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Friedmann equation and stability of inflationary higher derivative gravity
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A stability analysis of the de Sitter universe in pure gravity theory is known to be useful in many aspects.
We first show how to complete the proof of an earlier argument based on a redundant field equation. It is
shown further that the stability condition applies tokÞ0 Friedmann-Robertson-Walker spaces based on the
nonredundant Friedmann equation derived from a simple effective Lagrangian. We show how to derive this
expression for the Friedmann equation of pure gravity theory. This expression is also generalized to include
scalar field interactions.
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Inflationary theory provides an appealing resolution
the flatness, monopole, and horizon problems of our pre
Universe described by the standard big bang cosmology@1#.
It is known that our Universe is homogeneous and isotro
to a high degree of precision@2#. Such a universe can b
described by the well known Friedmann-Robertson-Wal
~FRW! metric @3#. There are only three classes of FR
spaces characterized by their topological structure: one
either have a closed, open, or flat universe according to
observations at large.

It is also known that gravitational physics should be d
ferent from the standard Einstein models near the Pla
scale@4,5#. For example, quantum gravity or string corre
tions could lead to interesting cosmological consequen
@4#. Moreover, some investigations have addressed the
sibility of deriving inflation from higher order gravitationa
corrections@6–8#.

A general analysis of the stability condition for a varie
of pure higher derivative gravity theories is very useful
many respects. It was shown that a stability condition sho
hold for any potential candidate of an inflationary universe
the flat FRW space@8,9#. We will first briefly review the
approach of Ref.@8# based on a redundant field equatio
The proof will be shown to be incomplete. We will als
show how to complete the proof with the help of the Bianc
identity for some models where the redundant equation
be recast in a form similar to the Bianchi identity in a FR
background.

In addition, the derivation of the Einstein equations in t
presence of higher derivative couplings is known to be v
complicated. The presence of a scalar field in induced g
ity and dilaton gravity models makes the derivation ev
more difficult to derive.
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We have developed a simpler derivation by imposing
FRW symmetry before varying the action while keeping t
proper time lapse function@10#. We try to generalize the
work in @10# in order to obtain a general formula for th
nonredundant Friedmann equation. It can be applied to p
vide an alternative and simplified method to prove the va
ity of the stability conditions in pure gravity theories. In fac
this general formula for the Friedmann equation is very u
ful in many area of interests.

The generalized Friedmann-Robertson-Walker~GFRW!
metric can be read off directly from the following equatio

ds2[gmn
GFRWdxmdxn52b~ t !2dt21a2~ t !S dr2

12kr2 1r 2dV D .

~1!

HeredV is the solid angledV5du21sin2u dx2, andk50,
61 stand for a flat, closed or open universe, respectiv
Note also that the FRW metric can be obtained from
GFRW metric by setting the lapse functionb(t) equal to
one, i.e.,b51, in Eq. ~1!.

One can list all nonvanishing components of the curvat
tensor as

Rt j
ti 5 1

2 @HḂ12B~Ḣ1H2!#d j
i , ~2!

Rkl
i j 5~H2B1 k/a2!Ckl

i j . ~3!

HereCkl
i j [e i jmemkl with e i jk denoting the three space Lev

Civita tensor@3#. Here the overdot denotes differentiatio
with respect tot and H5ȧ/a is the Hubble constant. We
have writtenB[1/b2 for later convenience.

Given a pure gravity model one can cast the action of
system asS5*d4xAgL5N*dta3L(H,Ḣ,k/a2) in the FRW
spaces. HereN is a time independent integration constant.
we takeL as an effective Lagrangian, one can show that
variation with respect toa gives
©2001 The American Physical Society01-1
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3L2H dL/dH 1~H22Ḣ ! dL/dḢ

5S 2H1
d

dtD F2S 4H1
d

dtD dL

dḢ
1

dL

dHG12k
dL

dk
. ~4!

Note thata3L is normally referred to as the effective La
grangian. We will also callL the effective Lagrangian unles
confusion occurs. The above equation is the space-likei j
component of the Einstein equationGmn5tmn with tmn de-
noting the generalized energy momentum tensor assoc
with the system. It is known that this equation is in fact
redundant equation. Indeed, one can defineHmn[Gmn2tmn

and write the field equation asHmn50.
Hence, one has

DmHmn50 ~5!

from the energy conservation (Dmtmn50) and the Bianchi
identity (DmGmn50). Indeed, the extended Bianchi identi
~5! can be shown to give

~] t13H !Htt13a2HH350, ~6!

as soon as the FRW metric is substituted into Eq.~5!. Here
H3[ 1

3 hi j Hi j and gi j [a2hi j . It is now straightforward to
show thatHi j 5H3hi j . In fact, Eq. ~6! indicates thatHtt
50 implies H350 as long asa2HÞ0. On the other hand
H350 implies instead (] t13H)Htt50. This impliesa3Htt
5const. Hence, thei j equation cannot imply the Friedman
equationHtt50; any conclusion derived without the Fried
mann equation is known to be incomplete.

We will briefly review the stability analysis obtained from
the analysis based on the redundant equation~4! @8# here and
show how to make up the loophole in this approach. Supp
that we are given a pure gravity theory, the stability of t
background inflationary solution for the Hubble constantH
5H0, the redundant field equation~4! can be obtained by
perturbing H5H01dH. The leading order perturbatio
equation can be shown to be

3H0F1Ḟ50 ~7!

along with the zeroth order equation that vanishes accord
to the field equation. This in fact, takes some argumen
shown in Ref.@8#. One can show that the zeroth order pe
turbation equation from the perturbed Friedmann equa
leads directly to the field equation for the background fie
For simplicity the parameterk is set ask50 in Ref.@8#. Here
F is defined as

F[L22~0!dḦ13H0L22~0!dḢ1@6L2~0!

13H0L21~0!2L11#dH. ~8!

In addition, the coefficients of expansion are defined by

L~H,Ḣ !5L~H0,0!1~dL/dH ! ~H0,0!dH

1~dL/dḢ ! ~H0,0!dḢ

[L~0!1L1~0!dH1L2~0!dḢ, ~9!
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dL

dH
~H,Ḣ !5

dL

dH
~H0,0!1

d2L

~dH !2
~H0,0!dH

1 ~d2L/dHdḢ ! ~H0,0!dḢ

[L1~0!1L11~0!dH1L12~0!dḢ, ~10!

dL

dḢ
~H,Ḣ !5

dL

dḢ
~H0,0!1

d2L

dHdḢ
~H0,0!dH

1 @d2L/~dḢ !2# ~H0,0!dḢ

[L2~0!1L21~0!dH1L22~0!dḢ. ~11!

If we focus on the solutionF50 @8#, one hasdH5A1eB1t

1A2eB2t. Here A6 denotes arbitrary constants andB65

2 3
2 H06AD/2L22 denotes the characteristic roots of th

characteristic equation

L22~0!x213H0L22~0!x16L2~0!13H0L21~0!2L1150
~12!

of the ODE ~8!. Here D[9H0
2L22

2 24L22(6L213H0L21

2L11) denotes the discriminant of the characteristic Eq.~8!.
One can integratedH to obtain

a~ t !5a0 expS H0t1
A1

B1
eB1t1

A2

B2
eB2tD . ~13!

Therefore, one finds that stability of the de Sitter-type infl
tionary solution will require both characteristic rootsB6 to
be negative. If one of the roots is positive and the other o
is negative, then there may exist a limited period of inflatio
This sort of inflation will come to an end in a time duratio
of the order of 1/Bp with Bp denoting the positive root
Choosing a sufficiently small value of 1/Bp allows inflation
to exit naturally@8#. Therefore, the sign of the roots to th
characteristic Eq.~12! can be checked to see if the syste
supports a stable inflationary de Sitter solution. If the d
criminant is negative, the solution ofB6 will contain an
oscillating phase. Hence the system is stable again. Since
argument is based on the redundant field equation, this
bility analysis is not complete. In other words, the redund
Gi j equation will normally take the form of] t(a

3Gtt)50.
Hence, analysis based on theGi j equation will be quite in-
direct and incomplete.

There are two problems with this stability condition. Fir
of all, this condition is obtained from the redundant equati
One does not know the validity of the field equation, not
mention the stability condition derived from it. Second, the
are homogeneous terms in Eq.~7! in addition toF50, i.e.,
F5k1exp@23H0t# with an arbitrary constantk1. The first
problem is not easy to answer for the moment. The sec
problem can be resolved immediately. One notes that
complete solution to the redundant equation~7! is in
fact dH5A1eB1t1A2eB2t1k1 /$@6L2(0)13H0L21(0)
2L11#a0

3%. Herea0(t)5expH0t. This obviously will not af-
fect the stability analysis as long as we are interested in
inflationary universe where the particular solution is neg
gible in the above equation unless the denominator of thek1
1-2
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term happens to vanish. In fact, we are going to show
F50 is not only a lucky guess, it can be derived from p
turbing the Friedmann equation. But one cannot be s
about this unless a closed form expression for the Friedm
equation is available so that a model independent analys
applicable.

Nevertheless, one can still resolve this problem by lo
ing into the details of the Bianchi identity. As to the fir
problem with this condition, one notes that in most cases,
redundant equation can be rearranged as] t(a

3Htt)50 using
the Bianchi identity. The solution to the above equation
Htt5const3a23. Hence one can show that the Friedma
equation has to be of the formHtt5F̃1k1a2350 if the
redundant equation can be written as the combina
] t(a

3F̃)50 with F̃50 the corresponding equation leading
the first order equationF50 shown in Ref.@8#. To be more
specific,dF̃5F to the leading order indH and its deriva-
tives. HereH5H01dH. This follows from the fact that
] t@a3(Htt2F̃)#50 implies that the differenceHtt2F̃ has to
be proportional toa23 with some arbitrary constantk1.
Therefore, one can effectively work with theF50 solution
if we are working on an inflationary background de Sit
solution. This is becauseHtt.F̃ in the de Sitter background
Therefore, any analysis based on the ansatzF50 can only
be justified in the de Sitter background. In particular, sta
ity conditions derived fromF50 adopted in Ref.@8# cannot
be justified from the above analysis in anti-de Sitter spa
This is because the undetermined partk1a23 will affect the
result significantly.

While we suspect thatF50 should probably be the firs
order Friedmann equation we are looking for, we are not s
if the redundant equation can always be cast into the fam
form shown above. Moreover, the true Friedmann equa
can look likeF̃1k1 /a350 even if we can write the redun
dant equation in the above familiar form. Fortunately, o
can, in fact, derive a closed form for the Friedmann equa
similar to Eq.~4!.

The Friedmann equation can be recast as

L1~H d/dt 13H22Ḣ !dL/dḢ 2~dL/dH ! H50 ~14!

after some algebra. This is done by a variation ofLGFRW with
respect tob ~or equivalently, with respect togtt) and setting
b51 afterwards. HereLGFRW[*d3xL(gmn5gmn

GRFW). One
notes that the crucial point in the derivation is due to
observation that any variation ofL with respect toHḂ has to
be equivalent to the variation ofL with respect to 2BḢ. This
is because the termHḂ always shows up with 2BḢ as indi-
cated in the explicit formulas listed in Eqs.~2!, ~3!. Note that
Eq. ~14! is known as the minimum Hamiltonian constrai
H[pȧ2L(a,ȧ)50 in the case wheredL/dḢ50. For ex-
ample, one can writeL52R56@k/a22H2# after proper in-
tegration by parts. Hence the Hamiltonian constraint is id
tical to the Friedmann equation~14! in this model.

Note in particular that even the term containingk does not
get involved explicitly in the Friedmann equation, Eq.~14!
remains valid for arbitraryk. Our derivation leading to Eq
12730
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~14! is based on pure gravitational action. The derivation
the Friedmann equation in the presence of other source
interactions is straightforward. In addition, the Friedma
equation inD-dimensional FRW space@11# can also be de-
rived following similar arguments.

One can then apply the same perturbation,H5H01dH,
to the Friedmann equation. The zeroth order perturba
equation gives exactly the field equation for the backgrou
field H5H0 while the leading order indH givesF50 iden-
tically. Indeed, the perturbing equation~14! gives

L22~0!dḦ13H0L22~0!dḢ1@6L2~0!

13H0L21~0!2L11#dH50 ~15!

to the leading order indH and its derivatives. Note tha
a-dependent terms always appear in a combination asH2

1k/a2 in Rkl
i j as given by Eq.~3!. Hence, one can ignore th

da-dependent terms during the inflationary phase whenH
@1/a2. This follows from the fact thatda;adHDt and
hence ud(1/a2)/dH2u;1/Ha2!1 during the inflationary
phase. HereDt is the time duration for the inflationary phas
Therefore, one is able to show that the stability conditions
the inflationary phase are indeed given by the result obtai
in Eq. ~13!. Hence, one would never need to worry about a
complication that can possibly weaken the validity of t
stability condition obtained in Ref.@8#. This stability condi-
tion hence serves as a screening device for any possible
didates for a realistic cosmological universe without any a
biguity. In addition, the stability condition obtained earli
works also for curved FRW spaces in the inflationary ph
whereH@1/a2.

In short, our result states clearly without ambiguity th
physically acceptable inflationary models need to meet
stability conditions shown earlier in this section. The pert
bative stability indicates that a solution with a stable mo
and an unstable mode can possibly exit the inflationary ph
in due time. Our result based on the nonredundant Fr
mann equation is complete and remains valid for all FR
models. Most of all, working directly on the Friedman
equation ~14! we have just derived can save us a lot
trouble in the complete analysis.

The derivation of the Friedmann equation in the prese
of a scalar field is, in fact, rather straightforward since co
plications only arise from complicated curvature interactio
Indeed, the inclusion of scalar interactions introduces a
netic termTf52 1

2 ]mf]nfgmn. It will take the form Tf

5 1
2 ḟ2B(t) if f(x,t)5f(t). Hence the complete effectiv

Lagrangian in the GFRW spaces will take the for
ba3L(gGFRW,f)5ba3L01 1

2 a3ABḟ2, L0 denoting the
graviton Lagrangian plus everything else except the kine
term of scalar fieldTf . Or equivalently,L05L2Tf with L
the complete effective Lagrangian of the theory. Hence,
can show that the Friedmann equation becomes

L02Tf1S H
d

dt
13H22Ḣ D dL0

dḢ
2

dL0

dH
H50. ~16!

Note that the minus sign in front ofTf is due to thea3b21L
combination from theAg and thegtt component. In addition,
the variational equation for thef field can be directly ob-
1-3



e

y
ss

-

io

or
a
in
en
tiv

ty
in
ld
in

f is
n in
he
ua-
in

he
ery
d in
ri-

by
on
lize
e
sult
od

v-
ion

m-
.

BRIEF REPORTS PHYSICAL REVIEW D 63 127301
tained from the variation of the effective LagrangianL with
respect tof.

The method for deriving the Friedmann equation d
scribed here can be extended to theories with any form
simple gravitational interactions in a straightforward wa
For example, one can study the following action with Gau
Bonnet coupling@6#: L52 1

2 R2 1
2 ]mf]mf1 f (f)RGB

2 with
RGB

2 5RmnabRmnab24RmnRmn1R2 denoting the Gauss
Bonnet term. The effective Lagrangian is then

L53S Ḣ12H21
k

a2D1
1

2
ḟ2124~Ḣ1H2!S H21

k

a2D f ~f!

once the FRW metric is applied. The Friedmann equat
~16! becomes

3~H21 k/a2!~118H ḟ !5ḟ2/2 . ~17!

Furthermore, the variational equation off is also straight-
forward. The result is

f̈13ḟH224~d f /df! ~Ḣ1H2!~H21 k/a2!50. ~18!

This agrees with the result in@6# while the derivation is
much more straightforward. In fact this simple formula f
the Friedmann equation can also be generalized to
scalar-gravity theory. It helps to reduce the labor in deriv
gravitational field equations. It is especially helpful wh
complicated interactions are present and higher deriva
terms become important.
t.
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,
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A general analysis of the stability condition for a varie
of pure higher derivative gravity theories is very useful
many respects. It is known that a stability condition shou
hold for any potential candidate of an inflationary universe
the flat FRW space@8#. We first briefly review the approach
of Ref. @8# based on a redundant field equation. The proo
shown to be incomplete in this paper. We have also show
this paper how to complete the proof with the help of t
Bianchi identity for some models where the redundant eq
tion can be recast in a form similar to the Bianchi identity
a FRW background.

In addition, the derivation of the Einstein equations in t
presence of higher derivative couplings is known to be v
complicated. For example, the presence of a scalar fiel
induced gravity and dilaton gravity models makes the de
vation even more difficult to derive.

We have developed, in this paper, a simpler derivation
imposing the FRW symmetry before varying the acti
while keeping the lapse function. We also tried to genera
the work in@10# in order to obtain a general formula for th
nonredundant Friedmann equation in this paper. This re
was applied to provide an alternative and simplified meth
to prove the validity of the stability conditions in pure gra
ity theories. This general formula for the Friedmann equat
is also very useful in many areas of interest.
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