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Abstract

This study presents a numerical algorithm based on a state-space approach for the dynamic analysis of sliding systems. According
to the proposed scheme, the equations of motion for the base-isolated structure in both the stick and slip phases are integrated into
a single set of equations by treating the friction force as a Lagrange multiplier. The Lagrange multiplier is determined, with additional
conditions of equilibrium and kinematic compatibility at the sliding interfaces, via a simple matrix algebraic calculation within the
framework of state-space formulations. The responses can thus be obtained recursively from the discrete-time state-space equation
using a one-step correction procedure. In addition, the integration step size is maintained constant throughout the analysis. The
effectiveness of the proposed scheme is confirmed through examples of sliding systems, under conditions of either free vibration
or harmonic excitations, for which analytical solutions are available. Additionally, the novel algorithm is compared with a corrective
psuedo-force iterative procedure for seismic response analysis of a FPS-supported five-story building. The novel algorithm is more
systematic and easy to implement than conventional approaches. Moreover, by simplifying the task, the proposed algorithm also
enhances accuracy and efficiency.  2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Base isolation is a promising approach to protecting
civil engineering structures from earthquakes. By
implementing isolation devices at the base of the struc-
tures, the transmission path of seismic force is released,
thus reducing the seismic force applied to the structure
significantly. Isolation devices are essentially classified
into two types: rubber bearings and sliding bearings.
Although rubber bearings have been extensively applied
in base isolation systems, sliding bearings have recently
found increasing applications [1–3]. Implementing slid-
ing bearings limits the shear force transmitted to the
structure to the maximum frictional force of the sliding
bearings, regardless of earthquake intensity. If the slid-
ing bearings were frictionless, the transmission path of
the seismic force would be completely released, although
the sliding displacement could be excessive. Over-dis-
placing of the bearings can be relieved by the friction
mechanism of the sliding surfaces dissipating vibration
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energy. The introduction of friction pendulum systems
(FPS) will further enhance the position-restoring and fre-
quency-tuning capability of the isolation system. These
characteristics make sliding bearings functionally equiv-
alent to rubber bearings in many applications.

Because the stick and the slip phases exist alternately,
depending on the magnitude of the shear forces at the
interfaces of the sliding bearings, the dynamic behavior
of a sliding structure can be highly nonlinear. This
behavior is so complicated that an analytical solution is
limited to the harmonic motions of sliding structures
with a maximum of two degrees of freedom [4,5]. More
realistic transient responses of generic sliding structures
can only be obtained numerically. Mostaghel and Tan-
bakuchi [6] proposed a semi-analytical solution pro-
cedure involving alternately using two sets of motion
equations corresponding to the stick and slip phases of
the system, respectively. Yang et al. [7] proposed a
numerical solution procedure based on Newmark’s con-
stant-average-acceleration method involving attaching a
fictitious spring to the foundation floor, with a stiffness
of either zero for slip phases or infinity for stick phases,
to represent the frictional effect of the sliding bearings.
Moreover, Nagarajaiah et al. [8] proposed a corrective
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pseudo-force iterative procedure, also based on New-
mark’s method, for the dynamic analysis of three-dimen-
sional base isolated structures, in which the behavior of
the friction mechanism is governed by a nonlinear differ-
ential equation known as Wen’s model [9]. This nonlin-
ear differential equation is solved by a semi-implicit
Runge–Kutta method [10]. To ensure the analysis con-
verges with sufficient accuracy, the step size used either
has to be kept sufficiently small (for example, �t�
10−3 s, or an even smaller step size for high-frequency
structures) or reduced near the stick–slip transitions (as
in [8]), which inevitably makes the solution process
rather unwieldy and computationally inefficient.

While Newmark’s method is most popular for
dynamic analysis of linear or nonlinear systems, the
state-space procedure (SSP) is comparably effective in
the context of numerical stability and accuracy. The two
approaches differ mainly in that Newmark’s method is
based on the approximation of derivatives (representing
the structural responses) of the second-order differential
equation, while the SSP method is based on piecewise
interpolation of the discrete loading functions so that the
convolution integral can be carried out. Since the SSP
method enforces no assumption on the response func-
tions, distortion of the dynamic characteristics of the sys-
tems is relatively mild compared with Newmark’s
method. Meanwhile, assessment of the numerical accu-
racy for both the numerical procedures via a frequency-
domain analysis of linear systems indicates that the SSP
method is more accurate, as presented in Appendix A.

This study presents a simple and efficient procedure
for the dynamic analysis of sliding structures based on
a state-space approach [11]. The equations of motion for
a base-isolated structure in both the stick and slip phases
are integrated into a single set of equations by treating
the friction force as a Lagrange multiplier. The Lagrange
multiplier can be determined with additional conditions
of equilibrium and kinematic compatibility at the sliding
interfaces, by simple matrix algebraic calculation within
the framework of state-space formulations. The
responses can thus be obtained recursively from the dis-
crete-time state-space equation via a one-step correction
procedure, and a constant integration time step is used
throughout the analysis. Effectiveness of the proposed
scheme is verified by analyzing, respectively, a single-
degree-of-freedom (SDOF) and two-degree-of-freedom
(2DOF) sliding structure for which analytical solutions
are available. Additionally, the proposed scheme is com-
pared to a corrective pseudo-force iterative procedure for
seismic response analysis of a FPS-supported five-story
building. Being more systematic and easy to implement,
the proposed algorithm simplifies the task, while also
enhancing accuracy and efficiency.

2. Friction mechanism

The motion of the friction bearings can be resolved
into stick and slip phases. The stick phase occurs when
the vibration-induced shear force between the sliding
interfaces of the bearing fails to overcome the maximum
friction force. On such an occasion, the relative velocity
between the sliding interfaces is zero. However, once
the shear force reaches the maximum friction force, the
bearing takes no more shear and is forced to slide. The
friction force dissipates energy during the slip modes.
The friction force, F, acting along the sliding surfaces
is governed by

|F|�mW (1)

where W is the weight of the structure, and m is the coef-
ficient of friction which is material-dependent. The fric-
tional coefficient of Teflon–steel interfaces, for example,
depends on sliding velocity and bearing pressure, as pro-
posed by Mokha et al. [12,13] as

m�mmax�(mmax�mmin) exp(�a�u̇b�) (2)

where mmax and mmin are the maximum and minimum
values of the coefficient of friction, respectively; u̇b is
the sliding velocity of the bearing and coefficient a is
determined from bearing pressure. For Coulomb’s model
[14], the frictional coefficient is assumed to be constant.

In summary, the stick conditions require that

|F|�mW (3a)

and

u̇b�0 (3b)

whereas slip conditions occur only if

F�mW sgn(u̇b) (4a)

in which sgn denotes the signum function, and

u̇b�0 (4b)

3. Solution algorithm for generic sliding systems

The equation of motion of a generic sliding structure
under external disturbances w(t) can be represented as

Mü(t)�Cu̇(t)�Ku(t)�Ew(t)�BF(t) (5)

where u(t) is the n×1 displacement vector, M, C, K are
respectively the n×n mass, damping and stiffness matr-
ices, E is the n×q location matrix of the external loads,
w(t) is the q×1 loading vector, B is the n×1 location
matrix of the friction force and F(t) is the friction force
satisfying conditions described in Eqs. (3a) and (3b), or
Eqs. (4a) and (4b).
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3.1. State-space representation

Eq. (5) can be represented in a state-space represen-
tation, leading to a first-order differential equation as
[11]

ż(t)�A∗z(t)�E∗w(t)�B∗F(t) (6)

where

z(t)��u(t)

u̇(t)
�

is the 2n×1 state vector,

A∗��0 I

−M−1K −M−1C
�

is the 2n×2n system matrix,

B∗��0

M−1B
�

is the 2n×1 friction loading matrix, and

E∗��0

M−1E
�

is the 2n×q external loading matrix.
With first-order interpolations of the loading terms

between two consecutive sampling instants, the state Eq.
(6) can further be resolved as a difference equation to
be [11]

z[k]�Az[k�1]�B0F[k�1]�B1F[k]�E0w[k�1] (7)

�E1w[k]

whereA=eA∗�t
is the 2n×2n discrete-time system matrix

with �t being the integration time step,

B0��(A∗)−1A�
1
�t

(A∗)−2(I�A)�B∗

is the 2n×1 discrete-time friction loading matrix of the
previous time step,

B1���(A∗)−1�
1
�t

(A∗)−2(A�I)�B∗

is the 2n×1 discrete-time friction loading matrix of the
current time step,

E0��(A∗)−1A�
1
�t

(A∗)−2(I�A)�E∗

is the 2n×q discrete-time external loading matrix of the
previous time step, and

E1���(A∗)−1A�
1
�t

(A∗)−2(A�I)�E∗

is the 2n×q discrete-time external loading matrix of the
current time step.

3.2. Shear-balance procedure (SBP)

The discrete-time state-space equation (7) reveals that,
the friction force, F[k], of the current time instant
depends on the motion conditions, which are not known
as a priori. Therefore, the solution cannot be obtained
directly through simple recursive calculations. Rather
than using an iterative corrective pseudo-force procedure
as is common for nonlinear dynamic analysis, a pro-
cedure based on the concept of shear balance at the slid-
ing interfaces is proposed.

As the friction mechanism reveals, the base shear
force and sliding velocity of the base floor are indicators
of the motion conditions. During the slip phases, the fric-
tion force is defined by Eq. (4a), but the sliding velocity
remains unknown. Meanwhile, during the stick phases,
the sliding velocity at the base floor is zero, as defined
by Eq. (3b), but the friction force (or equivalently, the
base shear) remains undetermined. Restated, either the
friction force or sliding velocity is known, depending on
the motion condition. This extra condition allows the
base shear, F[k], to be uniquely determined at time
instant k.

Initially, for time instant k, granting a stick condition
for the system gives

u̇b[k]�Dz[k]�0 (8)

where D=[0 BT] is the 2n×1 location vector of the base
velocity u̇b[k]. Substituting Eq. (7) for z[k] in Eq. (8),
the base shear force, F̄[k], that would prevent the system
from sliding, can be resolved in a closed-form as

F̄[k]��(DB1)−1D(Az[k�1]�E0w[k�1]�E1w[k] (9)

�B0F[k�1])

which, according to the friction law, should be below
the maximum friction force.

Now, if �F̄[k]��mW, then the stick condition granted
initially in the analysis is correct, and the actual friction
force is updated as F[k]=F̄[k]; otherwise, the system
should be in the slip phase instead, and the friction force
is corrected accordingly as F[k]=mW sgn(F̄[k]). With
F[k] determined, the response, z[k], of the isolated sys-
tem can be obtained from Eq. (7).

When a more sophisticated friction mechanism is con-
sidered, the solution requires an iterative procedure to
locate the corresponding friction coefficient during slid-
ing. For example, taking Mokha’s model, where the fric-
tional coefficient depends on the sliding velocity, u̇b[k],
as described by Eq. (2), the procedure is revised as:

1. Calculate the friction force, F̄[k], by Eq. (9).
2. If �F̄[k]��mminW, then the granted stick condition is
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correct. The actual friction force is revised as
F[k]=F̄[k]; otherwise, the system should be in a slip
phase instead, and the friction force is corrected in
accordance with F[k]=mW sgn(F̄[k]).

3. Calculate system response z[k], by Eq. (7).
4. Determine the coefficient of friction, m̄, by Eq. (2)

corresponding to the sliding velocity u̇b=Dz[k]
obtained in step 3.

5. If �(m̄�m)/m��err where err is the allowable error, set
F[k]=�m̄W sgn(u̇b[k]) and m=m̄, then return to step 2;
otherwise, the solution is accepted, so proceed to the
next time step.

4. Numerical verifications

4.1. Free-vibration response of SDOF sliding systems
with Coulomb friction

The proposed numerical scheme is first applied to
solve the free-vibration response of a Coulomb-friction-
damped sliding system, illustrated in Fig. 1. The equ-
ation of motion of this system can be expressed as [14]

ü�w2
nu��mg sgn(u̇) (10)

where wn is the natural frequency of the system and g is
the gravitational acceleration. Given initial displacement
u(0)=U0 , the free vibration response of the system, nor-
malized with respect to U0, is readily obtained in a
closed-form solution as

u(t/Tn)
U0

��1�(2j�1)
mg

U0w2
n
� cos�2p

t
Tn
�� (11)

(�1) j
mg

U0w2
n

,
j−i
2

�
t

Tn

�
j
2

where Tn is the fundamental period of the sliding sys-
tem, j=1, 2, % but

Fig. 1. Coulomb-friction-damped sliding system.

j�
U0w2

n

2mg
(12)

The above inequality can be derived from the equilib-
rium. Notably, the motion ceases when j	(U0w2

n)/2mg.
Furthermore, the spring–mass sliding system will return
to an undeformed position when the oscillation stops if
U0w2

n/2mg is an integer, otherwise the mass will be per-
manently offset from its origin

Fig. 2 illustrates the free vibration responses, in terms
of displacement, acceleration and friction force, for
U0w2

n/2mg=10 , considering the sampling ratio, �t/Tn, of
0.1 and 0.01, respectively. For �t/Tn=0.1, significant dis-
crepancies exist between numerical (SBP) and analytical
solutions, especially when the motion ceases after five
cycles of free oscillation (as predicted by inequality (12))
where the estimated friction is seriously distorted. The
error arises mainly from assuming a linear variation of
the friction force between two consecutive sampling
points in the analysis, an assumption which is not valid
during stick–slip transitions or direction switches when
both the acceleration and friction responses are discon-
tinuous. However, the error becomes insignificant as the
sampling ratio, �t/Tn, decreases to 0.01. Numerical
results closely match the analytical solutions even during

Fig. 2. Free vibration of the SDOF Coulomb-friction-damped system
(w2

nU0/2mg=10).
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phase transitions. A sampling ratio of 0.01, which is
comparatively large for nonlinear dynamic analysis, is
considered sufficient.

Fig. 3 further illustrates the corresponding results for
U0w2

n/2mg=2.3. While the predicted displacement
response closely approximates the analytical displace-
ment for �t/Tn=0.01, acceleration and friction are only
accurate during the sliding phase. In the stick phase, fol-
lowing one cycle of free oscillation, the numerical pre-
diction does not converge to the analytical solution, even
with a reduced sampling ratio. Nevertheless, the numeri-
cal solution is not divergent either, indicating no error
accumulation.

4.2. Harmonic response of a 2DOF sliding system

The response of sliding structures to harmonic support
motion, studied by Mostaghel et al. [5] via a semi-ana-
lytical procedure, is further investigated herein. Fig. 4
shows a single-story structure of mass m, damping c and
stiffness k, supported by a foundation raft of mass M
that can slide horizontally. The Coulomb frictional coef-
ficient is m. When the ground moves with acceleration
ẍ0, the dynamic response of the system is governed by

Fig. 3. Free vibration of the SDOF Coulomb-friction-damped system
(w2

nU0/2mg=2.3).

Fig. 4. Single-story structure on sliding support.

�m m

m M+m
��ẍr

ẍs
���c 0

0 0
��ẋr

ẋs
���k 0

0 0
��xr

xs
�� (13)

��m

M+m
�ẍ0��0

F
�

where xr is the story displacement relative to the foun-
dation raft, xs is the sliding displacement of the foun-
dation relative to the ground, and F is the friction force.
When the foundation raft slides, the friction force satis-
fies

F��mg(m�M) sgn(ẋs) (14)

Without losing the generality, Eq. (13) can be more con-
veniently expressed as

�1 1

a 1
��ẍr

ẍs
���2zwn 0

0 0
��ẋr

ẋs
���w2

n 0

0 0
��xr

xs
�� (15)

��1

1
�ẍ0��0

aF/m
�

where a=m/(M+m), wn=√k/m and z=c/(2mwn).
A series of parametric studies has been conducted fol-

lowing Mostaghel et al. [5] for the sake of comparison.
These studies considered harmonic support excitation of
ẍ0=A sin 
t with an excitation period of Tg=2p/
=0.5 s
and duration of excitation of 5 s. Response spectra for
the absolute accelerations and sliding displacements nor-
malized with respect to the peak ground acceleration, A,
and the steady-state peak ground displacement,
D=A/
2, are obtained for coefficients of friction
m=0.05, 0.10, 0.15, 0.20, for excitation amplitudes
A=0.5 g, and for mass ratios a=0.25, 0.50. The damping
ratio is assumed to be 5% of the critical damping, while
all calculations use an integration step size of 0.005 s.

Figs. 5(a) and 6(a) show, respectively, the normalized
spectral acceleration of structures with mass ratios
a=0.25 and 0.5. The responses of the isolated structures
are smaller than those of fixed-base structures. Mean-
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Fig. 5. (a) Variations of acceleration with frequency ratio; (b) vari-
ations of sliding displacement with frequency ratio
(x=5%, a=0.25, A=0.5g, Tg=0.5 s).

while, the responses decrease with declining frictional
coefficient. Figs. 5(b) and 6(b) illustrate, respectively,
the normalized spectral displacement of sliding for mass
ratios a=0.25 and 0.5. The structure slides further with
a smaller frictional coefficient. Additionally, the spectral
displacements do not vary significantly with frequency
ratio when a=0.25. As the mass ratio increases to
a=0.5, the spectral displacements become somewhat fre-
quency dependent. Excellent agreement has been
observed between the numerical results and the analyti-
cal solution by Mostaghel et al., further confirming the
effectiveness of the proposed numerical procedure.

4.3. Earthquake response of a five-story base-isolated
structure

Finally, the earthquake response analysis of a proto-
type five-story building implemented with friction pen-
dulum seismic isolation bearings (FPS) is investigated
using both the presented SBP method and the corrective
pseudo-force iterative procedure (CPIP) by Nagarajaiah
et al. [8].

In the CPIP method, the friction force is further rep-
resented by Wen’s model [9] as

Fig. 6. (a) Variations of acceleration with frequency ratio; (b) vari-
ations of sliding displacement with frequency ratio
(x=5%, a=0.5, A=0.5g, Tg=0.5 s).

F�mWq (16)

where m is the friction coefficient, W is the weight of
the structure and q is governed by a nonlinear differential
equation as

q̇�hẋs�b�ẋs��q�n−1q�gẋs�q�n (17)

where h, b, g and n are parameters characterizing the
hysteresis loops of the friction. To facilitate analysis,
these parameters must be carefully calibrated for a pre-
scribed hysteresis obtained by a component test of the
isolation bearing. The friction mechanism of Mokha
depicted by Eq. (2) is adopted with mmax=0.05,
mmin=0.036 and a=78.7 s/m (2 s/in) assumed in this
example.

With no analytical solution available, the “exact” hys-
teresis of a sliding bearing subjected to a harmonic exci-
tation of 0.5 Hz for 30 s is illustrated in Fig. 7(a), which
was simulated by the SBP method with �t=0.0001 s fol-
lowing Mokha’s friction mechanism. Employing the
SBP method with �t=0.001 s, prediction of the hyster-
esis is perfect (Fig. 7(b)), while the calculation is 107
times faster than that required by the “exact” solution in
CPU time. When the step size further increases to 0.01
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Fig. 7. Hysteresis of friction force under harmonic motion.

s, correlation of the result with the “exact” one is still
excellent (Fig. 7(d)), while the calculation is 8369 times
faster than that required by the “exact” solution. On the
other hand, the parameters of Wen’s model in Eq. (17)
are determined from a preliminary parametric study to
be h=30, b=15, g=15, and n=2. Employing the CPIP
method with �t=0.001 s, the simulated hysteresis
approximates the “exact” one closely, except at the cor-
ners where reversing of sliding occurs (Fig. 7(c)), and
the calculation is 89 times faster than that required by
the “exact” solution. However, the numerical solution
diverges when the step size further increases to 0.01 s
(Fig. 7(d)).

The seismic response of a five-story model structure
with FPS isolators is examined next. The radius of cur-
vature of the FPS bearing is 1 m so that the vibration
period of the isolated structure during sliding is shifted
to 2 s. The system parameters of the structure are sum-

marized in Appendix B. The 1940 El Centro earthquake
is used as the excitation.

Fig. 8 illustrates the hysteresis of friction force. The
“exact” solution in Fig. 8(a) is obtained by employing
the SBP method with �t=0.0001 s, since there is no ana-
lytical solution available. The results in Fig. 8(b,d) indi-
cate the SPB method with �t=0.001 or even 0.01 s can
sufficiently predict the “exact” hysteresis. Employing the
CPIP method, with the same parameters of Wen’s model
calibrated in the harmonic case, the prediction of the
hysteresis with �t=0.001 s correlates well with the
“exact” solution with only small discrepancies (Fig.
8(c)). However, the numerical result diverges when
�t=0.01 s. Fig. 9 illustrates the time history of the sliding
displacement. The residual displacement after the earth-
quake episode is found to be insignificant, indicating a
good restoring capability of the FPS isolation system.
Clearly, the results by the SBP method with �t=0.001
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Fig. 8. Hysteresis of friction force under the El Centro earthquake.

and 0.01 s coincide with the “exact” solution, while that
by the CPIP with �t=0.001 s deviates slightly from the
“exact” solution. The responses of the roof displacement
(relative to the base) reveal a similar trend, as depicted
in Fig. 10. Besides, for an acceptable numerical accu-
racy, the computational time required by the SBP
method with �t=0.01 s is approximately 94 times faster
than that required by the CPIP method with �t=0.001 s,
without counting the time needed to calibrate Wen’s
model. Furthermore, the structural response amplitude,
illustrated in Fig. 11, is substantially reduced compared
with that without seismic isolation (fixed), confirming
the effectiveness of FPS isolation bearings under the El
Centro earthquake.

5. Conclusions

This study has developed a numerical procedure based
on a state-space difference equation and the concept of
shear balance, with additional conditions of equilibrium
and kinematic compatibility at the sliding interfaces for
the dynamic analysis of sliding structures. Effectiveness
of the algorithm is verified through examples of sliding
systems, under conditions of either free vibration or har-
monic excitations, for which analytical solutions are
available. The proposed scheme accurately predicts the
nonlinear behavior for forced vibration cases and free
vibration cases with U0w2

n/2mg being an integer. How-
ever, for free vibration cases with U0w2

n/2mg being a non-
integer, the acceleration and friction responses are only
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Fig. 9. Sliding displacement of the isolated structure under the El
Centro earthquake.

Fig. 10. Roof relative displacement under the El Centro earthquake.

accurate during the sliding phases. Both the proposed
scheme and a corrective pseudo-force iterative procedure
are applied comparatively for seismic response analysis
of a FPS-supported five-story building. Logically simple
and easy to implement, the proposed scheme substan-
tially simplifies the task with accuracy and efficiency
enhanced to a large extent. The proposed scheme has the
following features:

1. The dynamics of the sliding system is represented by

Fig. 11. Roof displacement with and without seismic isolation.

a single set of state-space equations without changing
any system parameter during the analysis, regardless
of either the slip or stick phase.

2. No prescribed hysteresis of friction force is needed,
as required by the corrective pseudo-force iterative
procedure. The friction force (or Lagrange multiplier)
can be obtained by simple matrix algebraic calcu-
lation.

3. A constant and relatively larger integration interval is
allowed throughout the analysis, compared with the
CPIP method. The numerical results that employ the
proposed SBP method converge to the “exact” sol-
utions with a step size as large as 0.01 s, thus helping
to significantly reduce the computational effort.

4. It requires only a one-step correction without iteration
when the Coulomb’s model is considered as the fric-
tion mechanism. With a moderate modification, the
numerical scheme can further resolve problems
involving a more sophisticated frictional mechanism
such as the Mokha’s model.

5. With the friction force(s) treated as an independent
variable (vector), this algorithm is flexible enough to
be extended further for solving dynamic problems of
sliding structures with unsynchronized multiple sup-
port motions.
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Appendix A

Without a loss of generality, a SDOF structure is con-
sidered to investigate the numerical accuracy for both
the Newmark and SSP methods.

A.1. Newmark method

The basic equations of the Newmark method are gen-
erally formulated as

mẍ[k]�cẋ[k]�kx[k]��mw[k] (A1)

x[k]�x[k�1]��tẋ[k�1]��t2��1
2�a�ẍ[k�1] (A2)

�aẍ[k]�
ẋ[k]�ẋ[k�1]��t[(1�d)ẍ[k�1]�dẋ[k]] (A3)

where x[k] is the displacement at the kth time instant,
m, c and k are, respectively, the mass, damping and stiff-
ness of the system, w is the ground excitation, �t is the
integration time interval, a and d are parameters charac-
terizing the approximation strategy. If d�1/2 and a�
d/2, the Newmark method is unconditionally stable.

Eqs. (A1)–(A3) can be concisely expressed in a recur-
sive matrix form as

Fig. A1. Frequency response function by the Newmark method
(d=1/2, a=1/4, x=0.01).

z[k]�Az[k�1]�Ew[k] (A4)

where

z[k]��
x[k]

ẋ[k]

ẍ[k]�
is a 3×1 structural response vector,

A=�
1−�t2a

k
m̂

�t−�t2a
c
m̂

−�t3a
k
m̂

�t2�1
2

−a�−�t3(1−d)a
c
m̂

−�t4�1
2

−a�ak
m̂

−�td
k
m̂

1−�td
c
m̂

−�t2d
k
m̂

�t(1− d) −�t2(1−d)d
c
m̂

−�t3�1
2

−a�d k
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is a 3×1 effective load vector, and m̂=m+�tdc+�t2ak is
the effective mass.

Taking a z-transformation of the difference equation

Fig. A2. Frequency response function by the SSP method (x=0.01).
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Eq. (A4), the structural response z[k] and the external
disturbance w[k] are related in frequency-domain by

Z(z)�H(z)W(z) (A5)

where Z(z) and W(z) are the z-transforms of z[k] and
w[k], respectively. H(z)=(I�z−1A)−1E is the 3×1 fre-
quency response function by assigning z=ej2pf�t. The dis-
placement frequency response function, X(f), can be
specifically calculated as

X(f)�D(I�e−j2pf�tA)−1E (A6)

where D=[1 0 0] is the location vector of the displace-
ment.

A.2. State-space procedure (SSP)

The discrete-time state-space equation of a SDOF
structure subjected to ground excitation can be
expressed as

z[k]�Az[k�1]�E0w[k�1]�E1w[k] (A7)

where A=eA∗�t is a 2×2 discrete-time system matrix,
in which

Table 1

System parameter Parameter value

Mass matrix M (N s2/m)

Stiffness matrix K (N/m)

Damping matrix C (N s/m)

Modal frequency before isolated f (Hz) [0.86 2.89 5.76 9.41 12.79]T

Modal damping factor before isolated x (%) [3.00 3.00 3.00 4.90 6.66]T

Modal frequency after isolated f (Hz) [0.45 1.58 3.51 6.42 10.05 13.14]T

Modal damping factor after isolated x (%) [0.33 4.10 3.96 3.67 3.58 6.90]T

A∗��0 1

−
k
m

−
c
m�

E0 is a 2×1 load matrix of the previous time-step, and
E1 is a 2×1 load matrix of the current time-step. The
SSP method is uncondionally stable if the structure itself
is stable (that is, wn	0 and x	0), regardless of the
step size.

Taking a z-transform of the difference equation (A7),
the structural responses z[k] and the external disturbance
w[k] are related in the frequency-domain by

Z(z)�H(z)W(z) (A8)

where Z(z) and W(z) are the z-transforms of z[k] and
w[k], respectively.

H(z)�(I�z−1A)−1(z−1E0�E1)

is the 2×1 frequency response function by assigning
z=ej2pf�t. The displacement frequency response function,
X(f), can be specifically calculated as
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X(f)�D(I�e−j2pf�tA)−1(e−j2pf�tE0�E1) (A9)

where D=[1 0] is the location vector of the displacement.
By employing the Newmark method with d=1/2 and
a=1/4, the displacement frequency response functions
for �t/Tn=0.1 and 0.2 are depicted in Fig. A1, while the
analytical solution is comparatively presented. When
�t/Tn=0.1, the peak of the frequency response is slightly
reduced in magnitude and shifted leftward, implying a
distortion on the dynamic characteristics of the system.
In addition, the peak shifts further as �t/Tn increases to
0.2. However, the SSP method indicates no distortion on
the frequency response function, even if �t/Tn=0.2, as
demonstrated in Fig. A2. This observation confirms a
complete conservation of the structure’s dynamic
characteristics employing the SSP method.

Appendix B. Parameters of a multi-story sliding
structure

Table 1
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