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Minimal Energy Decentralized Estimation via Exploiting
the Statistical Knowledge of Sensor Noise Variance

Jwo-Yuh Wu, Qian-Zhi Huang, and Ta-Sung Lee

Abstract—We study the problem of minimal-energy decentralized esti-
mation via sensor networks with the best-linear-unbiased-estimator fusion
rule. While most of the existing solutions require the knowledge of instanta-
neous noise variances for energy allocation, the proposed approach instead
relies on an associated statistical model. The minimization of total energy
is subject to a performance constraint in terms of the reciprocal of mean
square errors averaged over the considered distribution. A closed-form for-
mula for such a mean distortion metric, as well as an associated tractable
lower bound, is derived. By imposing a target distortion constraint in terms
of this bound and further through feasible set relaxation, the problem can
be reformulated in the form of convex optimization and is then analytically
solved. The proposed method shares several attractive features of the ex-
isting designs via instantaneous noise variances. Through simulations it is
seen to significantly improve the energy efficiency against the uniform allo-
cation scheme.

Index Terms—Convex optimization, decentralized estimation, energy
minimization, quantization, sensor networks.

I. INTRODUCTION

Decentralized estimation has been one key issue in signal processing
research for sensor networks [9], [10]. Subject to severe energy and
bandwidth limitations, each sensor in this scenario is typically allowed
to transmit only a quantized version of its raw measurement to the fu-
sion center (FC) to generate a final parameter estimate. While quantized
messages with longer bit length yield improved data fidelity, the con-
sumed transmission energy is however proportional to the bit loads [3],
[8]. To avoid quick energy drainage and prolong the network lifetime,
several energy-efficient decentralized estimation schemes, formulated
via an optimal bit-loading setup, have been recently reported in [3],
[7], and [8]. One key feature common to these works is that the energy
(or bits) allocated to each sensor must be determined via instantaneous
local sensor noise characteristics, e.g., the noise variance if the fusion
rule follows the best-linear-unbiased-estimator (BLUE) principle [1].
Since timely knowledge of the instantaneous noise profile calls for fre-
quent training/update and would be too costly to acquire, a plausible
alternative is to instead exploit the partial (or long-term) information
of the noise characteristics [8]. Such related solutions, however, remain
yet to be developed.

This paper attempts to provide a solution to minimal-energy decen-
tralized estimation (under BLUE fusion rule) by exploiting long-term
noise variance information. We focus on a commonly used statistical
model for noise variance, and the estimation performance is assessed
through the reciprocal of the mean square error (MSE) averaged with
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Fig. 1. Sensor network system diagram.

respect to the considered distribution. A closed-form expression of the
averaged distortion measure is obtained, which is seen to be highly
nonlinear in the sensor bit loads. To facilitate analysis an associated
tractable lower bound of the averaged distortion measure is derived. By
instead imposing the performance requirement in terms of this bound
and further through feasible set relaxation, the energy-minimization
problem can be reformulated in the form of convex optimization and
is then analytically solved based on the standard Lagrange techniques.
The proposed scheme possesses several appealing features pertaining
to the existing solutions based on the instantaneous noise variance in-
formation: sensors with bad channel quality (specified via the path dis-
tance to FC) are shut off to conserve energy, and for those active nodes
the allocated energy is proportional to the individual channel gain. Sim-
ulation results show that the proposed optimal solution yields signifi-
cant energy saving against the equal-bit allocation scheme.

The rest of this paper is organized as follows. Section II is the pre-
liminary. Section III presents the main results. Section IV shows the
numerical simulation. Finally, Section V is the conclusion.

II. PRELIMINARY

Consider a wireless sensor network as depicted in Fig. 1, in which
N spatially deployed sensors cooperate with an FC for estimating an
unknown deterministic parameter �. The local observation at the ith
node is

xi = � + ni; 1 � i � N (2.1)

where ni is a zero-mean measurement noise with variance �2i . Due
to bandwidth and power limitations each sensor quantizes its observa-
tion into a bi-bit message, and then transmits this locally compressed
data to the FC to generate a final estimate of �. In this paper the uni-
form quantization scheme with nearest-rounding [4], [6], is adopted;
the quantized message at the ith sensor can thus be modeled as1

mi = xi + qi; 1 � i � N (2.2)

where qi is the quantization error which is uniformly distributed with
zero mean and variance �2q = R2=(12�4b ) [4], where [�R=2; R=2] is

1Such a quantizer model and error assumption, though being valid only when
the number of quantization bits is sufficiently large and the signal amplitude
tends to span over all the quantization intervals [4], are widely used in the liter-
ature due to its analytical tractability.
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the available signal amplitude range common to all sensors. With (2.1)
and (2.2), the received data from all sensor outputs can be expressed in
a vector form as2

[m1 � � �mN ]T = [1 � � � 1]T � + [n1 � � �nN ]T

:=n

+ [q1 � � � qN ]T

:=q

(2.3)

where (�)T denotes the transpose. This paper focuses on linear fusion
rules for parameter recovery. More specifically, by assuming that the
noise components fn;qg in (2.3) are mutually independent and the
respective samples ni’s and qi’s are also independent across sensors,
the parameter � is retrieved via the BLUE [1] estimator via

�̂ =

N

i=1

mi

�2i +R24�b =12

N

i=1

1

�2i +R24�b =12

�1

(2.4)

and the incurred MSE is thus [1]

Ej�̂ � �j2 =

N

i=1

1

�2i +R24�b =12

�1

: (2.5)

A commonly used statistical description for sensor noise variance is
[3], [8]

�2i = � + �zi; 1 � i � N (2.6)

where � models the network-wide noise variance threshold, � controls
the underlying variation from the nominal minimum, and zi � �21
is a central chi-square distributed random variable with degrees-of-
freedom equal to one [2, p. 24]. In the sequel, we will exploit the noise
variance model (2.6) for minimal- energy decentralized estimation.

III. MAIN RESULTS

This section presents the proposed minimal energy scheduling
scheme. Section III-A first introduces the mathematical formulation.
Then we will show in Section III-B the adopted approach toward
solving the problem. The optimal solution is derived in Section III-C,
and the associated key features are discussed in Section III-D.

A. Problem Formulation

We assume as in [3] that the consumed energy for transmitting the
message mi at the ith sensor is proportional to the number of bits bi in
mi, that is

Ei = wibi for some wi; 1 � i � N (3.1)

where the energy density factor wi is defined as [3]

wi := �d�i � (2
s � 1)

s
� ln 4(1� 2�s)

sPb
(3.2)

in which � is a constant depending on the noise profile, di is the distance
between the ith node and the FC, � is the path loss exponent common
to all sensor-to-FC links, s is the number of bits per QAM/PSK symbol,
and Pb is the target bit error rate. With (3.1), the energy allocated to the

2We assume perfect reception of all the messagesm at the FC, and the resul-
tant MSE thus serves as a yardstick performance. When the transmission link is
modeled as a binary symmetric channel, by following the procedures as in [8] it
can be shown that, if the bit-error-rate is below a certain threshold, the incurred
MSE is at most a constant factor away from the benchmark measure. It is such a
channel-aware capability that makes the proposed design paradigm meaningful;
a similar approach is also adopted in [3].

ith sensor is thus completely determined by the number of quantization
bits bi. For a fixed set of noise variances �2i ’s, the energy minimization
problem subject to an allowable parameter distortion level  (in terms
of MSE) can be formulated as

Minimize
N

i=1

wibi;

subject to
N

i=1

1

�2i +(R2=12)4�b

�1

� and

bi nonnegative integer, 1 � i � N (3.3)

or equivalently

Minimize
N

i=1

wibi; subject to
N

i=1

1

�2i +(R2=12)4�b
��1

and bi nonnegative integer, 1 � i � N: (3.4)

To obtain a universal solution irrespective of instantaneous measure-
ment noise conditions, we will consider the following optimization
problem, in which the equivalent MSE performance metric in (3.4) is
instead averaged with respect to the noise variance statistic character-
ized in (2.6):

Minimize
N

i=1

wibi;

subject to

z

N

i=1

1

� + �zi + (R2=12)4�b
p(z)dz � �1

and bi � 0; 1 � i � N; (3.5)

where z := [z1 � � � zN ]T with p(z) denoting the associated distribu-
tion. In (3.5), the constraint that all bi are nonnegative integers are re-
laxed to be bi � 0 so as to render the problem tractable; once the
optimal (real valued) bi’s are computed, the associated bit loads can be
obtained through upper integer rounding, as in [3] and [8]. The solution
to problem (3.5) is discussed next.

B. Proposed Approach

To solve (3.5), a crucial step is to derive an analytic expression of the
average MSE performance measure. For this we first note that, since
zi � �21 is i.i.d. and [2, p. 24]

p� (z) =
1p
2�z

exp(�z=2)u(z) (3.6)

where u(z) denotes the unit-step function, we have

z

N

i=1

1

� + �zi + (R2=12)4�b
p(z)dz

=

N

i=1

1

0

1

�zi + [� +R24�b =12]

:=�

� e
�z =2

p
2�zi

dzi

=
1p
2�

N

i=1

1

0

e�z =2

(�zi + �i)
p
zi
dzi: (3.7)

The following lemma, with proof given in Appendix A, provides a
closed-form expression of the integral involved in the summation in
(3.7).
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Lemma 3.1: With � > 0 and �i > 0 as defined in (3.7), we have

1

0

e�z =2

(�zi + �i)
p
zi
dzi =

2� � e� =2� �Q( �i=�)p
��i

(3.8)

where Q(x) :=
1
x

(e�t =2=
p
2�)dt is the Gaussian tail function.

With (3.7) and (3.8), the optimization problem (3.5) can be equiva-
lently rewritten as

Minimize
N

i=1

wibi; subject to
2�

�

�
N

i=1

e� =2� �Q( �i=�)p
�i

��1; bi � 0; 1 � i � N: (3.9)

Exact solutions to problem (3.9) appear intractable since the design
constraint, in particular, the one accounting for the target MSE, is
highly nonlinear in bi. We will thus seek for suboptimal alternatives
which can otherwise admit simple analytic expressions. The under-
lying approach toward this end is to derive an easy-to-tackle lower
bound on the target distortion metric, and then replace the distortion
constraint in (3.9) by one which forces the lower bound to be above
�1: such a procedure will considerably simplify the analysis without
incurring any loss in the desired estimation performance. This is done
with the aid of the next lemma (see Appendix B for a proof).

Lemma 3.2: The following inequality holds:

2�

�

N

i=1

e� =2� �Q( �i=�)p
�i

� cNQ
1

N

N

i=1

( �=� +R2�b =
p
12�) (3.10)

where c is a constant defined by c := 2�=� � (e�=2�=

� +R2=12).
Inequality (3.10) suggests that we can replace the performance con-

straint in (3.9) by the following one without incurring any penalty in
the target distortion:

cNQ
1

N

N

i=1

( �=� +R2�b =
p
12�) � �1 (3.11)

or equivalently

1

N

N

i=1

( �=�+R2�b =
p
12�) � Q�1

1

cN
(3.12)

sinceQ(�) is one-to-one and monotone decreasing. We will thus instead
focus on the optimization problem with a modified MSE performance
constraint:

Minimize
N

i=1

wibi; subject to
Rp
12�N

N

i=1

2�b

� Q�1
1

cN
� �

�
; bi � 0; 1 � i � N: (3.13)

The main advantage of the alternative design formulation is that, in
(3.13), the cost function is linear and the constraints are convex; it is
thus a convex optimization problem and will moreover lead to a simple
closed-form solution as shown hereafter.

C. Optimal Solution

To solve problem (3.13), let us form the Lagrangian as

L(b1; � � � ; bN ; �; �1; � � ��N )

=

N

i=1

wibi + �
Rp
12�N

N

i=1

2�b

�Q�1 1

cN
+

�

�
�

N

i=1

�ibi;

(3.14)

the associated set of KKT conditions then reads

wi+� � (� ln 2)R2�bp
12�N

��i=0; 1� i�N (3.15)

�
Rp
12�N

N

i=1

2�b �Q�1 1

cN
+

�

�
=0 (3.16)

��0; �i�0; �ibi=0; bi�0; 1� i�N: (3.17)

We first observe that, if � = 0, (3.15) implies �i = wi > 0 for all 1 �
i � N , and hence bi = 0, 1 � i � N : this case should be precluded
since otherwise all the sensors will remain silent. Accordingly, we must
have � > 0, meaning that the MSE constraint in (3.13) is active so that

Rp
12�N

N

i=1

2�b = Q�1
1

cN
� �

�
: (3.18)

Solving (3.15) and (3.18) leads to

bi = log2
R�p

12�N(wi � �i)
(3.19)

where

� := � ln 2 = Q�1(c�1N�1�1)� �=�
�1 N

i=1

(wi � �i):

(3.20)

By taking into account the constraint bi � 0, the optimal pair
(bopti ; �

opt
) is given by the next theorem (see Appendix C for detailed

derivation).
Theorem 3.3: Assume w1 � w2 � � � � � wN without loss of

generality, and define the function

f(K) := (NwK)�1
N

j=N�K+1

wj ; 1 � K � N: (3.21)

Let 1 � K1 � N be such that f(K1 � 1) < 1 and f(K1) � 1. Then
we have

bopti =
0; 1 � i � N �K1

log2
R�p
12�Nw

; N �K1 + 1 � i � N
(3.22)

where

�
opt

= Q�1(c�1N�1�1)� �=�
�1 N

j=N�K +1

wj : (3.23)
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D. Discussions

1) We note that the target distortion level  cannot be set unlimitedly
small: it is otherwise lower bounded by the MSE attained by the
benchmark estimate based on unquantized raw sensor measure-
ments (i.e., the case when bi = 1, 1 � i � N ). Indeed, by
setting bi =1 in the mean distortion specified in (3.9), the min-
imal allowable  can be immediately determined as

 � Ne�=2�Q( �=�)
2�

��

�1

:=

: (3.24)

2) Since 0 � bi � 1, a necessary condition for validating the MSE
constraint in (3.13) is therefore

Q�1
1

cN
� �

�
�0; or

1

cN
�Q �

�
(3.25)

because Q(�) is one-to-one and monotone decreasing. By defini-
tion of the constant c in Lemma 3.2 and with (3.25), the distortion
level attainable by the proposed method is lower bounded by

 � Ne�=2�Q( �=�)
2�

�(� +R2=12)

�1

: (3.26)

We note that the lower bound (3.26) is indeed larger than the min-
imal threshold 0 defined in (3.24).

3) Recall from (3.2) that the energy density factor wi is proportional
to the path loss gain d�i (if the same bit error rate is assumed
throughout all the links). Large values of wi, in particular, cor-
respond to sensors deployed far away from the FC (with large di),
usually with poor background channel gains. In light of this point,
the proposed optimal solution (3.22) is intuitively attractive: sen-
sors associated with the (N � K1)th largest wi’s are turned off
to conserve energy. We note that a similar energy conservation
strategy via shutting off sensors along poor channel links is also
found in [8], which instead exploits the knowledge of the instan-
taneous noise variances for parameter estimation.

4) We further note from (3.22) that, for those active nodes, the as-
signed message length is inversely proportional towi: this is intu-
itively reasonable since sensors with better link conditions should
be allocated with more bits (energy) toward MSE reduction and
energy conservation.

5) Based on the inequality constraint for MSE in (3.13), the equal-bit
scheme for maintaining the target MSE can be obtained by solving

R2�
~b

p
12�

= Q�1
1

cN
� �

�
(3.27)

leading to

~b = log2
R

p
12� Q�1(c�1N�1�1)� �=�

: (3.28)

Simulation results in the next section show that the proposed op-
timal scheme (3.22) yields significant energy saving when com-
pared with (3.28).

IV. NUMERICAL SIMULATION

This section illustrates through numerical simulation the energy
saving efficiency of the proposed solution bopti in (3.22) over the
uniform allocation scheme ~b in (3.28). For a fixed set of energy

Fig. 2. (a) Percentage of energy saving. (b) Bits of equal-energy scheme (� =
0:8).

density factors wi’s, 1 � i � N , the performance is measured via the
percentage of energy saving (PES) [3], [8]:

PES :=

~b
N

i=1

wi �
N

i=1

wib
opt

i

~b
N

i=1

wi

� 100: (4.1)

The total number of sensors is N = 1500, the target mean MSE is
 = 0:005, and the link channel gain is set to be wi = d�i . For a posi-
tive random variable V we define the associated normalized deviation
as �(V ) := var(V )=E(V ), which measures the tendency of hetero-
geneity of V [3], [8] (the larger such a ratio is, the more heterogeneous
the random variable V will be).

A. Impact Due to Heterogeneity of Sensor Noise Variance

This simulation illustrates the impact due to the heterogeneity of
sensor noise variance on the energy saving performance. The path loss
factor is set to be � = 3:5, and the link distances follow the model
di = 10 + 10Zi, with Zi � �21(z) being i.i.d. The normalized devia-
tion factor of the sensor noise variance in (2.6) is verified to be

� �2i =

p
2�

� + �
=

p
2

1 + (�=�)
: (4.2)

It is easy to see from (4.2) that �(�2i ) increases either when � is en-
larged or � is reduced. With fixed � = 0:8, Fig. 2(a) shows the PES
for 0:1 � � � 1:6 (corresponding to 0:157 � �(�2i ) � 0:943), and
Fig. 2(b) depicts the computed ~b in (3.28). We first observe that the PES
exhibits two “jumps”: this accounts for the two level changes of ~b as
� varies. Also, within each duration of constant ~b, energy efficiency of
the solution (3.22) improves as � increases (or �(�2i ) is enlarged). We
repeat the experiment by fixing � = 0:4 and increasing � from zero to
four (thus yielding 1:414 � �(�2i ) � 0:129); the results are shown in
Fig. 3. The figure shows that, for each duration of constant ~b, the PES is
nonetheless reduced as � increases (or �(�2i ) is lowered). A very rough
interpretation of this tendency is that, since large �’s incur severe noise
corruption in all sensor measurements, more sensor nodes should be
turned on (thus potentially more energy consumption) for fulfilling the
target MSE requirement.
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Fig. 3. (a) Percentage of energy saving. (b) Bits of equal-energy scheme
(� = 0:4).

Fig. 4. Percentage of energy saving w.r.t. different �.

B. Impact Due to Heterogeneity of Energy Density Factors

This simulation further investigates the PES performance with re-
spect to the heterogeneity of the energy density factors wi’s. We set
� = 0:8 and � = 0:2 in the sensor noise variance model (2.6); as such
the uniform allocation scheme (3.28) yields ~b = 3. Toward tractable
derivation of the normalized deviation �(wi), we assume as in [3] that
the sensor nodes are uniformly deployed inside the unity disk whose
center is the FC. The link distance di is specifically characterized as a
uniform random variable drawn from the interval [d0; 1], where 0 <
d0 < 1 models the distance threshold. With this assumption direct ma-
nipulations show

�(wi) =
(1 + �)2 1� d1+2�0 (1� d0)

(1 + 2�) 1� d1+�0

2 � 1: (4.3)

With (4.3) it can be checked that �(wi) increases either when � is en-
larged or d0 is decreased. With fixed d0 = 0:3 Fig. 4 shows the PES
curve for 1 � � � 8 (yielding 0:311 � �(wi) � 1:528); with fixed

Fig. 5. Percentage of energy saving w.r.t. different d .

� = 4 Fig. 5 depicts the PES for 0:1 � d0 � 0:9 (corresponding
to 1:225 � �(wi) � 0:121). As we can see from both figures, PES
improves when �(wi) is large. This is intuitively reasonable since, as
wi’s get more heterogeneous, the proposed scheme (3.22) via channel
gain (or node location) selection can avoid severe energy consumption
along the transmission links with poor channel quality.

Based on the above numerical experiments, we conclude that large
energy savings can be achieved as the sensing environment becomes
more heterogeneous. A similar phenomenon has also been observed in
[3] and [8], in which parameter estimation is done based on the knowl-
edge of instantaneous sensor noise variances. Since the proposed so-
lution (3.22) (via exploiting the statistical noise variance description)
accounts for the long-term characteristics of the schemes in [3] and [8],
this consistency is thus expected.

V. CONCLUSION

This paper provides a solution to the minimal-energy decentralized
estimation problem by exploiting a statistical noise variance model.
Based on a closed-form expression of the reciprocal of MSE averaged
over the noise variance distribution and by leveraging an associated
tractable lower bound, energy minimization is reformulated as a convex
optimization problem. The analytic nature of the resultant solution re-
veals the underlying energy saving policy: simply allocate energies to
sensors with large channel gains, and shut off those suffering from poor
link quality. Numerical simulation shows that the proposed optimal so-
lution is capable of reducing more than 90% energy consumption when
compared with the uniform-allocation scheme; the energy saving effi-
ciency is significant particularly when as the sensing environment gets
more heterogeneous. In the future work we will generalize the results
to the vector parameter case.

APPENDIX A
PROOF OF LEMMA 3.1

By change of variable u = �zi + �i, and hence zi = (u� �i)=�,
we have

1

0

e�z =2

(�zi + �i)
p
zi
dzi =

1

�

e(�u+� )=2�

u (u� �i)=�
� 1
�
du

=
e� =2�

p
�

1

�

e�u=2�

u
p
u� �i

du: (A.1)
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It thus suffices to check

1

�

e�u=2�

u
p
u� �i

du =
2�p
�i
Q( �i=�): (A.2)

Let us define u = �icsc
2�, and hence du = �2�icsc2� cot �d�. We

then have

1

�

e�u=2�

u
p
u� �i

du =

0

�=2

e�� csc �=2�

�i csc2 � �
p
�i cot �

(�2�i csc2 � cot �)d�

=
2p
�i

�=2

0

e�� =2� sin �d�: (A.3)

We note that the Q(�) function admits the following alternative expres-
sion [5, p. 71]

Q(x) =
1

�

�=2

0

e�x =2 sin �d�: (A.4)

The assertion (A.2) follows immediately from (A.3) and (A.4).
APPENDIX B

PROOF OF LEMMA 3.2

We first observe that, since �i = � +R24�b =12 and 0 � bi <1,
we have e� =2� � e�=2� and

p
�i � � +R2=12, leading to

2�

�
� e

� =2� �Q( �i=�)p
�i

� 2�

�
� e�=2�

� +R2=12

=c

�Q( �i=�); 1 � i � N: (B.1)

Also, as �i=� = (� +R24�b =12)=� � �=�

+ R24�b =12� = �=� + R2�b =
p
12� and Q(�) is one-to-one

and monotone decreasing, we have

Q( �i=�) � Q( �=� +R2�b =
p
12�): (B.2)

Inequalities (B.1) and (B.2) then imply

2�

�

N

i=1

e� =2� �Q( �i=�)p
�i

� c

N

i=1

Q( �=�+R2�b =
p
12�):

(B.3)

Further, since Q(t) is convex for t > 0, it follows

1

N

N

i=1

Q( �=� +R2�b =
p
12�)

� Q
1

N

N

i=1

( �=�+R2�b =
p
12�) (B.4)

and hence

c

N

i=1

Q( �=�+R2�b =
p
12�)

� cNQ
1

N

N

i=1

( �=�+R2�b =
p
12�) (B.5)

and the result thus follows.

APPENDIX C
DERIVATION OF OPTIMAL SOLUTION (3.22)

By substituting � into (3.20) into (3.19), it is straightforward to see
that the constraint bi � 0 is equivalent to

R

N

i=1

wi � �i
p
12aN

� Q�1(c�1N�1�1)� �=� (wi � �i)
�1

� 1 (C.1)

hence �i � 0 must be properly chosen to simultaneously meet (C.1)
and the equality constraint (3.18), which based on (3.19) can be equiv-
alently rewritten as

�
�1

N

i=1

(wi � �i) = Q�1(c�1N�1�1)� �=�: (C.2)

For this we first observe from (3.19) that the constraint bi � 0 also im-
plies �

�1
(wi� �i) � R=(

p
12�N), which along with (C.2) requires

Q�1(c�1N�1�1)� �=� � R=
p
12�, or

R
p
12a Q�1(c�1N�1�1)� �=�

�1

� 1: (C.3)

Note that constraint (C.3) is equivalent to  � (Ne�=2�Q( �=� +

(R=
p
12�) 2�=�(� +R2=12))�1; sine this upper bound is feasible

(in that it is larger than the minimal threshold (3.26)), we may without
loss of generality choose  to be within this range so that (C.3) holds.
If the integer K1 exists, then based on (3.21) and (C.3) it is straight-
forward to show that �i = wi for 1 � i � N �K1 and �i = 0 for
N � K1 + 1 � i � N fulfill (C.1): the solutions �

opt
in (3.23) and

bopti in (3.22) then follows, respectively, from (C.2) and (3.19). The
existence of K1 is indeed guaranteed by the construction of f(K) in
(3.21): f(1) = wN=(Nw1) � 1=N , f(K) is monotone increasing
with K , and f(N) = ( N

i=1
wi)=(NwN) � N=N = 1.
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