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SUMMARY

Storage tanks are vulnerable to earthquakes, as numerous major earthquakes have demonstrated. The
trend of recent revisions to make seismic design criteria for large-scale industrial storage tanks increas-
ingly stringent has made development of cost-e=ective earthquake-resistant design and retro>t techniques
for industrial tanks imperative. This study assesses the feasibility of seismic base isolation for mak-
ing liquid->lled storage tanks earthquake resistant. The sliding-type friction pendulum seismic (FPS)
bearings are considered rather than the elastomeric bearings because the dynamic characteristics of an
FPS-isolated tank remain unchanged regardless of the storage level. This work has devised a hybrid
structural-hydrodynamic model and solution algorithm, which would permit simple, accurate and eA-
cient assessment of the seismic response of rigid cylindrical storage tanks in the context of seismic
isolation. Extensive numerical simulations con>rm the e=ectiveness of seismic base isolation of rigid
cylindrical tanks using FPS bearings. Copyright ? 2001 John Wiley & Sons, Ltd.
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INTRODUCTION

Earthquakes may induce substantial hydrodynamic pressures on the shell wall of storage tanks,
and the overturning moment caused by the lateral pressures could result in excessive compres-
sive stresses at the bottom of one side of the tank, and hence, dynamic buckling of the shell
wall [1–3]. Damage to storage tanks not only instantly disrupts essential infrastructure but can
also cause >res or environmental contamination when Gammable materials or hazardous chem-
icals leak. Given the severe damage to industrial storage tanks and the economic losses during
the recent Ji–Ji earthquake (M =7:6) in Taiwan, earthquake protection for such facilities has
attracted serious attention in the industrial and engineering communities. Consequently, seis-
mic design provisions for industrial tanks have become increasingly stringent and developing
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cost-e=ective earthquake-resistant design and retro>t techniques for large-scale storage tanks
has become crucial.
Although seismic isolation has been recognized as a promising alternative to protecting

structures against earthquakes, engineering research and practices on seismic isolation of stor-
age tanks remains limited. Unlike most structures (such as buildings or bridges), the weight
of storage tanks varies in time because of variable liquid storage level, and they may contain
low-temperature (e.g. LNG) or corrosive substances. Thus, rubber-type bearings, such as the
lead-rubber bearings or the high-damping-rubber bearings, are not recommended for seismic
isolation of storage tanks. However, friction pendulum bearings possess properties that con-
siderably bene>t the seismic isolation of industrial tanks. For instance, the fundamental period
of tanks isolated by FPS bearings merely depends on the radius of curvature of the sliding
interface, making dynamic characteristics of the isolated tanks invariant and fully controllable,
regardless of the storage level. Being made of stainless steel, FPS bearings are also resistant to
chemicals, >res, temperature extremes, and adverse environmental exposure. Given the above
advantages, FPS seismic bearings are better for industrial tank applications. So far, application
of seismic isolation to industrial tanks has mostly used friction pendulum bearings [4].
Whereas the response to earthquakes of base >xed (or anchored) liquid->lled tanks on

rigid or Gexible foundations has been the subject of numerous studies in previous literature
[5–10], little information exists on the corresponding response of tanks with seismic isolation
using sliding-type bearings. The presence of frictions, with highly non-linear characteristics,
of the sliding bearings has made the problems more complex. This study devises a hybrid
structural-hydrodynamic model and solution algorithm, which would permit simple, accurate
and eAcient assessment of the seismic response of rigid cylindrical storage tanks in the con-
text of seismic isolation. The e=ectiveness of seismic base isolation of rigid cylindrical tanks
using friction pendulum bearings is veri>ed through extensive numerical simulations under
the 1940 El Centro Earthquake. Furthermore, the e=ects of the geometric properties (height-
to-radius ratio) of the tank, and earthquake intensity, on seismic response control eAciency
are investigated. Through regressive analyses, empirical formula are developed to estimate the
control eAciency of seismic isolation, in terms of peak reduction of the base shear or the
overturning moment, with respect to the geometrical properties of the tanks, earthquake in-
tensity, and the frictional coeAcient of the bearings. Finally, design charts for predicting the
maximum sliding displacement of the FPS bearings of the corresponding design parameters
are also presented.

ANALYTICAL MODELLING

Review of the hydrodynamics within rigid tanks

A rigid, circular cylindrical tank de>ned by a cylindrical coordinate system, with r; �, and z
denoting, respectively, the radial, circumferential, and axial co-ordinates, is >lled with liquid to
a storage level H , as illustrated in Figure 1. The liquid with density 	, is assumed to be incom-
pressible, irrotational and inviscid. Under horizontal earthquake ground acceleration, Mxg(t), in
the direction �=0, the velocity potential function, ’(r; �; z; t), of the liquid Gow within the tank
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Figure 1. Con>guration of the cylindrical tank.

satis>es the Laplace’s equation [7] as
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The Gow velocity in the direction of a generalized n co-ordinate, vn(r; �; z; t), is given by
vn= @’=@n and the hydrodynamic pressure, p(r; �; z; t), is given by p=	@’=@t.
The solution of the Laplace’s equation (1) must satisfy the following boundary conditions:
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because the vertical component of the liquid velocity must be zero at the tank base (z=0);
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= ẋg cos � (2b)

since the radial velocities of the liquid and the rigid tank wall must be consistent along the
tank wall (r=R), where ẋg is the velocity of the horizontal ground motion;

	gd(r; �; t)= 	
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@t
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(2c)

if the vertical inertia of the surface waves is neglected, where d(r; �; t) is the sloshing dis-
placement measured from the quiescent liquid-free surface (z=H), and g is the gravitational
acceleration;
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(2d)

for compatibility of the vertical velocity at the free surface.
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The solution of Equation (1) can be conveniently expressed by superpositioning two com-
ponents as

’(r; �; z; t)=’1(r; �; z; t) + ’2(r; �; z; t) (3)

where ’1 is associated with the portion of the liquid that varies in synchronization with the
rigid tank, and ’2 is associated with the hydrodynamic motion of the liquid relative to the
tank.
Accordingly, @’1=@z=0 since the tank is subjected to horizontal ground excitation only.

Boundary condition (2a) can further be revised as @’2=@z|z=0 =0, condition (2b) as @’1=@r|r=R

=−ẋg(t) cos � and @’2=@r|r=R=0, and condition (2d) as −@’2=@z|z=H = @d=@t. Solution ’1 can
immediately be obtained as

’1 =−ẋg(t)r cos � (4)

and ’2 from Equations (1) and (4) by the method of separation of variables along with the
boundary condition, @’2=@r|r=R=0, giving

’2(�; �; �; t)=
∞∑
j=1

[A(t) cosh �j�+ B(t) sinh �j�] J1(�j�) cos � (5)

where �= r=R; �= z=R; J1 is the Bessel function of the >rst kind and �j is the jth root of
J ′
1(�)=0. A(t) and B(t) are time-dependent coeAcients to be determined from the remaining
boundary conditions. Meanwhile, the sloshing displacement d(�; �; t) on the free surface may
be shown proportional to J1(�j�) cos � as

d(�; �; t)=
∞∑
j=1

Dj(t)
J1(�j�)
J1(�j)

cos �; j=1; : : : ;∞ (6)

where Dj(t) represents the position of the free surface of the liquid at the junction with the
tank wall (�=1; �=0) when the surface wave is sloshing in its jth mode. With boundary
conditions @’2=@�|�=0 =0 and −@’2=@�|�=� = @d=@t, where �=H=R; ’2 can be written in the
form

’2(�; �; �; t)=−
∞∑
j=1

R
�j

[
Ḋj(t) cosh �j�

sinh �j�

]
J1(�j�)
J1(�j)

cos �; j=1; : : : ;∞ (7)

Using boundary condition (2c) and the orthogonality of the Bessel functions, the hydrodynamic
equation is then established as

MDj(t) +!2
j Dj(t)=− �j�j tanh(�j�) Mxg; j=1; : : : ;∞ (8)

where !2
j =(�jg=R) tanh �j� and �j =2=(�2j − 1).

Meanwhile, the hydrodynamic pressure, p(�; �; �; t), on the tank wall can be obtained as

p(1; �; �; t)= 	
@’
@t

∣∣∣∣
�=1

=−	R cos �

{
Mxg(t) +

∞∑
j=1

[
MDj(t) cosh �j�
�j sinh �j�

]}
(9)

which can be further divided into the impulsive, pi, and the convective, pc, components using
Equation (8) as

p=pi + pc (10)
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where

pi =−	R cos �

[
1−

∞∑
j=1

C2
j
�j cosh(�j�)
sinh(�j�)

]
Mxg(t) (11a)

and

pc =	R cos �

[
∞∑
j=1

C2
j
�j cosh(�j�)
sinh(�j�)

]
!2
j Dj(t)

�j�j tanh(�j�)
(11b)

in which C2
j =(R=g�j)!2

j . Once the pressure is derived, the instantaneous base shear, S(t), of
the tank can be calculated as

S(t)=
∫ �

0

∫ 2!

0
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mj
!2
j Dj(t)

�j�j tanh(�j�)
(12)

in which m0 =ml(1 −∑∞
j=1 C

2
j �j=�j�), with ml=	R2!H , is the equivalent impulsive mass of

the liquid that is moving synchronously with the rigid tank, and mj =mlC2
j �j=�

2
j � is the modal

mass of the liquid corresponding to the jth mode of the convective motion. Similarly, the
overturning moment, MOT(t), can be calculated as
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∫ �

0

∫ 2!

0
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where
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Notably,

ml=m0 +
∞∑
j=1

mj (14)

The base shear and overturning moment are central to the earthquake-resistant design of storage
tanks and will be examined to verify the e=ectiveness of seismic isolation. The hydrodynamic
system (8) can be revised for each mode as an analogy of a single-degree-of-freedom base-
excited spring-mass system as

mj
MQDj(t) + kj QDj(t)=−mj Mxg(t); j=1; : : : ;∞ (15)

where QDj(t)=Dj(t)= (�j�j tanh �j�) and kj =!2
j mj. By considering only the >rst N modes, the

hydrodynamic system due to ground excitations can be concisely expressed as

Ms
MQD(t) +Ks QD(t)=−Ms1Mxg (16)
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where QD=[ QD1 · · · QDN ]T is the N × 1 generalized displacement vector of the convective motion
(relative to the tank);

Ms =



m1

. . .

mN




is the N ×N generalized mass matrix of the convective motion;

Ks =



k1

. . .

kN




is the N ×N generalized sti=ness matrix of the liquid, and 1 denotes the N × 1 uniform vector
with all its entries being 1.

Hybrid structural-hydrodynamic systems of base-isolated rigid tanks

When FPS are installed beneath its base for seismic isolation, the rigid tank and the liquid it
contains will slide together during earthquakes (Figure 2(a)). The kinetic energy (T ) and the
potential energy (V ) of the hybrid structural-hydrodynamic system are de>ned, respectively,
as

T =[ Q̇D+ 1(ẋb + ẋg)]TMs[ Q̇D+ 1(ẋb + ẋg)] + 1
2mb(ẋb + ẋg)2 (17a)

and

V =
1
2
QDTKs QD+mtgRFPS(1− cos ))∼= 1

2
QDTKs QD+

1
2

mt

RFPS
x2b (17b)

where xb and ẋb are, respectively, the sliding displacement and sliding velocity of the base
(relative to the ground), mb is the e=ective mass of the tank, including the mass of the tank
itself and the equivalent impulsive mass (m0) of the liquid; mt =

∑N
j=1mj+mb is the total mass

of the hybrid system; RFPS is the radius of curvature of the sliding surface and )∼= xb=RFPS

is the sliding angle around the center of curvature as depicted in Figure 2(b). Considering
the friction force, f(t), between the sliding interfaces of the bearing as a non-conservative
force, the equation of motion of the hybrid system can be derived by applying the Lagrange’s
equation [11] as

M Mx(t) +Kx(t)=−E Mxg(t) + Bf(t) (18)

where

x(t)=

(
QD(t)
xb(t)

)

is the (N + 1)× 1 displacement vector;

M=

[
Ms Ms1
1TMs 1TMs1+mb

]
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Figure 2. (a) Tank isolated with friction pendulum seismic bearings and (b) pendulum mechanism.

is the (N + 1)× (N + 1) mass matrix,

K=

[
Ks 0
0 mtg

R

]

is the (N + 1)× (N + 1) sti=ness matrix,

E=

(
Ms1

1TMs1+mb

)
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is the (N + 1)× 1 location matrix of the earthquake load, and

B=

(
0
1

)

is the (N + 1)× 1 location matrix of the friction force.
By assuming small sliding displacement ()�1), the friction force, f, acting along the sliding

surfaces is governed by

|f|6+mtg (19)

where + is the friction coeAcient. The non-sliding conditions for the bearings are

|f|¡+mtg and ẋb = 0 (20)

and sliding occurs only if

f=+mtg sgn(ẋb) and ẋb �=0 (21)

where sgn denotes the signum function. The hybrid structural-hydrodynamic system (18) is
highly non-linear because of friction. A numerical procedure based on the concept of shear
balance at the sliding interfaces [12; 13] is developed in the following section to solve this
non-linear dynamic problem.

SOLUTION ALGORITHM FOR HYBRID STRUCTURAL-HYDRODYNAMIC
SYSTEMS WITH SLIDING MOTION

Equation (18) can be represented in a state-space form, leading to a >rst-order di=erential
equation as

ż(t)=A∗z(t) + E∗ Mxg(t) + B∗f(t) (22)

where

z(t)=

[
x(t)
ẋ(t)

]

is the 2(N + 1)× 1 state vector,

A∗=

[
0 I

−M−1K 0

]

is the 2(N + 1)× 2(N + 1) system matrix,

B∗=

[
0

M−1B

]
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is the 2(N + 1)× 1 friction-loading matrix and

E∗=

[
0

M−1E

]

is the 2(N + 1)× 1 external loading matrix.
With >rst-order interpolations of the loading terms between two consecutive sampling in-

stants, the state equation (22) can further be resolved as a di=erence equation to be

z[k]=Az[k − 1] + B0f[k − 1] + B1f[k] + E0 Mxg[k − 1] + E1 Mxg[k] (23)

where
A=eA

∗Rt is the 2(N +1)× 2(N +1) discrete-time system matrix with Rt being the integration
time step,
B0=[(A)−1A+(1=Rt)(A)−2(I−A)]B is the 2(N+1)× 1 discrete-time friction-loading matrix
of the previous time step,
B1=[−(A)−1+(1=Rt)(A)−2(A−I)]B is the 2(N+1)× 1 discrete-time friction-loading matrix
of the current time step,
E0=[(A)−1A+(1=Rt)(A)−2(I−A)]E is the 2(N+1)× 1 discrete-time external loading matrix
of the previous time step, and
E1=[−(A)−1+(1=Rt)(A)−2(A−I)]E is the 2(N+1)× 1 discrete-time external loading matrix
of the current time step.
The discrete-time state-space equation (23) indicates that, the friction force, f[k], of the

current time instant depends on the motion conditions, which are not known as a priori.
Therefore, the solution cannot be obtained directly through simple recursive calculations.
During the slip phases, the friction force is known as de>ned by Equation (21), but the

sliding velocity remains unknown. Meanwhile, during the stick phases, the sliding velocity at
the base Goor is zero, as de>ned by Equation (20), but the friction force (or equivalently, the
base shear) remains undetermined. Restated, either the friction force or the sliding velocity
is known, depending on the motion condition. This extra condition allows the friction force,
f[k], at time k to be uniquely determined.
Initially, for time instant k, granting a stick condition for the isolated tank gives

ẋb[k]=Dz[k]= 0 (24)

where D=[0 BT] is the 1× 2(N + 1) location vector of the base velocity, ẋb[k]. Substituting
Equation (23) for z[k] into Equation (24), the expected base shear, Qf[k], which would prevent
the tank from sliding can be resolved in a closed form as

Qf[k]=−(DB1)−1D(Az[k − 1] + E0w[k − 1] + E1w[k] + B0f[k − 1]) (25)

which, according to the friction law, should be less than the maximum friction force. Now, if
| Qf[k]|¡+mtg, then the stick condition granted initially in the analysis is correct, and the actual
friction force is updated by f[k]= Qf[k]; otherwise, the tank should be in the slip phase instead,
and the friction force is corrected in accordance with f[k]=+W sgn( Qf[k]). With the friction
force determined, the response, z[k], of the isolated tank is obtained from Equation (23).
The friction force is determined, with the extra conditions of equilibrium and kinematic

compatibility at the sliding interfaces, by simple matrix algebraic analysis under the framework
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Figure 3. Accumulated modal participation factors of the hydrodynamic system.

of state-space formulation. The structural-hydrodynamic responses are thus obtained recursively
with a one-step correction strategy, and a constant integration step size can be used throughout
the analysis, without slowing down even near the stick–slip transitions.

NUMERICAL EXAMPLE

Consider a cylindrical rigid tank with radius (R) of 3m, height of 7m and weight of 65:2 kN.
Containing liquid of density 	=800 kg=m3, the tank is to be isolated using FPS bearings with
a radius of curvature RFPS =1m so that the fundamental period of the isolated tank during
sliding is shifted to 2 s, regardless of the storage level. The 1940 El Centro earthquake serves
as the input to verify the e=ectiveness of seismic isolation using FPS bearings. The integration
time step of 0:01 s, which is considered large in the context of non-linear dynamic analysis,
is used throughout the numerical simulations.
For an eAcient and accurate analysis, the hydrodynamic system (16) should include suf-

>cient vibration modes. According to Figure 3, the curves of the accumulated percentage of
modal participation factors with respect to the height-to-radius ratio (H=R) indicate that, over
99 per cent of the hydrodynamic motion is suAciently covered by the >rst >ve modes, regard-
less of the H=R ratio. Therefore, the following analyses only account for the >rst >ve modes
of the hydrodynamic motion. Figure 4 illustrates the corresponding mode shapes of the surface
sloshing along the direction of �=0. The centre of the circular cross-section is a nodal point
for every mode, without exception, because of the cylindrical symmetry of the tank.
E=ectiveness of seismic isolation of the storage tanks is >rst veri>ed by investigating the

dynamic pressure exerted on the tank wall during the earthquake. Figures 5–7 illustrate the
pro>les of the dynamic pressure distribution, with and without seismic isolation, on the tank
wall (r=R; �=0) for H=R=2; 1 and 0.5, respectively. With seismic isolation, the impulsive
pressure is signi>cantly reduced (Figures 5(a), 6(a) and 7(a)) while the convective pres-
sure remains virtually unchanged (Figures 5(b), 6(b) and 7(b)) so that the overall dynamic
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Figure 4. Mode shapes of the surface sloshing.

Figure 5. Distribution of dynamic pressure on the tank wall (� = 0; H=R = 2).

pressure is depressed (Figures 5(c), 6(c) and 7(c)). This result con>rms the e=ectiveness of
seismic isolation. Notably, the dynamic pressure comes mainly from the impulsive part, and
the proportion of the impulsive pressure to the dynamic pressure increases with H=R. The
latter phenomena can be explained by the modal participation factors in Figure 3, where the
proportion of the impulsive mass in the hydrodynamic system increases with H=R.
The time histories of the base shear (with and without isolation), normalized with respect

to the total weight of the storage tank, W=mtg, are shown in Figure 8(a) for H=R=2. When
the tank is isolated with an FPS of 5 per cent of frictional coeAcient, a signi>cant reduction
on the base shear is observed during the entire history and a peak reduction of over 70 per
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Figure 6. Distribution of dynamic pressure on the tank wall (� = 0; H=R = 1).

Figure 7. Distribution of dynamic pressure on the tank wall (� = 0; H=R = 1=2).

cent is achieved. The overturning moment, which is normalized with respect to the product of
the total weight of the tank and the storage level (WH), exhibits the same trend, as illustrated
in Figure 8(b). Results for both the representative design parameters indicate that seismic
isolation signi>cantly improves the earthquake resistance of the tank. Notably, the isolated
tank cannot rock since the inequality∣∣∣∣MOT

WH

∣∣∣∣¡ 1
H=R

=0:5 (26)

holds for the entire response history. However, no evident change to the hydrodynamics has
been observed, as indicated from the sloshing displacement, d, at the junction of the free
surface with the tank wall along the axis of �=0. This behaviour is natural since the fun-
damental period of the convective motion appears to be long (about 2:5 s in this case) and
thus the sloshing response is not much a=ected by seismic isolation, which e=ectively aims to
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Figure 8. Seismic response analysis of tank–liquid system w= and w=o
base isolation (H=R=2; +=5 per cent).

>lter out the responses of relatively higher frequencies. Figure 8(d) illustrates the time history
of the sliding displacement of the FPS bearing, and the maximum reads only 1:2 cm even
under a strong earthquake. The isolation system can be easily designed to accommodate this
displacement.
To further understand the dynamic characteristics of the tank–liquid system with seismic

isolation, a series of parametric studies is conducted by considering the e=ects of earthquake
intensity (in terms of the peak ground acceleration, PGA), frictional coeAcient (+), and height-
to-radius ratio (H=R). A storage tank with H=R=2 is examined >rst.
Figure 9(a) shows the peak reduction factor of the overturning moment (.M) with respect

to the dimensionless factor PGA=�g for various frictional coeAcients of the sliding bearing,
and the >gure >nds that, variations between the curves for di=erent frictional coeAcients
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Figure 9. (a) Peak reduction of overturning moment (H=R=2). (b) Peak reduction of base shear
(H=R=2). (c) Normalized maximum base displacement (H=R=2).

are negligible. The reduction factor increases with PGA=�g and approaches about 80 per cent
asymptotically. This pattern implies that, for a given friction level, the stronger the earthquake,
the more e=ective the isolation system. This behaviour can also be interpreted as meaning that,
for a given earthquake intensity, the smaller the frictional coeAcient, the better the isolation
performance. Regressive analysis establishes an empirical formula for .M as

.M =82:4[1− e−0:57(PGA=�g−1:2)] (27)
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Figure 10. (a) Peak reduction of overturning moment. (b) Peak reduction of base shear.
(c) Normalized maximum base displacement.

from which the control eAciency of seismic isolation on the tank can be estimated for a
speci>ed earthquake intensity and a frictional coeAcient of the FPS.
Figure 9(b) shows the peak reduction factor of the base shear (.S) with respect to the

dimensionless factor PGA=�g for various frictional coeAcients of the sliding bearing. The
reduction factor increases with PGA=�g and approaches 80 per cent asymptotically, as with
the behavior which resembles that of the overturning moment. Again, variations between the
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results for di=erent frictional coeAcients are negligible. Similarly, an empirical formula is
established for .S as

.S =81:9[1− e−0:58(PGA=�g−1:2)] (28)

Figure 9(c) shows the normalized maximum base displacement, !2xb;max=PGA, with respect
to the dimensionless factor, PGA=�g for various frictional coeAcients of the sliding bearing,
where !=

√
g=RFPS is the fundamental frequency of the isolated tank and xb;max is the max-

imum base displacement. Again the curves for di=erent frictional coeAcients are found to
be largely the same. The normalized maximum base displacement is found to increase with
PGA=�g. This behaviour means that for a given friction level, the stronger the earthquake, the
further the bearings slide. Or conversely, for a given earthquake intensity, the sliding displace-
ment decreases with increasing frictional coeAcient. This behaviour is reasonable since the
friction mechanism dissipates energy and thus helps limit the sliding displacement. An empir-
ical formula is established for the normalized maximum displacement by regressive analysis
as

!2xb;max

PGA
=1− e−0:086(PGA=�g−1:2) (29)

from which the maximum base displacement for various dynamic systems can be estimated
for a speci>ed earthquake intensity and a frictional coeAcient. The displacement bound, xb;max,
serves as the basis for sizing the isolation system in the preliminary design stage.
The e=ect of the height-to-radius ratio on seismic isolation of the tanks is further investigated

as what follows. Figures 10(a) and (b) illustrate the regression curves of the peak reduction
of the overturning moment and the base shear, respectively, with respect to PGA=�g for
various height-to-radius ratios (H=R=0:5; 1 and 2). Evidently, higher storage level implies a
more e=ective isolation performance. This result is consistent with the previous observation
from Figure 3 that, the proportion of the impulsive mass in the entire hydrodynamic system
increases with H=R and seismic isolation is most e=ective for this portion. On the other
hand, the normalized base displacement with respect to the dimensionless factor PGA=�g in
Figure 10(c) reveals that, for a speci>ed PGA=�g, higher storage level implies greater sliding
distance. Results for other H=R ratios, if desired, may then be approximated from the three
curves by interpolation or extrapolation.

CONCLUSIONS

This study has explored the feasibility of using friction pendulum bearings for seismic isola-
tion of rigid storage tanks. The dynamic analysis of rigid tanks implemented with sliding-type
isolation systems is a highly non-linear problem due to the presence of frictions. An analytical
model for seismically isolated cylindrical storage tanks has been derived and a solution algo-
rithm developed, to assess the structural-hydrodynamic characteristics of such hybrid systems.
The friction force is determined, with the extra conditions of equilibrium and kinematic com-
patibility at the sliding interfaces, by simple matrix algebraic analysis under the framework of
state-space formulation. The structural-hydrodynamic responses are thus obtained recursively
with a one-step correction strategy, and a constant integration step size can be used throughout
the analysis, without slowing down even near the stick–slip transitions. Numerical simulations
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have been performed using the 1940 El Centro Earthquake as the input. Based on the simu-
lation results, it can be concluded that

(1) The hydrodynamic pressure of the tank–liquid system during earthquakes is mainly
caused by the impulsive component rather than the convective component, and the
proportion of the impulsive pressure in the overall hydrodynamic pressure increases
with H=R.

(2) Seismic isolation can e=ectively reduce the impulsive dynamic pressure while barely
a=ecting the convective dynamic pressure.

(3) The eAciency of seismic isolation control, in terms of peak reduction in base shear or
overturning moment, increases with PGA=�g. For a speci>ed frictional coeAcient of the
sliding bearings, isolation e=ect increases with earthquake strength; or conversely, for a
speci>ed earthquake intensity, isolation e=ect increases as frictional coeAcient declines.
Peak reduction of up to 80 per cent can be achieved.

(4) The eAciency of seismic isolation control increases with H=R. For a speci>ed PGA=�g,
the larger the H=R ratio implies a better isolation e=ect, while larger displacement of
the bearings is demanded as a trade-o=.
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