
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 17, 633-646 (2001)

633

Short Paper ___

File Allocation Algorithms to Minimize Data Transmission
Time in Distributed Computing Systems*+

PAO-YUAN CHANG, DENG-JYI CHEN** AND KRISHNA M. KAVI++

Information Management Department
Ta Hwa Institute of Technology
Hsinchu, Taiwan 307, R.O.C.

E-mail: pychang@et4.thit.edu.tw
**Computer Science and Information Engineering Department

National Chiao Tung University,
Hsinchu, Taiwan 300, R.O.C.

E-mail: djchen@csie.nctu.edu.tw
++Department of Electrical and Computer Engineering

University of Alabama in Huntsville
Huntsville, AL 35899, U.S.A.

E-mail: kavi@ebs330.eb.uah.edu

This work addresses a files allocation problem (FAP) in distributed computing sys-
tems. This FAP attempts to minimize the expected data transfer time for a specific pro-
gram that must access several data files from non-perfect computer sites. We assume
that communication capacity can be reserved; hence, the data transmission behavior is
modeled as a many-to-one multi-commodity flow problem. A new critical-cut method
is proposed to solve this reduced multi-commodity flow problem. Based on this method,
two algorithms which use branch-and-bound are proposed for this FAP. The proposed
algorithms are able to allocate data files having single copies or multiple replicated cop-
ies. Simulation results are presented to demonstrate the performance of the algorithms.

Keywords: distributed computing system (DCS), cut, multi-commodity flow, linear pro-
gramming, data replication, branch and bound

1. INTRODUCTION

Due to recent advances in microprocessor technologies, distributed computing sys-
tems (DCS) have been increasingly used in diverse fields involved in time critical appli-
cations, such as industrial manufacturing, traffic control, and the military. Successful

Received December 3, 1998; revised May 29, 1999; accepted September 7, 1999.
Communicated by Arbee L. P. Chen.
* This research work is supported in part by National Science Council in Taiwan under Contract No.

NSC872213E009094.
+ The previous version of this paper was published in Proceedings of IEEE International Computer Perform-

ance and Dependability Symposium (IPDS), Sep. 4-6, 96, Urbanna-Champaign, Illinois, U.S.A.

PAO-YUAN CHANG, DENG-JYI CHEN AND KRISHNA M. KAVI634

execution of an application hinges on not only successful operation of computing devices,
but also on the program response time. In a DCS, network efficiency plays a prominent
role in determining the program response time. The running program and the data files
are often placed at different computer sites; thus, execution requires remote file access.
To shorten the data transfer time, the allocation of data files such that the data transfer
time can be minimized becomes an important design issue. This kind of problem deal-
ing with the assignment of files to processing nodes so as to optimize performance is
commonly known as a file allocation problem (FAP). Many types of FAPs with differ-
ent objectives and constraints have been addressed in the literature [2-4, 6, 7, 9-14].
Typically, FAPs are complex integer programming problems with no known efficient
solutions [5]. Hence, heuristic solutions are needed.

In this paper, we consider the FAP in a DCS based on packet-switched subnet. The
primary goal of this FAP is to minimize the data transfer time for a specific program
which needs data from several data files in order to execute. We assume that each link
has reserved a fixed communication capacity for this specific program. Based on the
fact that the size of a packet is much less than that of a data file, a flow model can accu-
rately reflect the data transmission behavior. In the flow model, a DCS is presented by
an undirected graph, where nodes and links denote computer sites and communication
links, respectively, and the numbers associated with links denote the reserved link ca-
pacities. The nodes which hold data files are sources, and the node where the program
is located is the target. Data transmission is, thus, modeled as a many-to-one
multi-commodity flow problem. A linear programming technique is, therefore, a feasi-
ble way to solve this problem.

Besides minimizing the data transfer time, the FAP also attempts to maximize pro-
gram reliability. However, it is not always possible to find an allocation that can opti-
mize both performance measures. When this dilemma occurs, minimization of the data
transfer time will be the considered first. This strategy is based on the following facts.
Firstly, current computer facilities are highly reliable. A small improvement in reliability,
for example 10-6, is meaningless for most users. Secondly, program reliability can be
easily improved through the use of redundancy in data files. That is, files can be repli-
cated and placed at different computer sites safeguard against the situation in which some
of the computer sites fail.

This paper presents two algorithms, NOFA (Near Optimal File Allocation) and HFA
(Heuristic File Allocation), to deal with the FAP that has the objectives stated above.
These algorithms are based on branch-and-bound, and are only different in the number of
steps they traverse in the search tree. NOFA traverses more steps than HFA does and,
thus, produces better results. Both algorithms are capable of allocating replicated cop-
ies, but neither can guarantee that the optimal allocation will be found. Herein, the op-
timal allocation means that the expected data transfer time from the sources to the target
is the minimum (given that program execution is successful). NOFA is considered to be
“near optimal” since for highly reliable nodes, likelihood that NOFA will find the optimal
allocation is very high. If the nodes are perfect, NOFA will always find the optimal
allocation.

PAO-YUAN CHANG, DENG-JYI CHEN AND KRISHNA M. KAVI 635

2. PROBLEM DEFINITION

Let m be the number of data files to be allocated, and let n be the number of com-
puter sites (i.e. the nodes in the undirected graph) in the DCS. We label the data files
and computer sites F1, F2, …, Fm and N1, N2, …, Nn, respectively. Each data file may be
replicated and allocated on different nodes so that one nodal failure the program execu-
tion. Hence, an allocation matrix M = [Mij] of the data files is defined as an m × n ma-
trix, where





>
=

onallocatedisofcopyththeif)0(

onallocatednotisif0

ji

ji

ij NFkk

NF
M .

Program P firstly attempts to read data files of primary copies (i.e., the first copies). If
some of them are not available, their second copies will be retrieved instead. Therefore,
the kth copy of a data file is read by the program P only when accessing the k-1 copies
(from the first to the (n-1)th copies) fails. Therefore, we say that an allocation matrix is

valid if, for every i,)(
1

ij

n

j
MMAX

=
is greater than zero, and if there is exact one element in the

ith row whose value is k’, for k’ = 1, 2, ...,)(
1

ij

n

j
MMAX

=
.

The cost function is defined as the expected value of the data transfer time. Let an
allocation vector A be an m-element row vector which indicates from which nodes data
files are transferred. For a given valid allocation Matrix M, a valid allocation vector is
one of the following: ,11for))(),...,(),((

1

2
2

1
1 mi),(MMAXkiFSFSFS ij

n

j

km
m

kk ≤≤≤≤
=

where k
iF

denotes the kth copy of Fi and S(k
iF) is a function returning the node number on

which k
iF is allocated, i.e., S(k

iF) = j if Mij = k. The cost function of computing the

expected data transfer time is, thus, as follows:

COST(M) =))(|)(Pr)(
Aipossibleall

i
i

ii AEA(EAT U×∑ , (1)

where T(Ai) be the data transfer time required for Ai and))(|)(Pr i
i

i AEA(E U is the
probability that data will be transferred from the nodes indicated by Ai given that the data
transfer request is successful. The goal of the FAP is to find the optimal allocation ma-
trix MOP such that COST(MOP) ≤ COST(M) for any valid allocation matrix M subject to
the given allocation constraints (such as limited storage size).

The computational for this FAP is quite heavy. There are nm×k possible allocation
combinations for the m data files (each of which has k copies) on a n-node network.
Since we assume that nodes are highly reliable, the probability that the program P will
read data files from primary copies is very high. The cost function in (1) can be ap-
proached by

COST’(M) = T(A1), (2)

where A1 indicates that all the data are transferred from primary copies.

PAO-YUAN CHANG, DENG-JYI CHEN AND KRISHNA M. KAVI636

Based on the simplified cost function COST’(M), algorithms used to find the optimal
allocation matrix can finish within O(nm).

3. COMPUTATION OF COST’(M)

As stated in the introduction, the data transfer time (i.e. function COST’(M)) can be
calculated using linear programming techniques, such as the simplex method. However,
even if we reduce the scale of the problem to O(nm), solving O(nm) linear programming
problems is still a tremendous task. This section presents an alternative way to compute
COST’(M). Experimental results show that the proposed method is more efficient than
the simplex method [1]. In addition, the information obtained using our method helps
to further reduce the scale of the FAP.

3.1 Critical Cuts

Let (,)X X = the cut separating the nodes in set X (by letting the target node in X) from
the other nodes,
let cap(,)X X = capacity of the cut (,)X X , and

let A
VL = the number of bytes from the data files allocated to V for a given allocation vec-

tor A, where V denotes a single node or a set of nodes.

Theorem 1. Let Nt be the target node, and let S be the set of source nodes. T(A), the
time required for Nt to receive the data from S , can be computed by















),(ii

A

X

i XXcap

L
iMAX for i = 1, 2, …,h, where),(ii XX (for i = 1, 2, …, h) are all the

possible cuts that may separate Nt from S or a subset thereof (except the empty set).

Consider the DCS with the topology shown in Fig. 1(a). Assume that the program
P is on N2, and that the files F1 (|F1| = 300k), F2 (|F2| = 500k), and F3 (|F3| = 1M) are on
nodes N4, N1, and N3, respectively. Fig. 1(b) shows all the possible cuts that may separate
the source node(s) from the target node N2. The corresponding parameters for Theorem
1 are listed in Table 1. We conclude that the shortest time for the program P to receive
all the data is 1.30. The transmission speed is bounded by the capacity of cut c5. We
call the cut incurring the transmission bottleneck the critical cut.

500k

750k

1M

550k

100k

N1

N2

N4

N3

F3

P

500k
750k

1M

550k

100k

N1

N2

N4

N3

c1

c2

c3

c5

c4

F2

c6

F1

(a) (b)

Fig. 1. (a) A simple DCS. (b)The cuts separate source nodes from the target node.

PAO-YUAN CHANG, DENG-JYI CHEN AND KRISHNA M. KAVI 637

Table 1. Cuts and the corresponding parameters obtained by applying Theorem 1 to the
DCS shown in Fig. 1.

cut X X
A

X
L cap(X, X)

A

X
L /

cap(X, X)
c1 {N2,N3,N4} {N1} |F2|=500k 500k+1M=1500k 0.33
c2 {N2} {N1,N3,N4} |F1|+|F2|+|F3|=1800k 500k+550k+750k=1800k 1.00
c3 {N1,N2,N4} {N3} |F3|=1000k 1M+550k+100k=1650k 0.61
c4 {N1,N2,N3} {N4} |F1|=300k 750k+100k=850k 0.35
c5 {N2,N4} {N1,N3} |F2|+|F3|=1500k 500k+550k+100k=1150k 1.30
c6 {N1,N2} {N3,N4} |F1|+|F3|=1300k 1M+550k+750k=2300k 0.57

3.2 Reduction of Cuts

The enumeration of all the cuts as described in Theorem 1 is prohibitive for a large
network. We have developed a theorem the purpose of for cut reduction. Prior to pre-
senting this theorem, we need to introduce the concept of a cut-tree [8]. The cut-tree T
is a flow-equivalent tree of the original network G. Each link in T represents a mini-
mum cut of G. The n-node cut-tree shows the n-1 minimum cuts of G that do not cross
each other. The following example illustrates the process to constructing a cut-tree.

Consider the original graph G shown in Fig. 1(a). Firstly, we may randomly
choose two nodes, say N1 and N2, and perform the maximum flow computation. We get
a minimum cut ({N2, N4}, {N1, N3}) with capacity 1150k. This is shown symbolically
in Fig. 2(a). Next, we compute the maximum flow between N1 and N3. This computa-
tion may be done on a simpler graph (Fig. 2(b)) than G since we may consider nodes N2

and N4 as a single conceptual node. We get a minimum cut ({N2, N3, N4}, {N1}) with
capacity 1500k. This is shown in Fig. 2(c). Note that in Fig. 2(c), node N3 is attached
to the conceptual node N2, N4 because they both are on the same side of the cut ({N2,
N3 ,N4}, {N1}). Similarly, we calculate the maximum flow between N2 and N4 on the
graph as shown in Fig. 2(d) and get a minimum cut ({N1, N2, N3}, {N4}) with capacity
850k. Fig. 2(e) shows the final cut-tree. Each link in the cut-tree corresponds to a cut
in the original graph G. We show these cuts as dotted lines in Fig. 2(f). Since these
cuts do not cross each other, we call them partitioned cuts.

Definition 1. Let c X Xi = (,) and c Y Yj = (,) be two non-crossing cuts. If X Y⊆ (or

equivalently, X Y⊇), then ci is said to be an ancestor of cj, and cj is said to be a descen-

dant of ci. If ∅=∩ YX , then ci and cj are said to be brothers of each other.

Definition 2. Cut c is called a primary cut if c is a partitioned cut, and if the capacity of c
is smaller than the capacity of any ancestor cut of c.

Definition 3. Let c X Xi = (,) and cj=),(YY be two non-crossing cuts. The exclusive-or
operation, denoted by ⊕, is defined as follows. If ci and cj have a brother relationship,
then ci ⊕ cj),(YXYX ∪∩≡ ; if ci and cj have an ancestor/descendant relationship,

PAO-YUAN CHANG, DENG-JYI CHEN AND KRISHNA M. KAVI638

Fig. 2. An example to illustrate the process of obtaining a cut-tree. (a)-(d) the intermediate steps;
(e) the final cut-tree; (f) the partitioned cuts.

and if ci is an ancestor of cj, then c ⊕ cj),(YXYX ∩∪≡ .

Theorem 2. The critical cut can be factored into primary cuts based on exclusive-or op-
erations, and none of these primary cuts is an ancestor (or descendant) of the others.

The result of Theorem 2 suggests that we may apply exclusive-or operations to primary
cuts in order to generate a set of cuts, say S, which contains the critical cut. The mem-
bers of S are called possible critical cuts. The procedure Find_Possible_Critical_ Cuts
realizes the process of generating S. Since there are at most 2p–1 possible critical cuts,
the complexity of the procedure is O(2p), where p is the number of primary cuts.

PROCEDURE Find-Possible-Critical-Cuts
// S is the set of possible critical cuts. Initially, S is empty.

// Q is a queue of cuts. Initially, Q is empty.

Construct the cut-tree of the original network.

Decide on primary cuts.

Add all primary cuts to set S.

Enqueue all primary cuts to Q.

REPEAT

c = dequeue(Q)

FOR each of the primary cuts, cP

Add and enqueue c ⊕ cP to S and Q, respectively, unless

cond.1: c contains a factor cut which is an ancestor, or a descendent, of cP .
cond.2: c ∩ cP = ∅ //i.e. cuts c and cP have no common edges when they are

presented by sets of edges.
END_FOR

PAO-YUAN CHANG, DENG-JYI CHEN AND KRISHNA M. KAVI 639

UNTIL Q is empty

END_PROCEDURE

3.3 An Example

Consider the simple DCS shown in Fig. 1 as an illustrative example. The corre-
sponding cut-tree and partitioned cuts are shown in Figs. 2 (e) and (f). Since the node
N2 is the target node, we let N2 be the root of the cut-tree. Therefore, cuts c4 and c5 are
primary cuts. Table 2 lists the steps needed to generate possible critical cuts. Three
possible critical cuts are generated. The shortest transmission time can be calculated by

30.1
1150

1500
)

1800

1800
,

1150

1500
,

850

300
(==MAX

Table 2. Steps used to generate possible critical cuts (S: the set of possible critical cuts).

Cut to be
checked

X X Enter S?
Cut

capacity
Remark

c4 {N1,N2,N3} {N4} Yes 850k Primary cut

c5 {N2,N4} {N1,N3} Yes 1150k Primary cut

c4 ⊕ c5(=c2) {N2} {N1,N3,N4} Yes 1800k

4. FILE ALLOCATION ALGORITHMS

4.1 The NOFA (Near Optimum File Allocation Algorithm)

NOFA uses branch-and-bound to construct a search tree to obtain an allocation.
The algorithm first determines the locations of primary copies by calling a procedure
Sub_NOFA, which is responsible for constructing and traversing a search tree. Alloca-
tion of replicated copies for each data file is then carried out according to the locations of
the primary copies. For each assignment of a replicated copy, a separate search tree is
constructed and traversed. In these search trees, each node corresponds to the assign-
ment of a particular file to a specific computer site. This assignment is presented in the
form of an allocation vector. For example, the vector (3, 0, 1) means that F1 is assigned
to N3, that F2 has not been assigned, and that F3 is assigned to N1. Associated with each
tree node (or allocation vector) is the evaluation function for the current assignment. In
NOFA, there are two evaluation functions, f(A) and f*(A), whose definitions are given
below:

f(A) = 













),(ii

A

X

i XXCap

L
iMAX for i = 1, 2, …, p, where),(ii XX (i=1 to p) are primary cuts;

PAO-YUAN CHANG, DENG-JYI CHEN AND KRISHNA M. KAVI640

f*(A)= 













),(ii

A

X

i XXCap

L
iMAX for i = 1, 2, …, l, where),(ii XX (i=1 to l) are possible

critical cuts.

Undoubtedly, f* is a more precise evaluation function than f. However, the function f
(with O(n)) is applied instead of f* to evaluate an assignment for the sake of execution
efficiency. The function f* is computed only when a complete allocation is encountered
(i.e., all the elements in the allocation vector are non-zero). It returns the accurate data
transfer time.

To reduce the state spaces in the search tree, the following tree expansion rules are
applied: (1) large files are assigned prior to small files; (2) among all the same-level
nodes in the search tree, the one with the smallest f value is expanded first. Further-
more, the allocation of a file Fi to a node Nj is sometimes prohibited or unnecessary (see
S1, S2, and S3 in the Procedure Sub_NOFA). Situations S1 and S2 are straightforward
while S3 comes from the result of the following theorem.

Theorem 3. Let A1 and A2 be two allocation vectors which are only different in allocat-
ing a specific file, say F. A1 allocates F to Ni while A2 allocates F to Nj. If Ni is an
ancestor node of Nj in the cut-tree, then T(A1) ≤ T(A2), where T(A1) and T(A2) denote
the necessary data transfer time for A1 and A2, respectively.

ALGORITHM Optimal_File_Allocation

// K is the number of copies to be allocated for each file.

// Aop ≡ (a1, a2, ..., am), R ≡ (r1, r2, ..., rm), PFA ≡ (p1, p2, ..., pm): allocation vectors.

// f*op, Aop, and),(XopXop are all global (or static) variables which record the current

best allocation.

// M is an m × n (m: number of files; n: number of nodes) allocation matrix.

// *** Primary file allocation begin ***

f*OP = ∞, FS = {F1, F2, ..., Fm}, R = (0, 0, ..., 0)

CALL Sub_NOFA(R, FS)

PFA = AOP

FOR i = 1 to m DO M[i, pi] = 1

// *** Begin allocation of replicated copies ***

FOR k = 1 to K –1 DO

FOR i = 1 to m DO

f*OP = ∞, FS = {Fi}, R = (r1 = p1, r2 = p2, ..., ri = 0, ..., rm = pm)

CALL Sub_NOFA(R,FS)

M[i, ai] = 1

END_FOR

END_FOR

END_ALGORITHM

PAO-YUAN CHANG, DENG-JYI CHEN AND KRISHNA M. KAVI 641

PROCEDURE Sub_NOFA(v,FS)
IF FS is empty THEN

Find the critical cut (,)X X and calculate f*(Av), where Av is the associative alloca-

tion of v

IF f*(Av) < f*OP THEN AOP = Av, RETURN

END_IF
Remove Fmax , the largest-sized file, from the set FS
Expand the node v by assigning Fmax to each of the processing sites, say Nj , except that

S1: Allocation of Fmax to Nj is disallowed by the allocation constraints,
S2: Nj has a copy (or copies) of Fmax,
S3: Nj has an ancestor node (in the cut-tree) which are not in the previous cases.

Determine the expansion order of all successor nodes according to their f values.
FOR each of the successor nodes, say u

IF f(Au) < f*OP AND u

OP

A

X
L < OP

OP

A

X
L THEN CALL Sub_NOFA(u,FS)

END_FOR
END_PROCEDURE

4.2 An Example

Consider the network shown in Fig. 1(a). Node N2 is assumed to be the target node,
and three data files, F1 (300k bytes), F2 (500k bytes), and F3 (1M bytes), are to be allo-
cated. Each data file has two copies, but none of them can be allocated to the target
node. Except for this, there is no other allocation constraint. The primary file alloca-
tion results in the following trace (see Fig. 3).

• Initially, the root v0 = (0, 0, 0).

• Expand v0 by allocating file F3 (the largest data file) to get v1 (with f = 0.87) and v2

(with f = 1.18). Node v1 is selected for the next expansion since it has a smaller f

value. Repeat this process, and nodes v3, v4, v5 , and v6 will be built sequentially.

• Expand v6 (with f = 0.94) and obtain v7. Compute f*(= 1.00) and obtain the criti-

cal-cut c2 = ({N2}, {N1, N3, N4}). As a result, f*OP = 1.00; AOP = (4, 4, 3);),(XopXop

= ({N2}, {N1, N3, N4}). Return to the higher level.
• Since the f value of v5 is not less than f*OP, return to the higher level. Similarly, the f

values of v3 and v2 are not less than f*OP, so return to the caller, NOFA.

• Update M as
















0100

1000

1000
, and the allocation of primary copies completes.

Assignment of the second copy of F1 has the state space shown in Fig. 4(a).

• v0 = (0, 4, 3).

• Expand v0 by allocating file F1 to get v1 .

PAO-YUAN CHANG, DENG-JYI CHEN AND KRISHNA M. KAVI642

• Expand v1 (with f = 1.13) and obtain v2. Compute f*(= 1.13) and obtain the criti-
cal-cut c5 = ({N2, N4}, {N1, N3}) and AOP = (3, 4, 3). Return to the higher level.

• Return to NOFA and update M as
















0100

1000

1200
.

Assignment of the second copies of F2 and F3 is carried out in a similar way (see Fig.

4(b) and Fig. 4(c)). Finally, we obtain an allocation matrix:
















0102

1200

1200

.

Fig. 3. State space tree for allocation of primary copies.

Table 3 lists the probabilities and data transfer times for all the possible node
status combinations by assuming that all the nodes have the same probability (or reliabil-
ity) of success, Pr. The probabilities of successful execution of program P are 0.981
and 0.999801, and the expected data transfer times (given that execution of P is success-
ful) are 1.052 and 1.006, for Pr = 0.9 and Pr = 0.99, respectively.

4.3 The HFA (Heuristic File Allocation Algorithm)

A polynomial time complexity algorithm is presented in this subsection. HFA is
similar to NOFA except that HFA calls the procedure Sub_HFA instead of expanding the
search tree. In Sub_HFA, the searching process stops as soon as the first complete al-
location is encountered.

v0:(0,0,0)
f=0

v1:(0,0,3)
f=0.87

v2:(0,0,4)
f=1.18

v3:(0,3,3)
f=1.30

v5:(3,4,3)
f=1.13

v6:(4,4,3)
f=0.94

v7:(4,4,3)
f*=1.00

v4:(0,4,3)
f=0.87

PAO-YUAN CHANG, DENG-JYI CHEN AND KRISHNA M. KAVI 643

(a) (b) (c)

Fig. 4. State space tree for allocation of second copies.

Table 3. List of probabilities and data transfer times for different node status combina-
tions. (0: failure, 1: success, Pr: node reliability).

N1 N3 N4 Execution Probability Pr = 0.9 Pr = 0.99 Data Transfer Time

0 0 0 0 (1-Pr)3 0.001 0.000001 -
0 0 1 0 Pr(1-Pr)2 0.009 0.000099 -
0 1 0 1 Pr(1-Pr)2 0.009 0.000099 1.57
0 1 1 1 Pr2(1-Pr) 0.081 0.009801 1.00
1 0 0 0 Pr(1-Pr)2 0.009 0.000099 -
1 0 1 1 Pr2(1-Pr) 0.081 0.009801 1.00
1 1 0 1 Pr2(1-Pr) 0.081 0.009801 1.57
1 1 1 1 Pr3 0.729 0.970299 1.00

PROCEDURE Sub_HFA(v,FS)

current_node = v

REPEAT

Remove Fmax , the largest-sized file, from the set FS

Expand current_node by assigning Fmax to each of the processing sites, say Nj , ex-

cept that

S1: allocation of Fmax to Nj is disallowed by the allocation constraints,

S2: Nj has a copy (or copies) of Fmax,

S3: Nj has an ancestor node (in the cut-tree) which does not exist in the previ-

ous cases.

Let current_node be the node having the smallest f value among all the successor

nodes.

UNTIL FS is empty

v0:(0,4,3)

f=0.87

v1:(3,4,3)

f=1.13

v2:(3,4,3)

f*=1.13

v0:(4,0,3)

f=0.87

v1:(4,3,3)

f=1.30

v2:(4,3,3)

f*=1.30

v0:(4,4,0)

f=0.94

v1:(4,3,1)

f=0.94

v2:(4,3,1)

f*=1.00

PAO-YUAN CHANG, DENG-JYI CHEN AND KRISHNA M. KAVI644

Return current_node

END_PROCEDURE

5. PERFORMANCE

Herein, the performance of NOFA and HFA has been evaluated by means of a
simulation program which allocates five files of randomly generated sizes on a network
of ARPA net topology (21 nodes, 26 links). The target node and the available link ca-
pacities are randomly generated. The allocations generated by NOFA and HFA are
evaluated by comparing their corresponding expected data transfer times with that of the
optimal allocation. However, since obtaining the optimal allocation is not computa-
tionally feasible (especially in the case of allocation of multiple replicated copies), we
obtain the optimal allocation by selecting the best one among 100,000 random alloca-
tions and the allocations found by NOFA and HFA. Experiments have been conducted
with K = 1 and 2, respectively, where K is the number of copies of each data file. The
results are shown in Fig. 5, where the X-axis is the node reliability and the Y-axis is the
ratio COST(MOP)/ COST(M), where M is the allocation found by NOFA or HFA and MOP

represents the optimal allocation.

Fig. 5. Experimental results obtained using NOFA and HFA.

6. CONCLUSIONS

We have developed a flow-based data transmission model and presented a novel
method for solving it. We have also presented two algorithms, NOFA and HFA, for
dealing with the file allocation problem. Simulation results show that a very high per-
centage of the allocations generated by NOFA are optimal allocations, especially when
the nodal reliability is high. The results also suggest that the heuristic approach, HFA,
is a good approximation.

ACKNOWLEDGEMENTS

The authors would like to thank the National Science Council of the Republic of
China for financially supporting this research under Contract no. NSC872213E009094.

0.8

0.85

0.9

0.95

1

1.05

0.5 0.6 0.7 0.8 0.9 0.99

���������	
�����

�
�
�
�
��

�
�
��
�
�
�
�
��

�

��������	

�������
	

�������	

������
	

PAO-YUAN CHANG, DENG-JYI CHEN AND KRISHNA M. KAVI 645

REFERENCES

1. P. Y. Chang and D. J. Chen, “Optimal routing for distributed systems with data rep-
lication,” in Proceeding of IEEE International Computer Performance & Depend-
ability Symposium, 1996, pp. 42-51.

2. P. S. Chen and J. Akoka, “Optimal design of distributed information systems,” IEEE
Transactions on Computers, Vol. C-29, No.12, 1980, pp. 1068-1080.

3. R. S. Chen, D. J. Chen, and Y. S. Yeh, “Reliability optimization of distributed com-
puting systems subject to capability constraints,” An International Journal of Com-
puter & Mathematic with Application, Vol. 29, No. 4, 1995, pp. 93-99.

4. W. Chu, “Optimal file allocation in a computer network,” Computer-Communication
Systems, Prentice-Hall, Englewood Cliffs, N. J, 1973, pp. 82-94.

5. L. W. Dowdy and D. V. Foster, “Comparative models of file assignment problem,”
ACM Computer. Surveys, Vol. 14, No. 2, 1982, pp. 287-313.

6. A. E. El-Abd, “Modeling resources allocation and performance measures in distrib-
uted computer networks,” in Proceeding of IEEE Singapore International on
Networks/ Conference on Information Engineering, 1995, pp. 581-586.

7. V. Foster, L. W. Dowdy, and J. E. Ames, “File assignment in a computer network,”
Computer Network, Vol. 5, No. __, 1981, pp. 341-349.

8. T. C. Hu, Combinatorial Algorithms, Addison-Wesley, Menlo Park (Calif.), 1986, pp.
60-83.

9. J. F. Kurose and R. Simha, “A microeconomic approach to optimal resource alloca-
tion in distributed computer systems,” IEEE Transactions on Computers, Vol. C-38,
No. 5, 1989, pp. 705-717.

10. S. Mahmoud and J. S. Riordon, , “Optimal allocation of resources in distributed in-
formation networks,” ACM Transactions on Database System, Vol. 1, No. 1, 1976,
pp. 66-78.

11. L. Morgan and K. D. Levin, “Optimal program and data locations in computer net-
works,” Communication of ACM , Vol. 20, No. 5, 1977, pp. 315-322.

12. R. M. Pathak, A. Kumar, and Y. P. Gupta, , “Reliability oriented allocation of files on
distributed systems,” in Proceedings of IEEE Symposium on Parallel and Distributed
Processing, pp. 886-893.

13. S. Ram and R. E. Marsten, “A model for database allocation incorporating a concur-
rency control mechanism,” IEEE Transactions on Knowledge and Data Engineering,
Vol. 3, No.__, 1991, pp. 389-395.

14. V. Ramamoorthy and K. M. Chandy, “Optimization of memory hierarchies in multi-
programmed systems,” Journal of ACM , Vol. 17, No. 3, 1970, pp. 426-445.

Pao-Yuan Chang (���) is an associate professor of Information Management at
the Ta Hwa Institute of Technology (Hsinchu, Taiwan). He holds a B.S. degree in
Computer Engineering from National Chiao Tung University (Hsinchu, Taiwan), an M.S.
degree in Computer Science from University of Missouri (USA), and a Ph.D degree in
Computer Science and Information Engineering from National Chiao Tung University.
His research interests include performance and reliability analysis of distributed systems.

PAO-YUAN CHANG, DENG-JYI CHEN AND KRISHNA M. KAVI646

Deng-Jyi Chen (���) received the B.S. degree in Computer Science from Mis-
souri State University (cape Girardeau), and the M.S. and Ph.D degrees in Computer
Science from the University of Texas (Arlington) in 1983, 1985, and 1988, respectively.
He is now a professor at National Chiao Tung University (Hsinchu, Taiwan). Prior to
joining the faculty of National Chiao Tung University, he was with National Cheng Kung
University (Tainan, Taiwan). He has published more than 100 referred journal and
conference papers in the areas of performance and reliability modeling and evaluation of
distributed systems, computer networks, fault-tolerant systems, software reuse, and ob-
ject-oriented systems. He has also been the chief leader of several commercial products,
some of with are now marketed around the world. He has also received the research
award yearly from the National Science Council Taiwan for the last seven years and
served as a committee member for several academic and industrial organizations.

Krishna M. Kavi is currently a professor and eminent scholar of Computer Engi-
neering. Prior to joining UAH, he was a professor of Computer Science and Engineer-
ing at the University of Texas at Arlington. For two years (1993-1995) he was a pro-
gram manager at the National Science Foundation, managing operating systems, pro-
gramming languages and compiler programs in CCR the Division. He was an IEEE
Computer Society (CS) Distinguished Visitor (1989-91), editor of IEEE Transactions on
Computers (1993-1997), and editor of the Computer Society Press (1987-1991). His
primary research interest lies in computer systems architecture, including dataflow and
multithreaded systems, operating systems, and compiler optimization. His other re-
search interests include formal specifications of concurrent processing systems, per-
formance modeling and evaluation, load balancing and scheduling of parallel programs.
He has published over 100 technical papers on these topics. He received his B.E.
(Electrical) degree from the Indian Institute of Science, and MS and Ph.D. (Computer
Science and Engineering) degrees from Southern Methodist University. He is a senior
member of IEEE and a member of ACM.

