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Robust Vector Quantization for Wireless Channels
Wen-Whei Chang, Member, IEEE, Tan-Hsu Tan, and De-Yu Wang

Abstract—This study focuses on two issues: parametric mod-
eling of the channel and index assignment of codevectors, to design
a vector quantizer that achieves high robustness against channel
errors. We first formulate the design of a robust zero-redundancy
vector quantizer as a combinatorial optimization problem leading
to a genetic search for a minimum-distortion index assignment.
Performance is further enhanced by the use of the Fritchman
channel model that more closely characterizes the statistical de-
pendencies between error sequences. This study also presents an
index assignment algorithm based on the Fritchman model with
parameter values estimated using a real-coded genetic algorithm.
Simulation results indicate that the global explorative properties
of genetic algorithms make them very effective in estimating
Fritchman model parameters, and use of this model can match
index assignment to expected channel conditions.

Index Terms—Genetic algorithm, index assignment, vector
quantization.

I. INTRODUCTION

V ECTOR QUANTIZERS (VQs) are used in many applica-
tions and allow optimum mapping of a large set of input

vectors into a finite set of representative codevectors [1]. Trans-
mitting VQ data over noisy channels changes the encoded infor-
mation and consequently leads to severe distortions in the recon-
structed output. Forward error control could be used to protect
VQ data but it is more efficient to mitigate the effects of channel
errors without adding redundant bits. This has motivated inves-
tigation into trying to design a nonredundant VQ system with
increased robustness to channel errors. Conventional design ap-
proaches to channel robustness are available in two general cat-
egories: robust VQ (RVQ) and channel-optimized VQ (COVQ).
The encoder–decoder pair of a COVQ system is jointly trained
for the given channel, whereas an RVQ encoder is trained for
a noiseless channel and then made robust by assigning suitable
indices to the codevectors. Of the two schemes, the RVQ is pop-
ular where codebook training time is of primary concern, and
the COVQ is more appropriate when higher levels of robustness
are needed. A more comprehensive discussion of transmitting
VQ data over noisy channels can be found in [2] and [3]. No
matter which design scheme is used, special care must be taken
to ensure that actual error characteristics are incorporated into
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the computation of channel transition probabilities. While this
paper addresses the index assignment problem for use in RVQ,
the design techniques used to refine the channel transition prob-
abilities can be applied to COVQ design as well.

Finding the best index assignment requires searching every
possible codebook permutation for the one that yields the min-
imum distortion under noisy channel conditions. However, be-
cause the nature of this solution is NP-complete, it requires
enormous computational complexity which, for even small size
codebooks, may be prohibitive. In [4]–[8], several practical pro-
cedures for solving the index assignment problem have been
proposed. Although effectively reducing a system’s sensitivity
to channel errors, these approaches concentrate on mathemati-
cally simple memoryless binary symmetric channels. Unfortu-
nately, however, transmission errors encountered in most real
communication channels exhibit various degrees of statistical
dependencies that are contingent on the transmission medium
and on the particular modulation technique used. A typical ex-
ample occurs in digital mobile radio channels, where bit-rate re-
duced speech signals suffer severe degradation from error bursts
due to the combined effects of fading and multipath propaga-
tion. Further improvement can be realized through a more pre-
cise characterization of the channel on which index assignment
design is based. Toward this end, recent work on VQs for chan-
nels with memory has considered binary Markov channels [9],
[10] and Gaussian channels [11], [12]. For this investigation, we
focused on the simple partitioned Markov chain model proposed
by Fritchman [13]. This model has several practical advantages
over the Gilbert model [14] and other models [15]. First, the
Fritchman model is relatively simple and can characterize a
wide range of digital channels, as evidenced by its applicability
to performance analysis of various error control schemes [16],
[17]. Second, as we shall see later, the channel transition prob-
abilities of the Fritchman model have closed-form expressions
that can be represented in terms of model parameters.

This study investigates the following optimization problems:
1) developing a model representative of real channel behavior
and 2) assigning codevector indices for a given noisy channel.
Traditionally, optimization problems have been dealt with using
the gradient-descent algorithm [18]. However, gradient-descent
approaches perform local searches and may fail to provide reli-
able results when used on complex optimization problems with
multiple local optima. By contrast, the global explorative prop-
erties of genetic algorithms have made them very effective at
solving constrained as well as combinatorial optimization prob-
lems [19]. The first part of this paper focuses on estimating the
parameters of the Gilbert and Fritchman channel models from
an experimental error-gap distribution. Exponential curve fitting
can formulate the channel characterization as a constrained op-
timization problem that is amenable to the application of real-
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Fig. 1. Block diagram of the VQ transmission system.

coded genetic algorithms. The second part of this study develops
mathematical tools for use with the Fritchman model in opti-
mizing the index assignment under noisy channel conditions.
Simulation results indicate that use of Fritchman channel char-
acterization enables the implementation of an index assignment
that better matches the intrinsic natures of error statistics.

The rest of this paper is organized as follows. Section II ad-
dresses the index assignment problem with respect to the design
of a robust vector quantizer. In Section III, we present the Gilbert
and Fritchman channel models. Details of the genetic algorithms
required for solving the channel modeling problem, along with
some numerical results for comparison with experimental mea-
surements, are provided in Section IV. Section V suggests a way
to associate Fritchman model parameters with optimal index as-
signment of VQ codevectors. Section VI presents the index as-
signment performance comparison and investigates the robust-
ness of the vector quantizer under channel mismatch conditions.
Finally, Section VII gives our conclusions.

II. ROBUSTVQ AND THE INDEX ASSIGNMENTPROBLEM

The vector quantizer provides better performance than
the scalar quantizer by employing a multipath search that
pursues a set of alternatives and chooses among them the
best possible output sequence. A block diagram depicting
the VQ transmission system is shown in Fig. 1. The VQ
encoder searches through the codebook for the codevector
that best matches the input vector, and then transmits the
corresponding codevector index to the decoder in binary
format. Here, the codebook consisting of codevectors,

, is designed for a noiseless channel
using the generalized Lloyd algorithm [20]. The resulting
codebook, with an arbitrary permutation, is used as the input
to the index assignment function, , which
yields the same codebook but with its codevectors in different
locations.

One of the principal concerns in transmitting VQ data
over noisy channels is that channel errors affect the bits that
convey information about codevector indices. Assume that
a channel’s input and output are defined by the bit strings

and .
They differ when the error pattern cor-
rupts the input, so that the channel output bit ,
where the symbol denotes the bitwise logical exclusive-OR
operation. Consequently, the decoder looks up the corre-
sponding codevector in its codebook and releasessamples
of the codevector , instead of , as the output. The resultant
distortion between the codevectors and is denoted by

, which will be assumed in the sequel to be a squared
Euclidean distance, i.e., . In this frame-
work, the overall distortion can be divided into
three terms: quantizer distortion , channel

distortion , and mixed-term distortion
. Among them, does not

depend on the channel condition and is zero for optimum
codebooks designed for noiseless channels [6]. Viewing from
this perspective, we focus our attention on the index assignment
problem for the purpose of minimizing channel distortion.
To begin, let denote the probability of receiving
the index given that the transmitted index is . For
the specific index assignment function ,
the average distortion due to channel errors is expressed as

(1)

where is the a priori probability of the codevector .
From a mathematical standpoint, the index assignment problem
is equivalent to a combinatorial optimization problem in which
channel distortion is the objective function to be mini-
mized.

The effect of channel errors on the quality of a vector quan-
tizer is introduced through the values of the channel transition
probabilities . For a stationary and symmetric
channel, they can be represented in terms of the probability dis-
tribution of the error pattern, i.e.,

(2)

To permit theoretical analysis, most previous works on index
assignment assumed that codevector indices were transmitted
over memoryless binary symmetric channels [4]–[8]. This re-
duces channel transition probabilities to the following:

(3)

where is the channel bit error rate (BER) andis the number
of ones occurring in the error pattern. However, the errors
encountered over most wireless channels are not independent;
rather, they tend to occur in bursts. It is, therefore, believed
that further improvement can be obtained through intelligent
exploitation of the statistical dependencies between error occur-
rences.

III. GILBERT AND FRITCHMAN CHANNEL MODELS

The design of a more sophisticated error protection scheme
requires that parameterized probabilistic models be used to sum-
marize some of the most relevant aspects of error statistics. Most
studies have emphasized the use of a Markov chain consisting
of a finite number of states with defined transition probabilities
[15]. Among them, Gilbert [14] and Fritchman [13] models have
been shown to adequately describe the observed error bursts oc-
curring in digital mobile radio channels [18]. The Gilbert model
consists of a Markov chain having an error-free stateand a bad
state , in which errors occur with the probability . The
state transition probabilities areand for the to and to

transitions, respectively. Notice that in the particular case of a
Gilbert model with parameter values ,
the channel model reduces to a memoryless binary symmetric
channel with the BER.
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Fig. 2. Fritchman channel model withN � 1 error-free states and a single
error state.

To match the observed error sequences more closely, it
is necessary to use a Markov model with more than one
error-free state. Fritchman [13] investigated the more general
case of a Markov chain with states, partitioned into a group
of error-free states, , and another
group of error states, .
Let be an error sequence generated by
the model and let be the sequence of
states that evolves along with the transition probability

. At each time instant ,
the occurrence of 0 or 1 in will correspond respectively
to the occurrence of in group or in group . For
this investigation, we considered a simplified version of the
Fritchman model in which there is a single error state (i.e.,

) and no transitions are allowed between any
error-free states. The model state transition diagram is shown
in Fig. 2. This model has certain advantages toward channel
characterization. One advantage is that efficient methods are
available for estimating the model parameters by observing
that the error-gap distribution is sufficient to uniquely specify
a single-error-state Markov model. Another attractive feature
is that a large variety of digital channels can be represented by
appropriate definitions of the model’s state transition probabil-
ities [18]. For example, the Gilbert model can be considered a
special case of the Fritchman model with two error-free states
( ) and an error state [13].

The principal difficulty in using Fritchman’s channel charac-
terization is that the state transition probabilities are not directly
observable, so methods of deducing them from easily measured
error statistics must be derived. The measurement data consid-
ered here is the error-gap distribution, denoted by , that
gives the probability that at leastsuccessive error-free bits will
be encountered next on the condition that an error bit has just
occurred. Assuming a stationary Markov chain, Fritchman [13]
showed that the error-gap distribution can be expressed as the
sum of exponentials

(4)

where the values of and are referred to as the Fritchman
model parameters. The relationship between these parameters
and the state transition probabilities can be found in [13]. Pro-
ceeding in this way, the original descriptive modeling issue can
be formulated as a constrained optimization problem in which

pairs of parameters are the optimization vari-
ables to be identified. For this investigation, the sum of the
squared errors between the measured error-gap distribution and
its modeled fit was considered a suitable cost function. The least
square approximation method leads to a constrained nonlinear
optimization problem that can be stated as follows:

(5)
where , for , and gives the
longest interval between two consecutive errors.

IV. PARAMETER ESTIMATION IN GILBERT AND

FRITCHMAN MODELS

The gradient-descent algorithm [18] is often used to identify
optimal values of Gilbert and Fritchman model parameters for
which the cost function in (5) is minimal. Starting with a
single point in the search space, the gradient-descent method
tries to find the optimum solution by performing successive cor-
rections on parameter estimates in the direction opposite to the
gradient of the cost function. While this approach converges
rapidly, its simple downhill search transitions can easily become
trapped in local minima and, thus, miss finding the globally op-
timal solution. Thus, it is common practice to run the gradient
search starting from a number of initial configurations and then
to choose the best outcome from all those obtained. However,
the computational burden can be intolerable and there would
still be no guarantee that an optimal solution will be found.
In an earlier work [21], we presented preliminary experimental
results showing that the simulated annealing technique [22] is
preferable to the gradient method for use in estimating Gilbert
model parameters. However, for Fritchman channel modeling
problems, the error-performance surface tends to exhibit many
different convex regions and has been found difficult to optimize
by means of the simulated annealing algorithm.

An alternative approach to function optimization is based
on genetic algorithms (GAs) [19]. The main attraction of GAs
arises from the fact that the given search space is explored in
parallel by means of iterative modifications of a population of
individuals. Each individual, called a chromosome, represents
a potential solution to a given problem. A block diagram of
a typical genetic evolution is shown in Fig. 3. Choosing an
appropriate representation of chromosomes is the first step
in applying GAs to solving optimization problems and one
that conditions all subsequent steps of the implementation.
Here, pairs of parameters define the solution
and hence, can be encoded into a chromosome as a list of
real numbers, that is: . This
real-coded representation is more accurate for continuous
optimization problems [23] and allows us to hybridize with
problem-dependent heuristics to make an efficient implemen-
tation. The fitness values of all chromosomes were ranked with
respect to the objective function using (5). As
a result of this evaluation, a particular group of chromosomes
were selected from the population to generate offspring by
subsequent recombination. To prevent premature convergence
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Fig. 3. Flow diagram for the GA.

of the population, this investigation employed the linear ranking
selection scheme [24] that sorted individuals by increasing
order of fitness, and then assigned the expected number of
offspring according to their relative ranking. Crossover among
the selected chromosomes then proceeded by exchanging sub-
strings of two chromosomes between two randomly selected
crossover points. The crossover probability, denoted by,
is defined as the ratio of the number of offspring produced
in each generation to the population size. After crossover,
with a probability of , the mutation operator was used to
introduce random variations into the genetic structure of the
chromosomes. When the maximum number of generations was
reached, the best chromosome in the final population was taken
as GA’s solution for functional optimization.

Having a proper mutation operator is critical for both the con-
vergence rate and the final performance of real-coded GAs. A
usual way to achieve mutation is to generate a random number
and then replace one of the gene values of an existing chro-
mosome with a probability of . However, GAs with such a
uniform mutation find it difficult to perform a fine local search
when applied to multidimensional parameter optimization prob-
lems. Initiated by the merits of simulated annealing [25], we
propose a new mutation operator that uses the probabilistic ac-
ceptance test technique internally to determine whether to ac-
cept the mutated solution, or to stay with the previous solution.
More specifically, mutated chromosomes with higher fitness
values are always included in the next generation, whereas those
with inferior values are only accepted with a certain probability
that decreases as the effective temperature is decreased. This
implies that more diversity among chromosomes can be intro-
duced to allow a random search of the solution space in the early
stage of the optimization process and, in later stages, the chances

TABLE I
RESULTS FROM THEGRADIENT-DESCENT AND GENETIC ALGORITHM

APPROACHES FORESTIMATING GILBERT MODEL PARAMETERS

of fitter chromosomes being replaced become less. Thus, the
search will move toward some feasibility regions likely to con-
tain the global optimum as the temperature gradually decreases,
but escapes from local optima are still possible since inferior so-
lutions are allowed. Here, we refer toas the chromosome to be
mutated and to the as the temperature at theth generation.
The temperature is decreased according to the cooling schedule

[26], where is the initial temperature. Rel-
evant aspects of the annealing mutation scheme are summarized
as below.

1) Apply mutation to chromosome , if the value of a
random number generated between 0 and 1 is less than
the specified mutation probability . Otherwise, leave
the chromosome intact.

2) Perturb chromosometo obtain by adding an element
of zero-mean noise to the randomly selected gene.
The only difference betweenand is that the th gene
value , where is normally distributed with a
standard deviation of .

3) Calculate the fitness difference between new and old
chromosomes, . Accept the new
chromosome if it results in a net increase in fitness,
i.e., . If , the probability of accepting an
inferior solution over is given by .

To test the validity of various parameter estimation algo-
rithms, a series of sample error sequences were generated
using a narrowband mobile radio channel simulator [27]. Each
sample error sequence was 100 000 bits long. The channel
condition was defined by the Jakes model [28] with the
following parameters: carrier frequency= 900 MHz, vehicle
speed= 100 km/h, number of low-frequency oscillators= 8,
and average SNR= 10 dB. The Jakes model was designed to
simulate Rayleigh fading channels and has been adopted by
standard groups for use in testing candidate speech coding
schemes as well as radio-link error-control protocols [29].
Using this model, we simulated error sequences for optimum
differential phase-shift keying (DPSK) modulation at a data
rate of 20 kb/s. For each of simulated error sequences, we first
evaluated the measured values of by computing the
ratio of consecutive series of error-free bits with lengths equal
to or greater than to the total number of error bursts. The
optimal identification of an -state Fritchman model was then
formulated as the least square approximation of the measured
error-gap distribution by summing the exponentials.

Experimental results obtained from the gradient-descent and
genetic approaches for estimating Gilbert model parameters are
presented in Table I. The performances were evaluated in terms
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TABLE II
RESULTS FROM THEGRADIENT-DESCENT AND GENETIC ALGORITHM

APPROACHES FORESTIMATING FRITCHMAN MODEL PARAMETERS

of the cost function in (5), which indicates the the sum of the
squared errors between the measured error-gap distribution and
the corresponding modeled fit. To compare the algorithms with
respect to their consistency, we ran each algorithm five times,
each time beginning with a randomly selected parameter set-
ting. In the GA implementation, the parameter values used for
the maximum number of generations, the population size, the
crossover probability, and the mutation probability were empir-
ically determined to be 2000, 50, 0.6, and 0.1, respectively. As
shown in Table I, the estimation process using the gradient-de-
scent method often terminates in an unsatisfactory local min-
imum. This shortcoming is inherent in optimization algorithms
that perform downhill searches along the functionconsisting
not of a unique global minimum but of many local minima. In
contrast, the GA has a global searching capability and, therefore,
leads to a greater accuracy in the estimation of Gilbert model
parameters. It is also important to note that, relative to uniform
mutation, the use of annealing mutation further reduces the dis-
tortion and the sensitivity to initial parameter setting. This
better result is due to the fact that the annealing process allows
random searching of the solution space initially and only very
local searching in later stages.

We next investigated the performance dependence of channel
characterization on the number of exponentials used to approx-
imate the error-gap distribution. Table II presents the results ob-
tained from the curve fitting for the Fritchman model with three
error-free states and one error state. A comparison between Ta-
bles I and II reveals that the Fritchman model is preferable to
the Gilbert model for use in Markov characterization of sample
error sequences. This can be explained by (5), which indicates
that the number of exponentials should be the number
of distinct line segments embedded in the measured value, ex-
pressed logarithmically, of the error-gap distribution. To elab-
orate further, we show in Fig. 4 the experimentally measured
error-gap distribution for an error sequence typical of
the Jakes model. Also shown in the figure is the Fritchman mod-
eled fit with parameter values estimated using the GA with an-
nealing mutation. It can be noted that within the error-gap dis-
tribution curve, three line segments with different slopes can
be distinguished, making it particularly suited for a Fritchman
model with three error-free states . It is also clear
from this figure that the Fritchman modeled fit provides an ap-
proximation of the experimental error-gap distribution to a rea-
sonable degree of accuracy.

V. ALGORITHMS FORDETERMINING THE INDEX ASSIGNMENT

For transmission of VQ data over noisy channels, distortions
due to channel impairments can be greatly reduced by assigning

Fig. 4. Experimental error-gap distributionP (0 j1) and its Fritchman
modeled fit for an error sequence typical of the Jakes model.

suitable indices to the codevectors. For a fixed codebook and a
given channel, every possible index assignment functionmust
be examined to find the one that minimizes the channel distor-
tion . This task belongs to the class of NP-complete prob-
lems, since there are possible combinations of indices for
codebooks of size . With this constraint, an exact search for
the optimal index assignment is not feasible and many practical
index assignment algorithms are suboptimal. The case of mem-
oryless binary symmetric channel has been considered in con-
junction with binary switching algorithm in [5], with simulated
annealing algorithm in [6], and with Hadamard transform in
[8]. Extension of these results to wireless channels requires that
channel transition probabilities be carefully derived to account
for the statistical dependencies between error occurrences. This
motivates us to seek to incorporate the Fritchman channel mod-
eling into the index assignment design.

A distinctive feature of the Fritchman model lies in its
channel transition probabilities that have closed-form ex-
pressions represented in terms of model parameters. Let

denote the set of codevector indices,
with being the binary expansion of
the index associated with the codevector. For the Fritchman
model with error-free states and one error state, the
effective BER is given by [31]

(6)

and the channel transition probabilities are expressed as

(7)

where is a vector of ones and the initial state probabilities
in the form

(8)
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In (7), the term only assumes the values of 0 or 1,
and the corresponding matrix is given by

...
...

(9)

or

... (10)

We next developed an algorithm to use with the Fritchman
model for optimizing the index assignment over channels with
memory. The optimization approach taken here is the GA which
performs global exploration among a population of chromo-
somes. A similar approach to index assignment that uses a par-
allel GA was introduced in [7] but with the major difference of
considering memoryless binary symmetric channels. The par-
allel GA operates by dividing the total population into a number
of smaller subpopulations and then executing the main loop of
the GA on each subpopulation separately. A few reasons can be
listed concerning our choice of the GA over the parallel GA for
functional optimization. First, the issue of whether it is better to
use a single large population or multiple small subpopulations in
the GA implementation does not appear to be settled and may be
problem dependent. Second, no matter which approach is used,
incorporating the Fritchman model into the index assignment
can serve to better track the intrinsic natures of channel errors.
The input to the proposed algorithm consists of a domain-spe-
cific codebook and Fritchman model parameters for the given
channel that will carry the codevector indices. The algorithm
eventually halts and gives as output the index assignment that
minimizes the channel distortion .

While the basics of the operation of the GA were illustrated in
Fig. 3, it requires some elaboration. The search space of interest
is a set of permutations of the indices; encoding each chromo-
some as a list of indices that number the representative codevec-
tors can solve the representation problem. For GAs with such a
permutation representation, special care must be taken to ensure
that genetic operators will not yield illegal offspring in which
some indices are missed while other indices are duplicated. The
proposed GA for solving the index assignment problem consists
of the following steps.

1) Randomly generate an initial population of chromo-
somes, each of which corresponds to one particular
index assignment function, i.e.,

.
2) Evaluate the fitness of each chromosomeby the objec-

tive function , where is calcu-
lated by substituting (7) in (1).

3) Assign the expected number of offspring to each chro-
mosome according to the linear ranking selection scheme
[24].

TABLE III
CHANNEL DISTORTION USING VARIOUS VECTOR QUANTIZERS IN FIVE

DIFFERENT RUNS OF THEBINARY SWITCHING ALGORITHM,GENETIC

ALGORITHM AND FOR THE ENSEMBLE AVERAGE OFM ! CODES

4) Apply the crossover to the selected chromosomes when
the value of a random number generated between 0 and
1 is less than the crossover probability. The partially-
matched crossover operator [30] is adopted here. This
crossover is performed by exchanging the substrings be-
tween two randomly selected positions and then resolving
conflicting assignments with a repairing procedure.

5) With a probability of , the mutation is applied to each
chromosome by inverting its substring between two ran-
domly selected positions.

6) Repeat steps 2 to 5 until the maximum number of gener-
ations has been reached. After termination, the best chro-
mosome in the final population is taken as the optimal
index assignment.

VI. I NDEX ASSIGNMENTPERFORMANCECOMPARISONS AND

RESULTS

Experiments were carried out to investigate the potential ad-
vantages of using genetic algorithms to improve the robustness
of nonredundant VQ coding systems. The input signals consid-
ered here include first order Gauss–Markov sources described
by , where is zero-mean, unit-
variance white Gaussian noise, with correlation coefficients of

and . Each of these was tested with rate
bit/sample vector quantizers having the following codebook

sizes and dimension values .
The codebooks were designed for a noiseless channel using the
standard generalized Lloyd algorithm [20]. Distortions between
the source sequence and each possible codevector were calcu-
lated, and the codevector with the smallest distortion was se-
lected as the best fit. Table III presents the vector quantization
results associated with various index assignment algorithms for
the case where the bits in the codevector indices are subjected to
the sample error sequences described in Section IV. The perfor-
mances of the binary switching algorithm (BSA) [5] and the GA
were measured in terms of channel distortion and com-
pared with the ensemble-averaged distortion yielded by random
index assignment. The parameter values used in the GA imple-
mentation for the maximum number of generations, the popula-
tion size, the crossover probability, and the mutation probability
were 500, 400, 0.6, and 0.2, respectively. Numerical results ob-
tained from the BSA and GA are presented for five runs of
each algorithm, each run beginning with a randomized index as-
signment. The results of these experiments clearly demonstrate
the improved performance achievable using the BSA and GA
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Fig. 5. SNR(dB) performance of a vector quantizer with index assignment
(IA) on a memoryless channel. (a) Codebook size = 256, vector dimension = 8,
source = Gaussian i.i.d. (b) Codebook size = 256, vector dimension = 8, source
= 1st-order Gauss-Markov(� = 0:5).

in comparison to the performance obtained from random index
assignment. Furthermore, the improvement has a tendency to
increase for larger codebook sizes and for more heavily corre-
lated Gaussian sources. This observation is in accord with the
results produced by the memoryless binary symmetric channel,
reported earlier [5]–[7]. Compared with the BSA, the effective-
ness of the GA for use in solving the minimum distortion index
assignment problem is clearly demonstrated. The main reason
for this is that the BSA suffers from the problem of convergence
toward locally optimal solutions that are critically dependent
upon the initial index assignment [5]. By contrast, the global
explorative properties of GA can help to find a solution that
shows greater accuracy and lower sensitivity to the choice of
initial index assignment. This explains why the genetic search
strategy converges to a point where the corresponding channel
distortion is more consistent from run to run. Indeed, for cases
in which , the genetic-type index assignment yielded the
same result in all the tests.

The next step in the present investigation concerned the per-
formance degradation that may result from using genetic-type
index assignment under channel mismatch conditions. To
illustrate some of the results, Figs. 5 and 6 compare the overall
SNR of the vector quantizer for the memoryless and the
Gilbert channels, respectively. These results are presented for

Fig. 6. SNR(dB) performance of a vector quantizer with IA on a Gilbert
channel. (a) Codebook size = 256, vector dimension = 8, source = Gaussian
i.i.d. (b) Codebook size = 256, vector dimension = 8, source = 1st-order
Gauss-Markov(� = 0:5).

a vector quantizer with a codebook size and vector dimension
of . The SNRs were measured for the
codebooks before and after applying genetic-type index assign-
ment for the channel BERs ranging from to . Each
graph shows results that compare the case where the index
assignment was designed for a memoryless channel against
the case that was designed for the Gilbert channel. Simulation
results indicate that the accuracy of the channel model used
in developing the index assignment algorithm is extremely
important to the performance of the vector quantizer. The
investigation further showed that for higher channel BERs, the
increase in SNR is more noticeable when an index assignment
matches real channel behavior.

VII. CONCLUSION

This study presents a novel means of exploiting Markov char-
acterization of error sequences in the design of a robust vector
quantizer for noisy channels with memory. We first emphasized
the importance of matching the real channel behavior to the
channel model on which the index assignment design is based.
This task was accomplished by using finite-state Markov chain
models to characterize the statistical dependencies in relative
occurrences of errors. Simulation results indicate that a hybrid
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strategy incorporating an annealing mutation operator into the
real-coded genetic algorithm leads to greater accuracy in esti-
mating Gilbert and Fritchman model parameters. Our method
coincides with the optimization process of fitting mixtures of
exponential functions to experimental error-gap distributions.
Finally, the merits of using genetic algorithms for assigning bi-
nary indices to VQ codevectors were explored. We concluded
that with the aid of Fritchman channel characterization the index
assignment algorithm can be developed to better track the in-
trinsic natures of channel errors. While we only addressed the
index assignment problem associated with designing a robust
VQ, the design techniques used to refine the channel transition
probabilities can be applied to the channel-optimized VQ de-
sign as well.
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