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Regulation and Vibration Control of an FEM-Based Single-
Link Flexible Arm Using Sliding-Mode Theory
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Abstract: Compared to the assumed-mode method (AMM), the finite-element method (FEM) is not only
more applicable to the modeling of various kinds of flexible structures but also better in estimating the natural
frequencies. Motivated from these features and modified from the work of Yeung and Chen for an AMM-based
model, the sliding-mode controller introduced in this paper is developed to deal with the regulation problem
and vibration suppression of an FEM-based single-link flexible arm. This paper will focus on the issue of how
to change the FEM-based model into a form similar to the AMM-based model via the Schur decomposition.
A technique to measure the well-estimated state variables required for the control is also presented. Finally,
numerical simulation results are given to verify the robustness of the modified sliding-mode controller against
payload variation.
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1. INTRODUCTION

The mathematical model of a flexible structure can be approximately derived by using
the assumed-mode method (AMM) or the finite-element method (FEM) (Junkins and Kim,
1993). Both methods have been widely applied to diverse applications (Bayo, 1987; Cannon
and Schmitz, 1984; Chang and Chen, 1997; Matsuno, Murachi, and Sakawa, 1994; Yeung
and Chen, 1989). It is recognized that the FEM is generally more applicable to the modeling
of various kinds of flexible structures and usually also better in estimating the natural
frequencies. Motivated by these features, this paper introduces a sliding-mode control for
the FEM-based single-link flexible arm to treat vibration suppression.

The sliding-mode theory (Utkin, 1977; Itkis, 1976) is one of the important robust control
theories. Recently, many investigators have paid attention to the sliding-mode control of the
robotic flexible arm; for examples, see Yeung and Chen (1989) and Nathan and Singh ( 1991 ).
In the work of Yeung and Chen (1989), the authors successfully developed a robust sliding-
mode controller with respect to the payload variation for the AMM-based single-link flexible
arm. Most significantly, they proposed a systematic scheme to choose the sliding function
based on the AMM-based model. The determination of a sliding function is, however, an
effort for conventional sliding-mode controller design. Therefore, to adopt their sliding-mode
control appropriately, it is necessary to change the FEM-based model into a form similar to
the AMM-based model. The main tool employed here is the Schur decomposition (Golub
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and Van Loan, 1989) for the symmetric inertia and stiffness matrices. By using the Schur
decomposition, the FEM-based model is decomposed into two subsystems: one is for the
lower natural frequencies and the other for the higher natural frequencies. Since only the
lower natural frequencies are well estimated, the FEM-based model is further reduced by
neglecting all the terms related to the higher natural frequencies. Most important, such
a reduced FEM-based model is expressed in a similar fashion to the AMM-based model.
Therefore, its sliding-mode controller design can be developed by modifying the work
proposed by Yeung and Chen (1989) for the AMM-based model. Furthermore, n strain gauges
are required to obtain the variables for the FEM-based control input when the flexible arm is
considered to possess n equal-length segments. Note that the number of the strain gauges is
the same as that needed for an n-mode AMM-based model.

The next section will derive the reduced FEM-based model. In Section 3, a modified
sliding-mode controller is developed to deal with vibration suppression. The robustness to
the payload variation of the sliding-mode control will be illustrated by simulation results
shown in Section 4. Finally, the concluding remarks are given in Section 5.

2. REDUCED FEM-BASED MODEL OF A SINGLE FLEXIBLE ARM

Based on the finite element method (Junkins and Kim, 1993), the dynamic equations of a
single-link flexible arm moving in a horizontal plane, shown in Figure 1, can be derived in a
straightforward manner. First, the flexible arm is assumed to possess n equal-length segments
with a concentrated payload m, at the tip position. Further define v i and v 2 as the bending
deflection and slope of the ith segment at the right end. Then, by using Hamilton’s principle,
the FEM-based dynamic equations of a single flexible arm can be derived as

where 0 is the rotor’s angular position and u represents the control torque and bending
variables v = (v i v 2 v i v 2 ... V i V 2 ~T . It is noticed that {m~Hi~M~} are all

functions of mt and <M~,K~ 
meB meV are all symmetric positive-definite

~ mov Mvv J j
matrices. For convenience, when a variable is related to the payload mt or the ith segment,
1 :::; i < n, it will be denoted with a superscript t or i. The payload mt is uncertain, bounded
between mm’n and mmax, with a nominal value m~ ( E [~~’&dquo;, mmaxl ) _

Since v possesses 2n variables, 2n natural frequencies will result from (1). By using the
Schur decomposition (Golub and Van Loan, 1989), the symmetric positive-definite matrix
Mvv can be expressed as

where U is an orthogonal matrix, A is a positive diagonal matrix, and N = A1~2U. Let
KvN = N-T Kvv N-1, which is also symmetric positive-definite. Once again, by using the
Schur decomposition, we have K,,N = pT HP, where P is an orthogonal matrix and His a
positive diagonal matrix. Hence,
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Figure 1. Single-link flexible arm.

where L = PN. Note that all the matrices A, S2, N, P, and L depend on the payload mt.
Since P is orthogonal, that is, PT P = I, from (2) it can be obtained that

Let y = Lv = ( yl ... y2&dquo; ~ T , then (1) can be rewritten as

where b(ml ) = L ~ni~. Clearly, in case that b = 0, a vibration motion can be deduced
from (5) as below:

Without loss of generality, let SZ(ml )be
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with OJ1 < OJ2 < ... < OJ2n. This means the FEM-based model possesses 2n natural

frequencies from OJ1 to cv2&dquo; . It is known that the lower n natural frequencies of a flexible
arm are well estimated by ~1 to co,. However, unlike col to OJn, the higher frequencies
a~&dquo;+1 to cv2n do not correspond to any physical natural frequencies. An approximate FEM-
based model is usually obtained by neglecting all the components related to these higher
frequencies OJn+1 to OJ2n. Such approximation is conceivable since the accumulated energy
of frequencies higher than COn is generally much smaller than that of lower frequencies from
OJ1 to ~&dquo; . Besides, to further make the approximate model more precise, the number of nature
modes n is often carefully selected so as not to excite any component with frequency higher
than mn via the applied control input. Now the FEM-based model (5) is reduced as

where y = yl ... yn ~ T . Here, all the variables of yh = [Yn+1 ... ~2~ ~T , related to OJn+1
to <~2/!. are eliminated. It is important to point out that the reduced model (7) is similar to
the AMM-based model shown in the work of Yeung and Chen ( 1989) and, hence, the sliding-
mode controller developed for (7) will be a modified version of the controller proposed by
them.

Under the variation of mt ( E IM min jy~maxl 1 ~ the control obj ective is to robustly regulate
the angular position 0 to a specified value 0 d without any vibration. Before the controller
design, the main task is to obtain the variables y = [yl ... y&dquo; jT required for the control
algorithm. Strain gauges are used as the sensors. Each segment along the flexible arm
is instrumented with one strain gauge, and then n strain values are measured to be z =

[Zl z2 ... zn T . . These quantities can be related to bending variables v as z = Gv with
G c Rnx2n . Since y = Lv, we have z = r y with r = GL-1. It can be further expressed
by z = r 1Y + r2Yh, where rl (E R&dquo;&dquo;n ) is assumed nonsingular. The neglect Of Yh yields
z x5 rly, that is, the required y can be obtained as

Unfortunately, y is still not achievable from (8) due to the fact that r 1 == rl (mt ), depending
on the uncertain payload mt . To solve such a problem, an intuitive way is to make the nominal
approximation

Evidently, there exists an unknown deviation y-y°, which should be carefully handled in the
controller design. Next, we develop the sliding-mode controller for the reduced FEM-based
model (7).
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3. SLIDING-MODE CONTROLLER DESIGN

The reduced model (7) can be rewritten into the following form:

Under the uncertain payload mt, the control objective is to robustly regulate the angular
position 0 to a specified value 0 d without any vibration, that is, 8 - e d = 0 and y = 0.
Define e = 9 - 6 d, then (10) and (11) are rearranged as

In general, there are two basic steps for the sliding-mode controller design. First, the sliding
variable is selected such that the system is stabilized in the sliding mode. Second, the control
algorithm is designed to satisfy the sliding condition.

In the first step, the sliding variable is chosen to be

where c, c’, aT = [a, a2 ... an ] , and a’T - (ai a2 ... a;, ) are all constant and will be
determined by the pole-placement method. Since y° = ri 1 (mt )z and y = r11 (mt )z, we
have

where (a(mt) = ri 1(m~ )rl(m~) and Q(mo) = I. Assume that the system is successfully
controlled to perform the sliding motion s = 0. From the concept of equivalent control
(Utkin, 1977), it can be obtained that 9 = 0 as the equivalent control is applied to the system.
Therefore, differentiating (14) yields

Now, the system in the sliding mode can be described by (16) and (13). Note that (12) has
been replaced by (16). Further taking the Laplace transform of (16) and (13) results in
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where E and Y are the Laplace transforms of e and y, respectively. It can be found that the
characteristic equation of (17) is expressed by

where the coefficients c, c’, a, and a’ are commonly determined by the pole-placement
method. Unfortunately, the uncertain payload mi makes it more complicated. In this paper,
the pole-placement method is adopted only for the nominal case mt - mt , where the
characteristic equation (18) can be written as

Note that Q(mo) = I. According to the work by Yeung and Chen (1989), the 2n + 2
coefficients {c, c’, aI, ai, ... , a&dquo;, a;, ~ in (19) are uniquely determined by assigning 2n + 2
stable eigenvalues. In fact, these stable eigenvalues should be carefully assigned such that
with the coefficients obtained from the nominal case, the characteristic equation (18) must
also possess stable eigenvalues for all ml E IM min, mmax~. If so, the robust feature against the
payload variation is guaranteed. A rule of thumb to choose the appropriate stable eigenvalues
for the single-link flexible arm was also shown in the work of Yeung and Chen (1989). This
paper will adopt their suggestion and demonstrate it in the next section.

Once the coefficients ~c, c’, al, ai, ... , a&dquo; , an } in the sliding variable ( 14) are

determined, the first step of the controller design is completed. The second step is to develop
the control algorithm to satisfy the sliding condition. From (12) and (13), it can be obtained
that

where A = moo - brb. Since A > moo - bT b = moo - me Mv,,l me,, > 0, the
candidate of Lyapunov function can be given as

1

where the equality is true only for s = 0. From (14), differentiating (21 ) yields
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_o _

where T = ce + c’e + aT y + a’Ty°. It can be further rearranged from (8) and (20) as

where wT - bTSZri 1. Since w = ( ) A - 0(ml), and mt E (m~’in,mmaxl~ wewere w - ~ r, 1 lnce w = w mt , u - u mt , an mt t t , we

assume that Jt

Let the control law be

then

where the equality is true only for s = 0. Therefore, V is a Lyapunov function and the system
will be driven to the sliding mode s = 0, as desired.

In practice, the implementation of sgn(s)often generates undesirable high-frequency
chattering and degrades the system performance. To smooth out the chattering, the control
law is changed into

where

is used to replace sgn(s). As a consequence, the system is no longer restricted to the
infinitesimal sliding mode s = 0 but constrained in the sliding layer ~ s ~ < E with thickness

~. This completes the sliding-mode controller design.
One other important phenomenon should be addressed here before getting into the

numerical simulation. It is noticed that the control algorithm is derived only for the reduced
model, expressed by (12) and (13), without considering those high-frequency components.
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They are treated as the unmodeled terms and always exist in the practical systems. In the

next section, although the controller is designed based on the reduced model, the simulation
is implemented for the original system (1), possessing the high-frequency components. As a
result, the simulation results will show that the system performance is badly affected when
the control law excites these unmodeled high-frequency components. This is especially true
for the system transient behavior before reaching the desired set-point.

4. NUMERICAL SIMULATION

As a demonstration, we will carry out a numerical simulation for a single-link flexible arm,
which has a uniformly distributed mass m along the central axis and a rectangular cross-
sectional area. The structural parameters are listed as below:

. mass of the beam m = 0.332 kg

. length of the beam 1 = 0.950 m

. rectangular cross-sectional area A = 4.176 x 10-5 m2

. mass per unit length p = 0.3495 kg/m

. Young’s modulus E = 2.095 x 1011 Nt/M2

. payload mt C ~0.3, 0.5~ kg
w nominal payload mr = 0.4 kg
If the flexible arm is considered to possess 3 equal-length segments, then according to
the finite-element method, the dynamic equations will be derived as (1) with the bending
variables v = IV 1 1v 2 v 1 v 2 v i v 2~ T . By the Schur decomposition, the bending variables are
transformed as y = Lv = [Y1 ... Y6( and the dynamic equations are changed into (5),
which contains 6 natural frequencies mi to m6 and OJ1 < ~2 < ... < ~s. Note that the

natural frequency ~~ is related to the variable yi, for i = 1, 2, ... , 6. Since only the lower
natural frequencies OJ1 = 3.585, C02 = 22.973, and OJ3 = 57.097 are well estimated, the
dynamic equations are reduced to (7) with y = [Y1 y2 y3~T . From (8), ~ ~ r11z, where
z = [Zl Z2 Z3 ]T are measured by three strain gauges. The ith strain gauge is located at the
middle position of the ith segment.

Under the variation of payload mt, the control objective is to robustly regulate the angular
position 0 to a specified value 8 d = 7r /2 without any vibration. Define the error function
as e = 0 - 0 d. Then, in the first step of the controller design, the sliding variable is chosen
as

where the coefficients c, c’, aT - [ai a2 a3] and a~ = (ai a~ a3~ are all constant and
determined by assigning the roots of (19) with
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It should be emphasized here that if these roots are sensitive to the variation of payload, the
sliding-mode controller might be only suitable for a small region of mt around the nominal
value mt . According to the suggestion by Yeung and Chen (1989), the ith pair of complex
roots in (29) are located at the angles ±135° on the complex plane with a magnitude cry .
Later, from the simulation results, it will be found that the robust feature against the payload
variation is achieved by using the eigenvalues in (29).

After the sliding variable is determined, the next step is to design the control algorithm
for the sliding condition. Following the design procedure, the control law (27) becomes

where

As mentioned before, the use of sat (s, E ) is to ameliorate the chattering problem. To
demonstrate the robustness of the control law, numerical simulation is implemented on the
original model (1), containing all the neglected terms. In addition, three cases of mt -
0.3, mt = mt = 0.4, and mt = 0.5 are considered for payload variation. Figures 2 through
4 show the simulation results. In Figure 2, although the control algorithm is designed for the
nominal case mt = 0.4, the tip-position is still successfully controlled to the desired position
for the other two cases mt = 0.3, 0.5. Clearly, this verifies that the sliding-mode control is
robust to the payload variation. Figure 3 shows the required control inputs for these three
cases, where chattering still exists during the transient 0 < t < 2. It seems that the use of
saturation function cannot avoid the chattering problem. In fact, such chattering is caused by
those unmodeled terms in (1) related to m4 to OJ6, which have been included in the simulation.
They, of course, cannot be effectively handled by the control algorithm (30), which is only
derived to deal with the reduced model (12) and (13). Such defect can be also seen from
Figure 4, which presents the sliding function for mt = 0.4. During the transient 0 < t < 2,
the system trajectory is not completely constrained in the sliding layer < E(= 0.01). It is
because the system tends to reach the control goal as fast as possible from the starting time.
As a result, the control input requires high-frequency components to speed up the system
response during the transient. Simultaneously, the high-frequency unmodeled terms are also
stimulated to degrade the system response. After the transient, the system is well controlled
to the neighborhood of the control goal. That means the control input intends to drive the
system to the destination smoothly; therefore, the high-frequency unmodeled terms will not
be excited. As expected, the system is controlled without any chattering after the transient.
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Figure 2. Tip angle for the cases of mt = 0.3, 0.4, 0.5 kg.

Figure 3. Control input for the three cases mt = 0.3, 0.4, 0.5 kg.
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Figure 4. Sliding variable for mt = 0.4 kg.

5. CONCLUSION

This paper develops a sliding-mode control of an FEM-based single-link flexible arm. Before
the controller design, the FEM-based model is reduced via the Schur decomposition to keep
only the lower half of natural frequencies, which are well estimated in the FEM-based model.
Simulation results are included to illustrate the robustness of the sliding-mode control against
the payload variation.
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