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High Quality Interpoly Dielectrics Deposited on the
Nitrided-Polysilicon for Nonvolatile Memory Devices
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Abstract—High quality interpoly dielectrics have been fab-
ricated by using NH3 and N2O nitridation on polysilicon and
deposition of tetra-ethyl-ortho-silicate (TEOS) oxide with N2O an-
nealing. The surface roughness of polysilicon is improved and the
value of weak bonds is reduced due to nitrogen incorporation at
the interface, which improves the integrity of interpoly dielectrics.
The improvements include a higher barrier height, breakdown
strength, and charge-to-breakdown, and a lower leakage current
and charge trapping rate than counterparts. It is found that this
method can simutaneously improve both charge-to-breakdown
(up to 20 C/cm2) and electric breakdown field (up to 17 MV/cm).

Index Terms—Barrier height, charge-to-breakdown, dielectric,
electric breakdown field, interpoly, nonvolatile memories, polysil-
icon.

I. INTRODUCTION

T HERMALLY grown or deposited oxides on npolysil-
icon have been used as the inter-dielectric for nonvolatile

memories such as erasable-programmable read-only memory
(EPROM), electrical-erasable programmable read-only
memory (EEPROM), and flash memories. In order to obtain
good data retention and endurance characteristics, inter-di-
electrics with a low conductivity (low leakage current) and
a high electric breakdown field have been topics of
research for a long time [1]–[3]. Because thermal oxidation
of polysilicon leads to a rough polysilicon surface, thermally
grown polyoxides exhibit a lower dielectric strength and a
higher leakage current than those of oxide grown on single
crystal silicon [4]–[12]. Recently, in contrast to thermal oxides,
deposited dielectric layers have been investigated as a very
promising alternative, since these dielectric layers are deposited
on the polysilicon layer without silicon consumption. Conse-
quently, the surface of polysilicon for a deposited polyoxide
structure is found to be smoother than oxidizing counterpart.
Low-temperature oxides (LTO) with an annealing in a rapid
thermal processing (RTP) system or oxides deposited in a
low-pressure chemical-vapor-deposition (LPCVD) system
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have been used, but resultant electrical properties of LTO
are not good enough for EEPROM applications even with
additional postdeposition treatments [13]–[15]. In contrast
to LTO, dielectrics deposited at a high temperature, like
tetra-ethyl-ortho-silicate (TEOS), exhibit an improved perfor-
mance [16]–[18]. In addition, high-temperature oxides (HTO)
with the postdeposition treatment in a rapid thermal annealing
(RTA) system are proposed to improve electrical properties,
which can achieve effects of densification, reoxidation, and
nitridation [19]–[21]. Furthermore, Klootwijket al. [19] found
that the oxide deposited with an additional NO-annealing is an
attractive alternative for conventional polyoxide, which results
in an improved endurance of EEPROM devices by a factor of
ten.

The underlying polysilicon layer also plays a dominant role
in the dielectric strength. Leiet al. [22], [23] found that the
strength of deposited dielectric depends on the roughness of
polysilicon. Using chemical-mechanical polishing (CMP) on
polysilicon, the dielectric integrity is significantly improved due
to the smooth interface of the polysilicon, but charge-to-break-
down values are not improved simutaneously [23]. The
method using both CMP and CVD oxide yields a high break-
down field and low electron-trapping rate. Recent reports
show that the reliability of MOS and polyoxide capacitors can
be improved by introducing proper amounts of nitrogen or
fluorine [1], [24], [25]. It is also reported that the NO-grown
and N O-annealing polyoxides have better electrical perfor-
mances than O-grown polyoxides, which contributes to the
nitrogen incorporation at the polyoxide/polysilicon interface
[21], [26]–[29]. However, this treatment moderately improves
the dielectric strength only.

In this paper, polyoxides are fabricated by utilizing a NH-ni-
tridation and RTA NO-annealing on polysilicon to incorporate
nitrogen at the surface of polysilicon. TEOS-oxides are then de-
posited on this nitrided polysilicon and followed with or without
a densification in an NO ambient. It is found that this method
can simutaneously improve both and .

II. EXPERIMENTS

The n -polysilicon/polyoxide/n -polysilicon capacitors
were fabricated on the p-type (100) silicon wafers. First,
silicon wafers were thermally oxidized at 1000C to form a
100-nm-thick isolation oxide. Then a 300-nm polysilicon layer
(poly-1) was deposited in a LPCVD system using SiHgas
at 620 C and subsequently doped with POClat 900 C for
30 min, resulting in a sheet resistance of 3040 . After
the -glass was stripped off, the samples were then annealed
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in NH ambient at 800 C for 2 h followed with or without a
N O-RTA annealing at 800C for 20 s. After that, a TEOS
oxide with thickness to 100 Å was deposited in a LPCVD
system at 650 C, followed by a RTA at 900 C for 30 s in
the N or N O ambient for densification of oxides to a final
90 Å. Then a second polysilicon layer (poly-2) of 300-nm was
deposited by a LPCVD system at 620C and doped to a sheet
resistance of 3040 with the same POCl process as
poly-1. After definition of the poly-2, all samples were covered
with a 100-nm oxide as a passivation layer. Contact holes were
opened and aluminum was deposited and patterned to form the
final capacitor structures. Finally, all devices were sintered at
400 C for 30-min in a N ambient.

Atomic force microscope (AFM) was used to charac-
terize the surface morphology of polysilicon films with or
without nitridation. Polyoxide thickness was determined by
the high-frequency capacitance-voltage measurements with
Keithley 590 and 595. The electrical properties, effective
electron barrier height, electron trapping characteristics, and
charge-to-breakdown were measured by a HP-4145B semicon-
ductor parameter analyzer.

III. RESULTS AND DISCUSSION

Impacts of nitridation on poly-1 and densification of TEOS
in N O are evaluated by the measurement of current–voltage
( – ) and breakdown field. In this measurement, the poly-2 is
positively biased. (i.e., electrons are injected from the dielec-
tric/poly-1 interface). Fig. 1(a) shows curves of current density
versus electrical field, and Fig. 1(b) depicts the Weibull distri-
butions of breakdown field for 75 capacitors corresponding to
Fig. 1(a). The electrical field is defined as , where

is the applied gate voltage, and is the effective dielectric
thickness as determined by the (capacitance–voltage (- )
measurement. It is found that samples with nitridation of poly-1
have higher breakdown fields than control samples (as
deposited). They exhibit a lower leakage current and start con-
ducting at higher voltages than control samples. It is also noted
in Fig. 1 that samples with the RTA NO-treatment on poly-1
exhibit an improved and reduced leakage current. Since the
NH -nitridation will introduce hydrogen into the polysilicon,
leading to unstable Si-H bonds. The NH-nitridation of poly-1
only moderately improves the dielectric strength. With an
additional RTA N O-treatment, the unstable Si-H bonds will
be annealed out, resulting in the better electrical characteristics
with respect to the NH-treated samples, as shown in Fig. 1.
Secondary ion mass spectroscopy (SIMS) measurements of
two samples fabricated with and without nitridation of poly-1
are shown in Fig. 2. The profiles of SiN within the dielectric
film are significantly increased by the nitridation treatment. In
comparison with the control sample, a relatively high peak of
Si N profile within the dielectric film was observed for the
(NH RTA N O)-nitrided sample. It has been well recognized
that the quality improvement of dielectrics by nitridation
is thought to be the replacement of strained Si-O bonds or
dangling bonds by Si-N bonds, leading to a relaxation of
the interface stress [19], [25], [32]. In addition, annealing of
dielectric in N O ambient has been used to achieve an oxidation

(a)

(b)

Fig. 1. (a) Typical J-E characteristics of interpoly dielectric layers with or
without NH and RTA N O nitridation of poly-1 and NO densification of
TEOS under positive applied voltages, i.e., electrons are being injected from the
bottom electrode. (b) Typical Weibull distribution of the electrical breakdown
field for the as-deposited, deposited on the nitrided-poly-1, and postdeposition
annealing interdielectrics.

of the bulk nonstoichiometric SiO, a nitridation at the Si-SiO
interface and a densification of the dielectric [19]. Hence, a
very high up to 17 MV/cm (average of 50%) was achieved
for the sample by using the (NH RTA N O)-nitridation of
poly-1 and the NO-densification of TEOS.

Plotting the J-E characteristics in the form of a Fowler-Nord-
heim (F-N) plot ( versus ) [30], [31], straight lines
were obtained for all samples as shown in Fig. 3, indicating that
F–N tunneling is the major conducting mechanism. The trans-
port of F-N tunneling has the form ,
where is the field, and and are constants in terms of
effective mass and barrier height. Indeed, the barrier height in-
creased upon nitridation of poly-1, and NO densification of
TEOS. In all fabrication conditions, samples with (NHRTA
N O) nitridation of poly-1 and NO-densification of TEOS has
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Fig. 2. SIMS profile of two samples fabricated with (NH+RTA N O ) and
without nitridation of poly-1.

Fig. 3. J-E characteristics in the form of a Fowler-Nordheim plot (J=E
versus 1=E) for all dielectric layers. According to the F-N model, from the
corresponding slopes of these lines the barrier heights foe the electron were
obtained.

the highest effective electron barrier height. Fig. 4 displays the
surface images of the poly-1 film with or without nitridation
of poly-1 and NO-densification of TEOS by the atomic force
microscope (AFM) measurement. The surface morphology of
the poly-1 without/with the nitridation, and RTA NO-densifi-
cation of TEOS are shown in Fig. 4(a)–(c). Root mean square
(RMS) roughness for these three samples are 97.8, 85.6, and
71.8 Å, respectively. This implies NHand RTA N O-nitrida-
tion results in a smooth surface. The dielectrics deposited on
the (NH RTA N O)-nitrided poly-1 and NO- densification
of TEOS exhibit the smoothest interface and hence result in the
higher breakdown field.

Fig. 5 shows shift of gate-voltage under the constant current
stressing at 100 A/cm for all capacitors. It reveals that the
additional RTA N O-nitridation of poly-1 has a smaller voltage
shift than the NH nitrided-only sample. This implies that
samples with the additional RTA NO-nitridation of poly-1

(a)

(b)

(c)

Fig. 4. Surface images of the polysilicon film by AFM measurement. (a)
As-deposited, (b) NH-nitrided poly-1, and (c) NH and RTA N O-nitrided
poly-1 with additional NO densification of TEOS.

yield a better immunity to the trapping of charges. Relatively,
the rougher dielectric/poly-1 interface leads to a smaller con-
duction area and a higher local current density, subsequently
causing a higher trapping rate of charge [23]. For the sample
of (NH RTA N O)-nitrided poly-1 and NO-densification
of TEOS, a small initial hole trapping is found, after that, no
significant trapping is observed. This is due to the highest
nitrogen incorporation among these samples.

Regarding the reliability of polyoxide in nonvolatile memo-
ries, charge-to-breakdown is also a critical parameter of
interest. Dielectrics with large value of are needed to guar-
anty long read/write cycles. In the conventional polyoxide fab-
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Fig. 5. Charge trapping characteristics, i.e., curves of gate voltage shifts
versus stress time under positive top bias with a constant current stressing at
100�A/cm .

Fig. 6. Typical Weibull plots of the charge-to-breakdown for the as-deposited,
nitrided-poly-1, and postdeposition annealed interdielectric layers under
positive stress.

rication, values are very small (in the range of 0.01C/cm
to 0.1 C/cm ) due to surface roughness and nonuniform poly-
oxide thickness. In Fig. 6, the Weibull distributions of charge-to-
breakdown of 90-capacitor (100100 m ) are shown for pos-
itive bias at top-gate. In the measurement, a constant current
of 1 mA/cm was used to stress the control and NH-nitrided
samples (solid symbols) and a constant current of 100 mA/cm
was stressed for the RTA NO-nitrided samples (empty sym-
bols).It is seen that the NH-nitridation of poly-1 improves di-
electric layer slightly, while the additional RTA NO-nitridation
of poly-1 increases significantly. It can be seen in Fig. 6 that
the improvement of is about from 0.01 C/cmto 0.1 C/cm
by using NH -nitridation only. This may be due to the incorpo-
ration of hydrogen atoms at the dielectric/poly-1 interface. But
if the poly-1 was nitrided with the additional RTA NO, in-
creases significantly. In addition to the improvement on rough-
ness of poly-1 as discussed in Fig. 4, the improved integrity is
also due to the incorporation of nitrogen atoms, which reduce

Fig. 7. Typical J-E characteristics of interpoly dielectric layers with or
without NH and RTA N O nitridation of poly-1 and NO densification of
TEOS under negative applied voltages, i.e., electrons are being injected from
the top electrode. The inset is a Fowler-Nordheim plot (J=E versus 1=E)
under negative top bias.

the weak Si-O (Si-H) bonds and relax the interface stress [19],
[25]. Again, it is seen that a densification of TEOS by NO (or
N ) annealing can further improve the dielectric integrity. It is
found that up to 20 C/cm can be obtained as the poly-1 was
nitrided by the NH and RTA N O-annealing and the TEOS an-
nealed with NO postdeposition.

So far, only the electron injection from the bottom electrode
has been considered. For the negative top electrode bias, i.e.,
electron injection from the top electrode, it had been shown that
dielectrics with an additional NO postannealing conducted a
higher current than the as-deposited oxides [19], which is in con-
trast to positive top bias. This polarity preference was also ob-
served for interdielectric layers directly grown from NO [25].
Fig. 7 shows the J–E characteristics for the samples under nega-
tive bias at top-gate. Although the postdeposition annealing re-
sults in the polarity asymmetry, it is found that samples with
nitridation of poly-1 still exhibit a better performance than the
as-deposited samples. As compared to Fig. 1, the leakage cur-
rents of negative bias are one order of magnitude higher than
those obtained from the positive bias. This is mainly ascribed to
the nitrogen incorporated at the interdielectric/poly-1 interface.
The inset in Fig. 7 depicts the F-N plots for electron injection
from the top gate. Although the barrier height for the electron
tunneling from poly-2 to the SiOis not strongly related to the
nitridation of poly-1 and the densification of TEOS, it is found
that the barrier height is slightly improved with nitridation and
N O densification of TEOS as shown in Fig. 7. The Weibull dis-
tributions of under the negative bias are shown in Fig. 8.
It is noted that the improvements of using nitridation of
poly-1 and densification of TEOS are similar to the positive top
gate bias. The inset of Fig. 8 shows the charge trapping char-
acteristics under constant current stressing at 100 (A/cm for
the negative bias at top-gate. The shift of gate-voltage increases
with time. The additional RTA NO-nitridation of poly-1 has
a smaller voltage shift than the NH-nitrided capacitor. This
finding also implies that the additional RTA NO-nitridation of
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Fig. 8. Typical Weibull plots of the charge-to-breakdown for the as-deposited,
nitrided-poly-1, and postdeposition annealed interdielectric layers under
positive stress. The inset is the charge trapping characteristics under negative
top bias.

poly-1 yields a better immunity to electron trapping, no matter
what directions of electrons are injected. Furthermore, as TEOS
was annealed in NO ambient, the sample exhibits a better per-
formance of charge trapping characteristic, which results in a
higher charge-to-breakdown as seen in Fig. 8. However, as com-
pared to Fig. 5, the electron trapping rates of capacitors under
the negative bias at top gate are higher than those obtained from
the positive bias counterpart. This is due to the different position
of trapped charges in the NO-annealed oxide under different
gate bias, which is similar to the physical model proposed in
[4].

IV. CONCLUSION

In this study, an NH with RTA N O process to incorporate
nitrogen at dielectric/polysilicon interface has demonstrated to
improve integrity of polyoxides. Polyoxides deposited on this
nitrided polysilicon with the additional NO-densification ex-
hibit a lower leakage current, higher electric breakdown field,
higher electron barrier height, lower electron trapping rate, and
much higher charge-to-breakdown than the as-deposited poly-
oxides. SIMS results show the incorporation of nitrogen at the
polyoxide/poly-1 interface, which improves electrical proper-
ties in return. Polyoxides formed by this method can achieve
a high breakdown field up to 17 MV/cm and charge-to-break-
down more than 20C/cm . This process appears to be a very
attractive alternative for conventional polyoxides.
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