P1=l ii=1

c' = eql(p1,p2) + eql(i1,i2) . (23)

Then the weights and the bias inputs can be obtained as
follows:

1'"I,il;p2,i2 =

f (— 2(c'k+ D'(p1,i1,q)D'(p2,i2,q) if (p1,i1)(p2,i2)
1,0 if (p1,i1)=(p2,i2)

and

(24)

Ip1,il =2k—D2(p1,i1,q) . (25)

Hence, we can find the correspondences between frames 1,
2, and 3 using the algorithm in Sec. 3 and then find those
between frames 3 and 4, frames 4 and 5, .. ., etc., by shifting
the execution window of the present algorithm frame by
frame. The performance of this algorithm will not depend on
the length of the image sequence, and the coherence of the
path can be retained. Furthermore, there are only n2 neurons
and n4 — n2 interconnections in this algorithm. An illustrative
example follows.

Successive input frames example. The algorithm was
given three frames with four feature points to begin with,
and it received seven other frames with the same feature
points successively. The resulting correspondences of these
ten successive frames are shown in Fig. 5. The total time
required to complete the experiment was less than 0.2 s on
a DEC 3100 workstation.

Occlusion refers to objects disappearing partially or totally
during an image sequence. Occlusion, which may be caused
by an object rotating out of view or being covered by other
objects, is an inherent problem in the analysis of moving

(20) objects. Chow and Aggarwal13 presented a method for coping
with occlusion by matching predictions of the movement of
objects between consecutive frames. Their method assumes
that the speed and shape of each object are constant during

(21) the time the object is occluded. This requirement, however,
makes the proposed algorithm difficult to apply in a real
world. Yachida, Asada, and Tsuji14 used temporal infor-
mation from the previous frame to produce an algorithm that
did not require these assumptions, but their method made it
necessary to backtrack objects that were marked as misin-
terpreted. The hypothesize-and-test algorithm,' which pre-
dicts the occluded points using established correspondences
between all frames and excludes occluded frames, requires
a great amount of time to estimate and verify.

In this section, we describe an algorithm that directly es-
tablishes the correspondence without backtracking or veri-
fications when occlusion occurs. Since our goal here is to

(19)

5 Occlusion Problem
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100

x

Fig. 5 The completed correspondence of successive frames.

find the overall trajectories of moving objects rather than to
find the positions of missing feature points in an image se-
quence, we do not have to estimate the coordinates of missing
points. Thus, our strategy will find the correspondence be-
tween the feature points in the current frame and the feature
points of the established trajectories in the last two frames,
with some feature points being occluded. Thus, we only eval-
uate the correspondence for these points and ignore the oc-
cluded points. The details ofour method are described below.

Assume an occluded frame q with n(<n) feature points
being received, in which there should be n feature points.
We ignore the missing points and apply the algorithm pre-
sented in the previous section with a new binary state set of
neurons, defined as V= {v2I1 i1 n, 1 si2sn}, to deter-
mine the most probable correspondence for the n visible
points as usual. When processing the relationship between
the found trajectories and the next frame, (q + 1), we take the
feature points of the constructed trajectories for the last two
frames and the points of the newly acquired normal frame
as a set of feature points to be processed. For example, we
have constructed the correspondence of an image sequence,
up to the (q — 1)'thframe. The newly acquired frame q, how-
ever, has an occluded point, as shown in Fig. 6(a). The circle
in Fig. 6(a) indicates the occluded feature point. First, we
establish a correspondence between the trajectories up to the
(q— 1)'th frame and the three available points of the q'th
frame. The result is shown in Fig. 6(b). When the (q + 1)'th
frame is received, we take the points marked with a circled
cross in Fig. 6(c) as a set of feature points to be processed.

Note that the speed continuity of some of the evaluated
trajectories will be distorted greatly when we use the next
normal frame to determine the trajectory in a previous frame
with occluded feature points, because in ignoring the missing
points in the occluded frame, the displacement vector used
to calculate the speed coherence has been almost doubled.
Thus, it follows that the weighting coefficient w2 of Eq. (3)
should be relatively reduced.

Image correspondence example with occlusion. We
shall now present two examples to demonstrate the use of
the proposed algorithm. First, Fig. 7 indicates the feature
points of an image sequence, in which two points are occluded
and represented by circled crosses. The completed cone-
spondence is shown in Fig. 7. As for Fig. 8, two consecutive
feature points are occluded, represented likewise by circled

100
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40

20

0

-2(
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Fig. 6 (a) A frame with an occluded point is acquired—the circle
indicates the occluded point in the new frame, (b) the correspon-
dence ignoring the occluded point is evaluated first, and (c) the cir-
cled crosses indicate the point set being processed to overcome the
occlusion.

>'

0 100 150 200

Fig. 7 The image sequence correspondence with single occlusion
in two trajectories.
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Fig. 8 The image sequence correspondence with two successive
occlusions in two trajectories.

crosses, in each trajectory oftwo moving objects. Trajectories
must be found of these feature points. With X =1, w1 = 60,
W2 40, and k = 30 being assigned, the four paths are found
and shown in Fig. 8. The time required for this experiment
is about 0.3 s on a DEC 3100 workstation. It can be seen that
our algorithm establishes successfully the correspondence of
feature points with occlusion.

6 Conclusion
A neural network approach to finding trajectories of feature
points in a monocular image sequence is presented in this
paper. Based on the Hopfield neural model and the assump-
tion of the smoothness of motion, a neural network energy
function for a finite image frame correspondence is first in-
troduced. The neural network structure is then derived to deal
with correspondence in a sequence of successive images.
Moreover, image sequence correspondence with occlusion
is also considered. With the first few frame correspondence
results in hand, the proposed algorithm only needs to asso-
ciate the image feature points with the trajectories found.
Thus, the complexity and, hence, the hardware cost and com-
putational effort of the algorithm is greatly reduced. In par-
ticular, the complexity is reduced to 0(n3), where n is the
object number, which does not depend on the length of the
image sequence. In the examples presented we show that,
due to the massive parallel processing power of neural net-
works, an optimal correspondence solution can be obtained
in real time.
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