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We present a theoretical study of the spin–orbit interaction impact on electron energy states in
small cylindrical and spherical quantum dots. The investigation is based on the effective one-elec-
tronic band Hamiltonian and the spin dependent boundary conditions. It has been demonstrated
that the spin–orbit interaction can significantly modify the energy spectrum of InAs and InSb
quantum dots. The splitting can provide a situation where only the lowest spin split energy states
are bound in the dot. A reasonable agreement was found with data from more sophisticated theo-
retical models for the spherical quantum dots which is available in the literature.

1. Introduction

The study of semiconductor quantum dots (QDs) and nanocrystals in recent years has
been of a great interest from experimental and theoretical points of view (see [1–3]
and references therein). The interest originates from an ultimate limit of size quantiza-
tion in solids in those objects. For an ideal QD the electron spectrum consists of a set
of discrete levels and the level density is a set of d-functions. This makes the semicon-
ductor quantum dots very attractive for possible applications in micro and nano-opto-
electronics [2]. On the other hand, unique electronic characteristics of the QDs make it
possible to model atomic physics in macroscopic systems experimentally and theoreti-
cally [4]. Thus, the electron energy level hierarchy in QDs is an object of extensive
investigations.

The electron spin plays an important role in the QD design, and spin effects can
significantly alter the electron energy spectrum [5–7]. An additional interest in the spin
dependent energy structure of semiconductor QDs is produced by a new branch of
semiconductor electronics, the so called “spintronics” [8, 9]. In semiconductor spintro-
nics devices, the carrier generation, recombination, and transport will be controlled by
the electron spin polarization as well as the electron charge. Obviously, a study of the
electron spin-dependent confinement in semiconductor QDs can be an essential part of
the semiconductor spintronics development.

The spin–orbit interaction has been used successfully to interpret many experimental
results in various quantum structures of III–V semiconductors, quantum wells and
wires [10–21]. It has been found that this interaction can change the electronic proper-
ties of those structures essentially. In this paper, we investigate the spin–orbit interac-
tion impact on QD energy states of narrow gap semiconductors such as InAs and InSb.
Different methods have been used in recent theoretical investigations of QDs (see e.g.
[4, 22–28] and references therein). In this study we use the effective one-band spin-
dependent Hamiltonian with the spin-dependent boundary conditions [14, 15]. Cou-
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lomb interaction between electrons is neglected for simplification. However, it has
been shown recently (see e.g. [29]), that the electron–electron interaction in systems
with a strong confinement can lead to a reinforcement of the spin–orbit interaction.
In addition, we will show that the spin–orbit interaction plays an important and inter-
esting role in relatively small QDs where the Coulomb interaction can be described
by means of perturbation theory. It will be clear from the following that principal
consequences of the spin–orbit interaction can be discussed with the used simplifica-
tions.

The QDs size, shape, and material parameters are obviously important for the elec-
tron energy state determination. We consider cylindrical and spherical QDs with hard-
wall confinement potential that is induced by the discontinuity of the conduction band
edge of the systems. This model is commonly used in calculations of the electron en-
ergy states in QDs [26]. The symmetry allows us to solve the three-dimensional Schrö-
dinger equation with a small number of additional approximations. In the same time
the basic structure parameters (such as the energy gaps, effective masses, band offsets
etc.) are affected by different factors (strain in the system, for instance) and are often
poorly known. The parameters for cylindrical QDs vary within a wide range in the
modern literature [24, 25]. In our calculations we adjust the parameters in accordance
to available information. As a reference, we consider spherical QDs, which can be pro-
duced by means of colloidal chemistry techniques [23, 30]. For the last mentioned type
of QDs we can use well adjusted material parameters.

The paper is organized as following. Section 2 begins with an introduction to the
effective one band spin-dependent Hamiltonian and the spin-dependent boundary con-
ditions used for quantum heterostructures. Section 3 describes lines of calculations for
cylindrical and Section 4 for spherical QDs. Section 5 is devoted to the discussion of
the calculated results. Conclusions are drawn in Section 6.

2. Effective Hamiltonian and Spin-Dependent Boundary Conditions

We will consider electrons confined in three-dimensional quantum structures and use
the approximate one-band effective Hamiltonian [15],

ĤH ¼ ĤH0 þ V̂VsoðrÞ : ð1Þ

In Eq. (1) H0 is the system Hamiltonian without spin–orbit interaction [31],

ĤH0 ¼ � �h2

2
rr

1
mðE; rÞ

� �
rr þ VðrÞ ;

where rr stands for the spatial gradient, mðE; rÞ is the energy and position dependent
electron effective mass,

1
mðE; rÞ ¼

2P2

3�h2

2
Eþ EgðrÞ � VðrÞ

þ 1
Eþ EgðrÞ þ DðrÞ � VðrÞ

� �
;

VðrÞ is the confinement potential, EgðrÞ and DðrÞ stand for the position dependent band
gap and the spin–orbit splitting in the valence band, respectively, and P is the conven-
tional momentum matrix element [31, 32]. The spin–orbit interaction for the conduct-

176 O. Voskoboynikov et al.: Spin–Orbit Energy State Splitting in Semiconductor QDs



ing band electrons VsoðrÞ is described by [15, 33, 34]

V̂VsoðrÞ ¼ irbðE; rÞ � ŝs �r½ 
 ; ð2Þ

where

bðE; rÞ ¼ P
2

3
1

Eþ EgðrÞ � VðrÞ
� 1
Eþ EgðrÞ þ DðrÞ � VðrÞ

� �
;

is the spin–orbit coupling parameter, and ŝs ¼ fsxsyszg is the vector of the Pauli ma-
trices.

For systems with a sharp discontinuity of the conduction band edges between the QD
(material 1) and the semiconductor matrix (material 2) the hard-wall confinement po-
tential can be presented as

VðrÞ ¼
0; r 2 1 ;

V0; r 2 2 :

�
From integration of the Schrödinger equation with Hamiltonian (1) along the direction
perpendicular to the interface (rn) we obtain the spin dependent Ben Daniel-Duke
boundary conditions for the electron wave function YðrÞ,

YAðrsÞ ¼ YBðrsÞ ;

�h2

2mðE; rsÞ
r � ibðE; rsÞ ŝs �r½ 


( )
n

YðrsÞ ¼ const: ; ð3Þ

where rs denotes the position of the system interface. The boundary conditions above
obviously depend on the electron spin and originate from the difference of the spin–
orbit interaction parameters in different materials
.

3. Cylindrical QDs

When the quantum dot has a disk shape of radius q0 and thickness z0 we solve the
problem with cylindrical coordinates ðq;f; zÞ. The origin of the system lies in the center
of the disk and the z-axis is chosen along the rotation axis. Because of the cylindrical
symmetry the wave function can be represented as

YðrÞ ¼ FðR; zÞ exp ðilfÞ ;

where l ¼ 0;�1;�2; . . . is the electron orbital quantum number. To derive the equation
for FðR; zÞ we will use the adiabatic approximation [26, 27, 35], when an approximate
wave function can be taken in the form

FðR; zÞ ’ RðqÞ ZðzÞ :

First, we consider the ground state of the z-direction electron motion and solve the
one-dimensional quantum well problem. The wave function of the ground state has the
form

ZðzÞ ¼ A cos ðkzÞ ; zj j < z0=2 ;
B exp ð�k zj jÞ ; zj j � z0=2

�
; ð4Þ
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where

kðEq;EzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m1ðEq þ EzÞ Ez

p
�h

kðEq;EzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2ðEq þ EzÞ ðV0 � EzÞ

p
�h

;

miðEÞ is the energy dependent electron effective mass inside ði ¼ 1Þ and outside ði ¼ 2Þ
the dot, Eq and Ez are the effective energies of the q- and z-direction motions (the
total electron energy is E ¼ Eq þ Ez). From the Ben-Daniel Duke boundary conditions
we can obtain the transcendental equation

tan
kðEq;EzÞ z0

2

� �
¼ m1ðEÞ
m2ðEÞ

kðEq;EzÞ
kðEq;EzÞ

: ð5Þ

Equation (5) gives the dependence Ez (Eq) in an implicit form. We substitute the wave
function (4) (after proper normalization) in the three-dimensional Schr€odinger equation
and then integrate out the z-coordinate by taking the averageÐ

dz Z*ðzÞ ĤHZðzÞ ¼ ĤHq :

The quasi-one-dimensional Schrödinger equation in the q-direction (we neglect the elec-
tron kinetic energy contribution from the z-dependent part for q � q0 [35]) is given in
the form

� �h2

2 ~mm1ðEq;EzÞ
d2

dq2
þ d
q dq

� l2

q2

 !
R1ðqÞ ¼ EqR1ðqÞ ; q < q0;

� �h2

2m2ðEq þ EzÞ
d2

dq2
þ d
qdq

� l2

q2

 !
R2ðqÞ

¼ Eq þ EzðEqÞ � V0

 �

R2ðqÞ ; q � q0 ; ð6Þ

and the spin-dependent boundary conditions (3) become of the form

R1ðq0Þ ¼ R2ðq0Þ ;
1
~mm1

dR1

dq

����
q0

� 1
m2

dR2

dq

����
q0

þ 2s fDbDb
l

�h2q0

R1ðq0Þ ¼ 0 : ð7Þ

In Eqs. (6) and (7)

1
~mm1ðEq;EzÞ

¼ 1
C1 þ C2

C1

m1ðEÞ
þ C2

m2ðEÞ

� �
;

fDbDbðEq;EzÞ ¼
C1 b1ðEÞ � b2ðEÞ½ 


C1 þ C2
;

where

C1 ¼ z0

2
þ m2ðEÞ

kðEq;EzÞm1ðEÞ
sin2 kðEq;EzÞ z0

2

� �
;

C2 ¼ 1
kðEq;EzÞ

cos2 kðEq;EzÞ z0

2

� �
;
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and s ¼ �1 refers to the spin polarization along the z-axis. Equation (6) with the
boundary conditions (7) are used to obtain the function RðqÞ. A formal solution of
Eq. (6) is well known as the following:

R1ðqÞ ¼ AJ lj j pðEq;EzÞ q

 �

;

R2ðqÞ ¼ BK lj j gðEq;EzÞ q

 �

;

where Jn and Kn are the Bessel function and the modified Bessel function, respectively, and

pðEq;EzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~mm1ðEq;EzÞ Eq

p
�h

;

gðEq;EzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2ðEq;EzÞ ðV0 � Eq � EzÞ

p
�h

:

After using the boundary conditions (7), the equation that gives the electron energy
states of the dot is found to be

p

~mm1

lj j
pq0

J lj j pq0ð Þ � J lj jþ1 pq0ð Þ
� �

K lj j gq0ð Þ

� g

m2

lj j
gq0

K lj j gq0ð Þ � K lj jþ1 gq0ð Þ J lj j pq0ð Þ
� �

þ 2s fDbDb
l

�h2q0

J lj j pq0ð Þ K lj j gq0ð Þ ¼ 0 : ð8Þ

Equation (8) is the second equation we need besides Eq. (5) to solve the problem and to
obtain the “self-consistent” value of the total energy E ¼ Ez þ Eq. The energy is a compli-
cated function of the dot parameters, the electron angular momentum, and spin. The en-
ergy spectrum of the dot consists of a set of discrete levels numerated by a set of numbers
fn; l; sg, where n is the n-th solution of (8) with fixed l and s: States having the same
value of n and parallel (antiparallel) orbital momentum and spin remain twofold degener-
ate (the known Kramers degeneracy). But n-th states with antiparallel orbital momentum
and spin are separated from the n-th states with parallel orbital momentum and spin.

4. Spherical QDs

When the dots have spherical shapes the solution of the three-dimensional Schrödinger
equation solution can be obtained in spherical coordinates ðr; q;fÞ. The spherical sym-
metry of the problem allows us to write the electron wave function as

YðrÞ ¼ flðrÞ Ylmðq;fÞ ; ð9Þ

where flðrÞ is the radial wave function and Ylmðq;fÞ is the spherical harmonics, m is the
projection of the angular momentum along the z-direction. Substituting (9) into the
three-dimensional Schrödinger equation with the Hamiltonian (1) we find the equation

� �h2

2m1ðEÞ
1
r2

d
dr
r2

d
dr

� lðl þ 1Þ
r2

� �
f1lðrÞ ¼ Ef1lðrÞ ; r < r0 ;

� �h2

2m2ðEÞ
1
r2

d
dr
r2

d
dr

� lðl þ 1Þ
r2

� �
f2lðrÞ ¼ ðE� V0Þ f2lðrÞ ; r � r0 ; ð10Þ
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where r0 is the sphere radius. The spin dependent boundary conditions (3) for the sphe-
rical QD can be written as

f1lðr0Þ ¼ f2lðr0Þ ;

�h2

m1ðEÞ
d
dr
f1lðrÞ

����
r0

� �h2

m2ðEÞ
d
dr
f2lðrÞ

����
r0

þ 2 b1ðEÞ � b2ðEÞ½ 

r0

jð j þ 1Þ � lðl þ 1Þ � 3
4

� �
f1lðr0Þ ¼ 0 ; ð11Þ

where j is the total angular momentum quantum number ( j ¼ l � 1
2

�� �� for states with
spin-up and spin-down, respectively).

The radial function for the dot and barrier regions are given, respectively, by

f1lðrÞ ¼ D
ffiffiffiffiffiffi
1
lr

r
Jlþ1

2
ðlrÞ ;

f2lðrÞ ¼ C
ffiffiffiffiffiffi
1
mr

s
Klþ1

2
ðmrÞ ; ð12Þ

where

lðEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m1ðEÞ E

p
�h

;

and

mðEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2ðEÞ ðV0 � EÞ

p
�h

:

Substitution of (12) into (11) gives the following equation for the electron energy states
in the dot:

1
m1

½lJlþ1
2

lr0ð Þ � lr0Jlþ3
2

lr0ð Þ Klþ1
2

mr0ð Þ


� 1
m2

½lKlþ1
2

mr0ð Þ � mr0Klþ3
2

mr0ð Þ Jlþ1
2

lr0ð Þ


þ 2 b1 � b2½ 

�h2 jðj þ 1Þ � lðl þ 1Þ � 3

4

� �
Jlþ1

2
lr0ð Þ Klþ1

2
mr0ð Þ ¼ 0 : ð13Þ

We can numerate the electron energy states by a set of numbers fn; j; l;mg, where n
numerates solutions of Eq. (13) with fixed j and l. States having the same value of n, l,
and j remain (2l þ 1)-fold degenerated [36]. But, the electron energy states with the
same n , l, and m and different j (different spin) are split.

5. Calculation Results and Discussion

The energy of the electron states are found by numerically solving the system of Eqs.
(5) and (8) for cylindrical QDs and Eq. (13) for spherical ones.

For cylindrical QDs we use a conventional notation for the electron energy states:
nqLs, where nq denotes the n-th solution of Eq. (8), L ¼ S;P;D; . . . presents the abso-
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lute value of l, and s ¼ �1 refers to the electron spin directions in respect to the elec-
tron angular momentum direction. For all calculations we choose the lowest energy
state in the z-direction.

For the calculation of the electron energy spectra of InAs cylindrical QDs in GaAs
matrix we tuned the band parameters to take into account effects of strain in small
InAs quantum dots. In accordance with the results of [25] we use tuned semiconductor
band structure parameters for InAs: the energy gap is E1g ¼ 0:52 eV, spin–orbit split-
ting is D1 ¼ 0:48 eV, m1ð0Þ ¼ 0:022m0 (m0 is the free electron mass). For GaAs we
choose: E2g ¼ 1:52 eV, D2 ¼ 0:34 eV, m2ð0Þ ¼ 0:067m0 [31]. The band offset is taken as
V0 ¼ 0:55 eV [25]. It should be noted, that the chosen E1g makes the spin–orbit effect
weaker but it is more realistic for strained QDs.

The spin splitting effect is obviously zero for the lowest energy state 1S�1 as it fol-
lows from Eq. (8). The dependence on the dot size for the energy splitting of the state
1P

DE1P ¼ E1Pþ1 � E1P�1

is shown in Fig. 1. The theory demonstrates a valuable spin splitting for small QDs. The
splitting is strongly dependent on the dot size and decreases rapidly when the size in-
creases. For dots of small height the spin splitting is small. This is a result of electron
wave function penetration into the barrier along the z-direction. For quantum dots with
a small height the averaged effective mass ~mm1 is lager than the electron effective mass
in InAs. At the same time, the difference fDbDb is smaller than b1 � b2. When z0 increases
the difference also increases and then becomes z independent. When q0 decreases (with
fixed z0) the confined electron energy becomes higher and the electron wave function
penetration into the barrier becomes lager. That is the reason why the spin spliting
DE1P dependence on q0 with fixed z0 demonstrates a nonmonotonic behavior [15]. Cer-
tainly, the spin splitting impact becomes stronger for the states with lj j > 1.

An interesting consequence of the spin–orbit interaction is the possibility to choose a
size of the dot when only one set of the spin split states is situated below the dot’s top
energy V0 and another one is situated above V0. In fact, one can obtain a dot of a
critical size fqc1

0 ; zc1
0 g when only the 1P�1 electronic states are bound. When we reach

the critical size and continue to reduce fq0; z0g, the states 1P�1 become unbound very
soon at fqc0; zc0g. Therefore, the range of the dot sizes when only the 1P�1 energy states
are bound is very narrow. The size ranges are presented in Table 1.

The spin splitting effect is significantly stron-
ger in InSb QDs. We calculated the energy
spectrum for the system where InSb dots are
embedded in CdTe matrix. For this calculation
we use the following band structure param-
eters: for InSb: E1g ¼ 0:24 eV, D1 ¼ 0:81 eV,
m1ð0Þ ¼ 0:014m0; for CdTe: E2g ¼ 1:61 eV,
D2 ¼ 0:81 eV, m2ð0Þ ¼ 0:11m0. The band offset
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is taken as V0 ¼ 0:35 eV [37]. Figure 2 shows the spin–orbit splitting for the structure.
The situation when only the 1P�1 states are bound can be reached with a set of lager
fqc1

0 ; zc1
0 g and with a wider range of dot sizes (see Table 1).

We use spherical QDs as a reference to verify our calculated results. The calculations
were performed for InAs spherical QDs embedded in a noncrystalline polymer matrix
and spherical nanocrystals of InSb. For those systems we can avoid additional approxi-
mations concerning the dot material parameters. We also can compare our results with
those obtained by means of more sophisticated models [22, 23]. For the spherical QDs
we use the standard atomic notation for the energy states: nLJ , where n denotes the
main quantum number and J is the total angular momentum quantum number. The
size dependence of the spin splitting between the 1P1=2 and 1P3=2 energy states

DE1P ¼ E1P3=2
� E1P1=2

for InAs QDs is presented in Fig. 3 (we choose E1g ¼ 0:42 eV, D1 ¼ 0:38 eV,
m1ð0Þ ¼ 0:024m0, m2 ¼ m0, b2 ¼ 0, V0 ¼ 2 eV [23]). Our calculation results are in a
reasonable agreement with results obtained by other methods [23]. Figure 4 shows the
1P1=2 and 1P3=2 electron energy states for InSb nanocrystals (E1g ¼ 0:24 eV, D1 ¼ 0:8 eV,
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Ta b l e 1
Size ranges

dot InAs InSb

z0 (nm) qc1
0 (nm) qc

0(nm) qc1
0 (nm) qc

0(nm)

1.5 4.6 4.5 6.0 5.5
2.0 3.9 3.8 5.5 4.9
3.0 3.6 3.4 5.0 4.4
4.0 3.2 3.0 4.8 4.1
5.0 3.1 2.9 4.7 4.0

Fig. 2 Fig. 3

Fig. 2. Spin splitting (DE1P) for InSb cylindrical quantum dots versus dot sizes

Fig. 3. Spin splitting (DE1P) for spherical InAs monocrystal versus the dot radius



E1p ¼ 23:5 eV, m2 ¼ m0, b2 ¼ 0, V0 ¼ 4:59 eV that corresponds to the InSb electron affi-
nity). The spin splitting in our model is found to be smaller than that in Ref. [22] and can
be taken as the lower limit for estimations. That demonstrate our model capabilities in
evaluations of the spin–orbit interaction impact. The simple one-band nonparabolic ap-
proximation reproduces major features beside giving reasonable estimations of the spin
splitting in semiconductor QDs.

6. Conclusions

We have studied theoretically the spin–orbit interaction impact on the electron energy
states in small semiconductor quantum dots. Our calculations are based on the effective
one-electronic band Hamiltonian and spin dependent boundary conditions. The spin–
orbit splitting in cylindrical and spherical quantum dots has been investigated. Our re-
sults show that the spin–orbit interaction can significantly modify the electron energy
spectrum of InAs and InSb narrow gap semiconductor QDs. The modification heavily
depends on the dot size and shape. The spin splitting in the cylindrical quantum dots
demonstrates the nonmonotonic dependence on the dot sizes. In addition, the spin–
orbit interaction can provide in cylindrical quantum dots a situation where only the
lowest spin split energy states are bound in the dot. The spin splitting effect is quite
large for small InSb QDs and can be proposed for experimental investigations.

Finally, we would like to point out that our model of calculations can be used as the
starting point in estimations of the spin–orbit interaction effects in semiconductor QDs.
To make proper quantitative calculations one should solve the three-dimensional Schrö-
dinger equation and use the self-consistent potential within the multiband approach.
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