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Robust Vector Quantization for Wireless Channels

Wen-Whei ChangMember, IEEETan-Hsu Tan, and De-Yu Wang

Abstract—This study focuses on two issues: parametric mod- the computation of channel transition probabilities. While this
eling of the channel and index assignment of codevectors, to designpaper addresses the index assignment problem for use in RVQ,

a vector quantizer that achieves high robustness against channel e design techniques used to refine the channel transition prob-
errors. We first formulate the design of a robust zero-redundancy biliti b lied to COVO desi I
vector quantizer as a combinatorial optimization problem leading abiliies can be applied to Q design as well.

to a genetic search for a minimum-distortion index assignment.  Finding the best index assignment requires searching every
Performance is further enhanced by the use of the Fritchman possible codebook permutation for the one that yields the min-
channel model that more closely characterizes the statistical de- jm,um distortion under noisy channel conditions. However, be-

pendencies between error sequences. This study also presents a . S ) . .
index assignment algorithm based on the Fritchman model with Cause the nature of this solution is NP complete, it requires

parameter values estimated using a real-coded genetic algorithm. €N0rmous computational complexity which, for even small size
Simulation results indicate that the global explorative properties codebooks, may be prohibitive. In [4]-[8], several practical pro-
of genetic algorithms make them very effective in estimating cedures for solving the index assignment problem have been
Fritchman model parameters, and use of this model can match proposed. Although effectively reducing a system’s sensitivity
index assignment to expected channel conditions. to channel errors, these approaches concentrate on mathemati-
Index Terms—Genetic algorithm, index assignment, vector cally simple memoryless binary symmetric channels. Unfortu-
quantization. nately, however, transmission errors encountered in most real
communication channels exhibit various degrees of statistical
|. INTRODUCTION dependencies that are contingent on the transmission medium
. . __and on the particular modulation technique used. A typical ex-
V ECTOR QUANTIZERS (VQs) are used in many apF?l'caélmple occu?s in digital mobile radio char?nels, where tgg[)—rate re-
“OT‘S and_ a_llow optimum mapping of a large set of NPYSced speech signals suffer severe degradation from error bursts
vectors into a finite set of representative codevectors [1]. Trar}ﬁ]e to the combined effects of fading and multipath propaga-
mitting VQ data over noisy channels changes the encoded infﬁB’n. Further improvement can be realized through a more pre-
mation and consequently leads to severe distortions in the reCOR characterization of the channel on which index assignment
structed output. Forward error control could be used to prot sign is based. Toward this end, recent work on VQs for chan-

VQ data but it is more efficient to mitigate the effects of Chann?\els with memory has considered binary Markov channels [9],

errors W.'thOUt qddlng redgndant bits. This has motivated Inv i'O] and Gaussian channels [11], [12]. For this investigation, we
tigation into trying to design a nonredundant VQ system wi

. : : cused on the simple partitioned Markov chain model proposed
increased robustness to channe] errors. C onvgnuonal design Fritchman [13]. This model has several practical advantages
proaches to channel robustness are available in two generalto‘ Er the Gilbert model [14] and other models [15]. First, the

egories: robust VQ (RVQ) and channel-optimized VQ (COVQ): '

Th der—decod ir of a COV i< ioiml Fritchman model is relatively simple and can characterize a
€ encoder—decoder pair ot a Q system is jointly tram?&ide range of digital channels, as evidenced by its applicability

for the given channel, whereas an RVQ encoder is trained far
a noiseless channel and then made robust by assigning suit

indices to the codevector.s..Of the two schemes, the RVQ'is PQfiities of the Fritthman model have closed-form expressions
ular where. codebook traln.mg time s _Of primary concern, alfas can pe represented in terms of model parameters.
the COVQis more appropriate when higher levels of robustnes his study investigates the following optimization problems:

are needed. A more comprehensive discussion of transmitti : . .
developing a model representative of real channel behavior

VQ data over noisy channels can be found in [2] and [3]. N C o L : :
. : . : nd 2) assigning codevector indices for a given noisy channel.
matter which design scheme is used, special care must be taken,. L . .
L ) - [raditionally, optimization problems have been dealt with using
to ensure that actual error characteristics are incorporated ipto : : .
€ gradient-descent algorithm [18]. However, gradient-descent

approaches perform local searches and may fail to provide reli-
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distortion D. = E[||c; — ¢;||*], and mixed-term distortion

¢ Dy, = 2E[(x — ¢;)*(¢; — ¢;)]. Among them,D, does not

2 e P e PR L, 5. depend on the channel condition aB¥), is zero for optimum
codebooks designed for noiseless channels [6]. Viewing from

this perspective, we focus our attention on the index assignment
problem for the purpose of minimizing channel distortibg.

] ) ) To begin, letP(~y(c;)|v(c;)) denote the probability of receiving
coded genetic algorithms. The second part of this study develgpg indexy(c;) given that the transmitted index igc;). For
mathematical tools for use with the Fritthman model in optjjq specific index assignment functiofc;), ¢ = 1,2, ..., M,

mizing the index assignment under noisy channel conditionge ayverage distortion due to channel errors is expressed as
Simulation results indicate that use of Fritchman channel char-

Fig. 1. Block diagram of the VQ transmission system.

acterization enables the implementation of an index assignment M M )
that better matches the intrinsic natures of error statistics. Do(7) =Y Ples)P(r(ep)lv(ealle: — cil* (1)
The rest of this paper is organized as follows. Section Il ad- i=1j=1

of arobust vector quantizer. In Section lll, we present the Gilb toenrqe ;D rSZt)h:aSn::\t?czlps:Z:: dprézg?t:ug n?jfetrzs(;ci)dr?r\rlg:tocir bblem
and Fritchman channel models. Details of the genetic algorithr) point, g P

. . . !
required for solving the channel modeling problem, alon wnlﬁ] . . . o . -
g . 9 : gp . IW'hannel distortionD.(y) is the objective function to be mini-
some numerical results for comparison with experimental meafZe d

surements, are provided in Section IV. Section V suggests awas .
yI'he effect of channel errors on the quality of a vector quan-

to associate Fritchman model parameters with optimal index f2er is introduced through the values of the channel transition
signment of VQ codevectors. Section VI presents the index aé - 9 ) .
prgbabllmesP(fy(cj)|fy(ci)). For a stationary and symmetric

signment performance comparison and investigates the robtl . o
9 P comp Stg ... channel, they can be represented in terms of the probability dis-
ness of the vector quantizer under channel mismatch condmop% . .
ribution of the error pattern, i.e.,

Finally, Section VII gives our conclusions.
P(v(cj)v(ci)) = Pler,ez,.. . em). (2)

dresses the index assignment problem with respect to the de%i%n
£

equivalent to a combinatorial optimization problem in which

Il. RoBUSTVQ AND THE INDEX ASSIGNMENT PROBLEM

The vector quantizer provides better performance thdf Permit theoretical analysis, most previous works on index
the scalar quantizer by employing a multipath search thassignment assumed that codevector indices were transmitted
pursues a set of alternatives and chooses among them Q4@r memoryless binary symmetric channels [4]-{8]. This re-
best possib'e Output Sequence_ A b|0ck diagram depictiﬁgces Channel transition probabilitieS to the fO||OWing:
the VQ transmission system is shown in Fig. 1. The VQ . el
encoder searches through the codebook for the codevector Ply(ej)(e)) = (1 —¢) ®)
that best matches the input vector and then transmits the
corresponding codevector indexc; ) to the decoder in binary

format. Here, the codebook consistingldf = 2™ codevectors, ) . )
e(?ncountered over most wireless channels are not independent;

C = {ci,c2,...,c}, is designed for a noiseless chann father, they tend to occur in bursts. It is, therefore, believed
using the generalized Lloyd algorithm [20]. The resultm%ﬂ|

; . ! : . fat further improvement can be obtained through intelligent
codebook, with an arbitrary permutation, is used as the NP ploitation of the statistical dependencies between error occur-
to the index assignment functiofy(c;), 1 < i < M}, which P P

yields the same codebook but with its codevectors in differern nees.

locations.

One of the principal concerns in transmitting VQ data
over noisy channels is that channel errors affect the bits thafThe design of a more sophisticated error protection scheme
convey information about codevector indices. Assume thaquires that parameterized probabilistic models be used to sum-
a channel's input and output are defined by the bit stringsarize some of the most relevant aspects of error statistics. Most
v(€i) = (vir, Yizs - -+ Yim) @NA~y(c;) = (vj1, 752, Vm). Studies have emphasized the use of a Markov chain consisting
They differ when the error pattem = (e1,e2,...,¢,) cor- of afinite number of states with defined transition probabilities
rupts the input, so that the channel outputgit = v;x ® ex, [15]. Among them, Gilbert [14] and Fritchman [13] models have
where the symbofp denotes the bitwise logical exclusive-ORbeen shown to adequately describe the observed error bursts oc-
operation. Consequently, the decoder looks up the corm#ringin digital mobile radio channels [18]. The Gilbert model
sponding codevector in its codebook and releasesmmples consists of a Markov chain having an error-free statind a bad
of the codevectoe;, instead ok;, as the output. The resultantstate B, in which errors occur with the probability — . The
distortion between the codevectots and c; is denoted by state transition probabilities aféandp for theG to B andB5 to
d(e;, ¢ ), which will be assumed in the sequel to be a squaré&dtransitions, respectively. Notice that in the particular case of a
Euclidean distance, i.ed(c;, ¢;) = ||c; — ¢;]|?. In this frame- Gilbert model with parameter valugs=1, p =0, h = 1 —¢,
work, the overall distortiorE[||x — ¢;]|?] can be divided into the channel model reduces to a memoryless binary symmetric
three terms: quantizer distortidn, = Ef[||x — c;||?], channel channel with the BER.

wheree is the channel bit error rate (BER) ahés the number
of ones occurring in the error patteen However, the errors

I1l. GILBERT AND FRITCHMAN CHANNEL MODELS
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(N — 1) pairs of parameterky;, 3; } are the optimization vari-
ables to be identified. For this investigation, the sum of the
squared errors between the measured error-gap distribution and
its modeled fit was considered a suitable cost function. The least
square approximation method leads to a constrained nonlinear
optimization problem that can be stated as follows:

L N-1

1
min £, = min = |log,o P(0'[1) — log ;3
poe Bt A ; I g10 P(0°[1) g10 2; i3
= =
Fig. 2. Fritchman channel model witN — 1 error-free states and a single ) ) (5)
error state. where0 < oy, 5; < 1,fori =1,2,..., N —1,andL gives the

longest interval between two consecutive errors.

To match the observed error sequences more closely, it
is necessary to use a Markov model with more than one  |V. PARAMETER ESTIMATION IN GILBERT AND
error-free state. Fritchman [13] investigated the more general FRITCHMAN MODELS

case of a Markov chain wit¥ states, partitioned into a group  The gradient-descent algorithm [18] is often used to identify
of k error-free statesQ4 = {q1,¢2,....qx}, and another optimal values of Gilbert and Fritthman model parameters for
group of (N — k) error statesQ)p = {g+1,@k+2:---,4n}-  which the cost functior, in (5) is minimal. Starting with a
Lete = {ei,cz,...} be an error sequence generated byingle point in the search space, the gradient-descent method
the model and lets = {si,s2,...} be the sequence Oftres to find the optimum solution by performing successive cor-
states that evolves along with the transition probabilipoctions on parameter estimates in the direction opposite to the
P;; = Pr(g; at n + 1|g; at n). At each time instant, gradient of the cost function. While this approach converges
the occurrence of 0 or 1 im, will correspond respectively rapidly, its simple downhill search transitions can easily become
to the occurrence of,, in group Q4 or in group @p. For trapped in local minima and, thus, miss finding the globally op-
this investigation, we considered a simplified version of thgmal solution. Thus, it is common practice to run the gradient
Fritthman model in which there is a single error state (i.&search starting from a number of initial configurations and then
k = N — 1) and no transitions are allowed between any, choose the best outcome from all those obtained. However,
error-free states. The model state transition diagram is shoya computational burden can be intolerable and there would
in Fig. 2. This model has certain advantages toward chani@|| be no guarantee that an optimal solution will be found.
characterization. One advantage is that efficient methods §&yn earlier work [21], we presented preliminary experimental
available for estimating the model parameters by observipgsults showing that the simulated annealing technique [22] is
that the error-gap distribution is sufficient to uniquely specifyjreferable to the gradient method for use in estimating Gilbert
a single-error-state Markov model. Another attractive featufgodel parameters. However, for Fritthman channel modeling
is that a large variety of digital channels can be represented gplems, the error-performance surface tends to exhibit many
appropriate definitions of the model’s state transition probabifferent convex regions and has been found difficult to optimize
ities [18]. For example, the Gilbert model can be considereob9 means of the simulated annealing algorithm.
special case of the Fritthman model with two error-free statespn alternative approach to function optimization is based
(k = 2) and an error state [13]. on genetic algorithms (GAs) [19]. The main attraction of GAs
The principal difficulty in using Fritthman’s channel characayises from the fact that the given search space is explored in
terization is that the state transition probabilities are not direc@éra”d by means of iterative modifications of a population of
observable, so methods of deducing them from easily measufgglviduals. Each individual, called a chromosome, represents
error statistics must be derived. The measurement data Conaifbotential solution to a given problem. A block diagram of
ered here is the error-gap distribution, denoted§9’|1), that 4 typical genetic evolution is shown in Fig. 3. Choosing an
gives the probability that at leaksuccessive error-free bits will appropriate representation of chromosomes is the first step
be encountered next on the condition that an error bit has J'liﬁitapplying GAs to solving optimization problems and one
occurred. Assuming a stationary Markov chain, Fritchman [13lat conditions all subsequent steps of the implementation.
showed that the error-gap distribution can be expressed asfige, (v — 1) pairs of parametergq; , 3;} define the solution

sum of (V. — 1) exponentials and hence, can be encoded into a chromosome as a list of
N1 real numbers, that isS = [ay,81,...,an—1,0nx—1]. This
P(Ol|1) _ Z oczﬂf 4) rea_l-c_odeQ representation is more accurate for_c_ontmgous
— optimization problems [23] and allows us to hybridize with

problem-dependent heuristics to make an efficient implemen-
where the values ak; andg; are referred to as the Fritchmartation. The fitness values of all chromosomes were ranked with
model parameters. The relationship between these parametespect to the objective functiafi(S) = 1/E, using (5). As
and the state transition probabilities can be found in [13]. Pra-result of this evaluation, a particular group of chromosomes
ceeding in this way, the original descriptive modeling issue cavere selected from the population to generate offspring by
be formulated as a constrained optimization problem in whicgubsequent recombination. To prevent premature convergence
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TABLE |
Start RESULTS FROM THEGRADIENT-DESCENT AND GENETIC ALGORITHM

APPROACHES FORESTIMATING GILBERT MODEL PARAMETERS

e L . Genetic Algorithm
Gradient-descent
Initalization radient-descen Uniform Mutation | Annealing Mutation
% Run #1 0.154968 0.043520 0.036368
Run #2 0.112683 0.038849 0.036368
Fitness Evaluation Run #3 0.115964 0.036393 0.036368
Run #4 0.054852 0.040656 0.036368
| Run #5 0.034670 0.036971 0.036368
Average 0.100627 0.039278 0.036368
Selection
No ! of fitter chromosomes being replaced become less. Thus, the
Crossover search will move toward some feasibility regions likely to con-
1 tain the global optimum as the temperature gradually decreases,
_ but escapes from local optima are still possible since inferior so-
Mutation lutions are allowed. Here, we refer$aas the chromosome to be
mutated and to th&,, as the temperature at the¢h generation.
The temperature is decreased according to the cooling schedule
T, =To/(n+1) [26], whereTy is the initial temperature. Rel-
Yesd evant aspects of the annealing mutation scheme are summarized

as below.
1) Apply mutation to chromosom&, if the value of a

random number generated between 0 and 1 is less than
Fig. 3. Flow diagram for the GA. the specified mutation probability,,. Otherwise, leave
the chromosome intact.
Perturb chromosonf&to obtainS’ by adding an element
of zero-mean noise to the randomly selected gere
The only difference betweeh andS’ is that theith gene
values, = s; + r, wherer is normally distributed with a
standard deviation of = 0.057,.
Calculate the fitness difference between new and old
chromosomesAF = F(S') — F(S). Accept the new
chromosomes’ if it results in a net increase in fitness,
i.e., A" > 0.If AF <0, the probability of accepting an

of the population, this investigation employed the linear ranking 2)
selection scheme [24] that sorted individuals by increasing
order of fitness, and then assigned the expected number of
offspring according to their relative ranking. Crossover among
the selected chromosomes then proceeded by exchanging su%—
strings of two chromosomes between two randomly selected )
crossover points. The crossover probability, denotedphy

is defined as the ratio of the number of offspring produced

in each generation to the population size. After crossover, . '~ . o )
with a probability ofp,,, the mutation operator was used to inferior solutionS’ overs is given bye=/7:.

introduce random variations into the genetic structure of the 10 test the validity of various parameter estimation algo-

chromosomes. When the maximum number of generations V\r/glgms' a series of sam_ple Error Sequences were generated
ng a narrowband mobile radio channel simulator [27]. Each

reached, the best chromosome in the final population was tasample error sequence was 100 000 bits long. The channel

as GA.S solution for func_UonaI opt|m|_zat|c_)r_1. condition was defined by the Jakes model [28] with the
Having a proper mutation operator is critical for both the cor}(-AIIOWing parameters: carrier frequency= 900 MHz, vehicle

vergence rate and the final performance of real-coded GAs. eed= 100 km/h, number of low-frequency oscillators= 8
usual way to achieve mutation is to generate a random number, average SNR,= 10 dB. The Jakes model was designed ’to
and then replace one of the gene values of an existing chigy, jate Rayleigh fading channels and has been adopted by

mosome with a probability of,,,. However, GAs with such a giangard groups for use in testing candidate speech coding
uniform mutation find it difficult to perform a fine local searchgchemes as well as radio-link error-control protocols [29].

when applied to multidimensional parameter optimization Probjsing this model, we simulated error sequences for optimum
lems. Initiated by the merits of simulated annealing [25], Wgifferential phase-shift keying (DPSK) modulation at a data
propose a new mutation operator that uses the probabilistic age of 20 kb/s. For each of simulated error sequences, we first
ceptance test technique internally to determine whether to @galuated the measured values f0‘|1) by computing the
cept the mutated solution, or to stay with the previous solutiofatio of consecutive series of error-free bits with lengths equal
More specifically, mutated chromosomes with higher fithness or greater thar to the total number of error bursts. The
values are always included in the next generation, whereas thoptimal identification of anV-state Fritchman model was then
with inferior values are only accepted with a certain probabiliiprmulated as the least square approximation of the measured
that decreases as the effective temperature is decreased. @trisr-gap distribution by summing tié/ — 1) exponentials.
implies that more diversity among chromosomes can be intro-Experimental results obtained from the gradient-descent and
duced to allow a random search of the solution space in the eaggnetic approaches for estimating Gilbert model parameters are
stage of the optimization process and, in later stages, the charmesented in Table I. The performances were evaluated in terms
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TABLE I e
RESULTS FROM THEGRADIENT-DESCENT AND GENETIC ALGORITHM
APPROACHES FOFESTIMATING FRITCHMAN MODEL PARAMETERS =
=)
— - &
Gradient-descent _ Genét]c Algonthfn ; 5 ,
Uniform Mutation | Annealing Mutation E 10
Run #1 0.039161 0.026896 0.022008 El
Run #2 0.168571 0.040753 0.022191 s
Run #3 0.117410 0.031968 0.021973 $
Run #4 0.062529 0.045399 0.021973 g
Run #5 0.050357 0.036682 0.021973 | ~—~ Experimental distribution
Average 0.087606 0.036340 0.022046 - Fritchman modeled it
of the cost functior, in (5), which indicates the the sum of the 109
squared errors between the measured error-gap distribution ! 0 100 1000
the corresponding modeled fit. To compare the algorithms wi Etror-gap length(?)

respect to their consistency, we ran each algorithm five times,

each time beginning with a randomly selected parameter s 4. Experimental error-gap distributiof(0'1) and its Fritchman
ting. In the GA implementation, the parameter values used f5pd¢!ed fit for an error sequence typical of the Jakes model.

the maximum number of generations, the population size, the

crossover probability, and the mutation probability were empiguitable indices to the codevectors. For a fixed codebook and a
ically determined to be 2000, 50, 0.6, and 0.1, respectively. A&en channel, every possible index assignment funetiomst
shown in Table I, the estimation process using the gradient-(ﬁ@ examined to find the one that minimizes the channel distor-
scent method often terminates in an unsatisfactory local mien D.(~y). This task belongs to the class of NP-complete prob-
imum. This shortcoming is inherent in optimization algorithmkems, since there ar&f! possible combinations of indices for
that perform downhill searches along the functignconsisting codebooks of sizé{. With this constraint, an exact search for
not of a unique global minimum but of many local minima. Irthe optimal index assignment is not feasible and many practical
contrast, the GA has a global searching capability and, therefdrglex assignment algorithms are suboptimal. The case of mem-
leads to a greater accuracy in the estimation of Gilbert modstyless binary symmetric channel has been considered in con-
parameters. It is also important to note that, relative to uniforjinction with binary switching algorithm in [5], with simulated
mutation, the use of annealing mutation further reduces the digmealing algorithm in [6], and with Hadamard transform in
tortion £, and the sensitivity to initial parameter setting. Thigg]. Extension of these results to wireless channels requires that
better result is due to the fact that the annealing process allg¥iannel transition probabilities be carefully derived to account
random searching of the solution space initially and only vegy; the statistical dependencies between error occurrences. This

local searching in later stages. motivates us to seek to incorporate the Fritcthman channel mod-
We next investigated the performance dependence of chanémg into the index assignment design.

pharacterization on the r_lum_berof exponentials used to approXa - gistinctive feature of the Fritthman model lies in its
|m_ate the error-gap d|s_tr!but|on. Tablg Il presents the r(_asults Oé?iannel transition probabilities that have closed-form ex-
tained from the curve fitting for the Fritchman m_odel with thre essions represented in terms of model parameters. Let
error-free states and one error state. A comparison between e), 1 < i < M} denote the set of codevector indices
bles I and Il reveals that the Fritchman model is preferable o= = . . : k
the Gilbert model for use in Markov characterization of sampgmh. v{ei) = (i1, 72, . -, 7im) bEINg the binary expansion of

. : o dex associated with the codeveatarFor the Fritchman
error sequences. This can be explained by (5), which indica §§ INdex
that the numbefN — 1) of exponentials should be the numbanOOIe_I with (N - 1? error-free states and one error state, the
of distinct line segments embedded in the measured value, E§ective BERe is given by [31]
pressed logarithmically, of the error-gap distribution. To elab-
orate further, we show in Fig. 4 the experimentally measured _ 1
error-gap distribution”(0‘|1) for an error sequence typical of £= 14 21‘\"—1(@‘/3‘/1 - 53)
the Jakes model. Also shown in the figure is the Fritchman mod- =LA ‘
eled fit with parameter values estimated using the GA with an- N o
nealing mutation. It can be noted that within the error-gap di@nd the channel transition probabilities are expressed as
tribution curve, three line segments with different slopes can
be distinguished, making it particularly suited for a Fritchman m
model with three error-free statéd” — 1 = 3). It is also clear Ply(epy(e) = H Pe(vin @ vjx)l @
from this figure that the Fritchman modeled fit provides an ap- k=1
proximation of the experimental error-gap distribution to a rea-
sonable degree of accuracy.

(6)

wherel is a vector of ones and the initial state probabilities

in the form
V. ALGORITHMS FORDETERMINING THE INDEX ASSIGNMENT

For transmission of VQ data over noisy channels, distortions o1y 232 aN_1N_1
: : S T =|e € R el (8)
due to channel impairments can be greatly reduced by assigning 1-8 1—p5 1—fAn_q
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In (7), the term(~y;. & ~v,%) only assumes the values of O or 1, TABLE Il
i ; ; CHANNEL DISTORTION USING VARIOUS VECTOR QUANTIZERS IN FIVE
and the corresponding matri. is given by DIFFERENT RUNS OF THEBINARY SWITCHING ALGORITHM,GENETIC
ALGORITHM AND FOR THE ENSEMBLE AVERAGE OF M| CODES
B1 0 . 0
p=0.0 p=105
0 . 0 0 J=4 J=6 J=4 J=6
P.(0) = _ 9) BSA | GA | BSA | GA | BSA | GA | BSA | GA
0 . ﬁN—l . Run #1 | 0.1245 | 0.1245 | 0.2329 { 0.2208 | 0.1486 | 0.1442 | 0.2311 | 0.2247
Run #2 | 0.1260 | 0.1244 [ 0.2294 | 0.2212 | 0.1506 | 0.1441 | 0.2346 | 0.2242
arf - an-1fn-1 0 Run #3 | 0.1305 | 0.1245 | 0.2258 | 0.2213 | 0.1462 | 0.1442 | 0.2289 | 0.2251
Run #4 { 0.1298 | 0.1245 | 0.2359 | 0.2214 | 0.1458 | 0.1441 | 0.2294 | 0.2254
or Run #5 | 0.1253 | 0.1245 | 0.2288 | 0.2204 | 0.1464 | 0.1441 | 0.2310 | 0.2243
Average | 0.1272 | 0.1245 | 0.2306 | 0.2210 | 0.1475 | 0.1441 | 0.2310 | 0.2247
Random 0.2378 0.4812 0.2811 0.56361

1- 4

P.(1)= Ov—1yx(v-1) 1 ['3N L (10) 4) Apply the crossover to the selected chromosomes when
0---0 1— ZNfl_ocﬂ the value of a random number generated between 0 and

=1 T 1 is less than the crossover probability The partially-
matched crossover operator [30] is adopted here. This
crossover is performed by exchanging the substrings be-
tween two randomly selected positions and then resolving

We next developed an algorithm to use with the Fritchman
model for optimizing the index assignment over channels with
memory. The optimization approach taken here is the GA which - . X -

conflicting assignments with a repairing procedure.

performs global exploration among a population of chromo- ) > S )

somes. A similar approach to index assignment that uses a par-5) With a probab|llty Ofp’".’ th? mutation is applied to each

allel GA was introduced in [7] but with the major difference of chromosome by mvg_rtmg its substring between two ran-

considering memoryless binary symmetric channels. The par- domly selected posmon's. .

allel GA operates by dividing the total population into a number ) Rv_epeat steps 2 t0 5 until the maximum T“‘mbef of gener-
ations has been reached. After termination, the best chro-

of smaller subpopulations and then executing the main loop of 1 the final lation is tak h imal
the GA on each subpopulation separately. A few reasons can be mosome in the final population Is taken as the optima
index assignment.

listed concerning our choice of the GA over the parallel GA for
functional optimization. First, the issue of whether it is better to
use a single large population or multiple small subpopulations iY!- | NDEX ASSIGNMENT PERFORMANCE COMPARISONS AND
the GA implementation does not appear to be settled and may be RESULTS

problem dependent. Second, no matter which approach is usegixperiments were carried out to investigate the potential ad-
incorporating the Fritthman model into the index assignmegintages of using genetic algorithms to improve the robustness
can serve to better track the intrinsic natures of channel erragsnonredundant VQ coding systems. The input signals consid-
The input to the proposed algorithm consists of a domain-spged here include first order Gauss—Markov sources described
cific codebook and Fritchman model parameters for the givgyx(n) = pz(n — 1) + w(n), wherew(n) is zero-mean, unit-

channel that will carry the codevector indices. The algorithifariance white Gaussian noise, with correlation coefficients of
eventually halts and gives as output the index assignment that ¢ andp = 0.5. Each of these was tested with rate=
minimizes the channel distortial. (). 1 bit/sample vector quantizers having the following codebook
While the basics of the operation of the GA were illustrated i§izes and dimension valuésZ, J) : (16,4), (64, 6), (256, 8).
Fig. 3, it requires some elaboration. The search space of interpisé codebooks were designed for a noiseless channel using the
is a set of permutations of the indices; encoding each chrom@andard generalized Lloyd algorithm [20]. Distortions between
some as a list of indices that number the representative codev@e-source sequence and each possible codevector were calcu-
tors can solve the representation problem. For GAs with sucliaged, and the codevector with the smallest distortion was se-
permutation representation, special care must be taken to enggéged as the best fit. Table 1l presents the vector quantization
that genetic operators will not yield illegal offspring in whichresults associated with various index assignment algorithms for
some indices are missed while other indices are duplicated. The case where the bits in the codevector indices are subjected to
proposed GA for solving the index assignment problem consigfe sample error sequences described in Section IV. The perfor-
of the following steps. mances of the binary switching algorithm (BSA) [5] and the GA
1) Randomly generate an initial population of chromowere measured in terms of channel distortidf(y) and com-
somes, each of which corresponds to one particulpared with the ensemble-averaged distortion yielded by random
index assignment function, i.e§ = [vy(c1),v(c2), index assignment. The parameter values used in the GA imple-
cv(em)] mentation for the maximum number of generations, the popula-
2) Evaluate the fitness of each chromosdnay the objec- tion size, the crossover probability, and the mutation probability
tive function F(S) = 1/D.(v), whereD.(~) is calcu- were 500, 400, 0.6, and 0.2, respectively. Numerical results ob-
lated by substituting (7) in (2). tained from the BSA and GA are presented for five runs of
3) Assign the expected number of offspring to each chreach algorithm, each run beginning with a randomized index as-
mosome according to the linear ranking selection schersignment. The results of these experiments clearly demonstrate
[24]. the improved performance achievable using the BSA and GA
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Fig. 5. SNR(dB) performance of a vector quantizer with index assignmelig. 6. SNR(dB) performance of a vector quantizer with 1A on a Gilbert
(IA) on a memoryless channel. (a) Codebook size = 256, vector dimension <Bannel. (a) Codebook size = 256, vector dimension = 8, source = Gaussian
source = Gaussian i.i.d. (b) Codebook size = 256, vector dimension = 8, sourtd. (b) Codebook size = 256, vector dimension = 8, source = lst-order
= 1st-order Gauss-Markayp = 0.5). Gauss-Markop = 0.5).

in comparison to the performance obtained from random indgX,ector quantizer with a codebook size and vector dimension
gssignment. Furthermore, the .improvement has a teqdenc;bfo(M7 J) = (256,8). The SNRs were measured for the
increase for larger codebook sizes and for more heavily corggsdebooks before and after applying genetic-type index assign-
lated Gaussian sources. This observation is in accord with th@nt for the channel BERs ranging frori—3 to 10—, Each
results produced by the memoryless binary symmetric chan%ph shows results that compare the case where the index
reported earlier [5]-{7]. Compared with the BSA, the effectivesssignment was designed for a memoryless channel against
ness of the GA for use in solving the minimum distortion indeie case that was designed for the Gilbert channel. Simulation
assignment problem is clearly demonstrated. The main reasggyits indicate that the accuracy of the channel model used
for this is that the BSA suffers from the problem of convergengg developing the index assignment algorithm is extremely
toward qua_ll_y o_ptimal sol_utions that are critically depender;gnportant to the performance of the vector quantizer. The
upon the initial index assignment [5]. By contrast, the globglyestigation further showed that for higher channel BERS, the

explorative properties of GA can help to find a solution thahcrease in SNR is more noticeable when an index assignment
shows greater accuracy and lower sensitivity to the choice @htches real channel behavior.

initial index assignment. This explains why the genetic search
strategy converges to a point where the corresponding channel
distortion is more consistent from run to run. Indeed, for cases
in which.J = 4, the genetic-type index assignment yielded the This study presents a novel means of exploiting Markov char-
same result in all the tests. acterization of error sequences in the design of a robust vector
The next step in the present investigation concerned the pguantizer for noisy channels with memory. We first emphasized
formance degradation that may result from using genetic-tyfree importance of matching the real channel behavior to the
index assignment under channel mismatch conditions. €bannel model on which the index assignment design is based.
illustrate some of the results, Figs. 5 and 6 compare the overiiiis task was accomplished by using finite-state Markov chain
SNR of the vector quantizer for the memoryless and theodels to characterize the statistical dependencies in relative
Gilbert channels, respectively. These results are presenteddocurrences of errors. Simulation results indicate that a hybrid

VIlI. CONCLUSION
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strategy incorporating an annealing mutation operator into thfé] T. Sato, K. Tokuda, M. Kawabe, and T. Kato, “Simulation of burst error
real-coded genetic algorithm leads to greater accuracy in esti-
mating Gilbert and Fritchman model parameters. Our method
coincides with the optimization process of fitting mixtures of [17]
exponential functions to experimental error-gap distributions.
Finally, the merits of using genetic algorithms for assigning bi-[lg]
nary indices to VQ codevectors were explored. We concluded
that with the aid of Fritchman channel characterization the index

assignment algorithm can be developed to better track the inqg

trinsic natures of channel errors. While we only addressed the
index assignment problem associated with designing a robuf0l
VQ, the design techniques used to refine the channel transitio[gl]
probabilities can be applied to the channel-optimized VQ de-
sign as well.
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