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Friedmann equation and stability of inflationary higher derivative gravity
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A stability analysis of the de Sitter universe in pure gravity theory is known to be useful in many aspects.
We first show how to complete the proof of an earlier argument based on a redundant field equation. It is
shown further that the stability condition appliesk& 0 Friedmann-Robertson-Walker spaces based on the
nonredundant Friedmann equation derived from a simple effective Lagrangian. We show how to derive this
expression for the Friedmann equation of pure gravity theory. This expression is also generalized to include
scalar field interactions.
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Inflationary theory provides an appealing resolution for We have developed a simpler derivation by imposing the
the flatness, monopole, and horizon problems of our presefRW symmetry before varying the action while keeping the
Universe described by the standard big bang cosmdlagyy proper time lapse functiofl0]. We try to generalize the
It is known that our Universe is homogeneous and isotropievork in [10] in order to obtain a general formula for the
to a high degree of precisiof2]. Such a universe can be nonredundant Friedmann equation. It can be applied to pro-
described by the well known Friedmann-Robertson-Walkevide an alternative and simplified method to prove the valid-
(FRW) metric [3]. There are only three classes of FRW ity_ of the stability conditions in_pure gravity th_eorigs. In fact,
spaces characterized by their topological structure: one cafis general formula for the Friedmann equation is very use-

either have a closed, open, or flat universe according to thi! in many area of interests.
observations at large. The generalized Friedmann-Robertson-Walk&FRW)

It is also known that gravitational physics should be dif- metric can be read off directly from the following equation:
ferent from the standard Einstein models near the Planck
scale[4,5]. For example, quantum gravity or string correc- dSZEgGFRWdX;LdXV: —b(t)2dt2+a2(t)
tions could lead to interesting cosmological consequences e

r2
2
1-Kk2 +r<dQ

[4]. Moreover, some investigations have addressed the pos- (1)
sibility of deriving inflation from higher order gravitational
correctiong 6—8]. HeredQ is the solid angledQ=d#?+ sirfddy?, andk=0,

A general analysis of the stability condition for a variety =1 stand for a flat, closed or open universe, respectively.
of pure higher derivative gravity theories is very useful inNote also that the FRW metric can be obtained from the
many respects. It was shown that a stability condition shoul@®FRW metric by setting the lapse functidi{t) equal to
hold for any potential candidate of an inflationary universe inone, i.e.b=1,in Eq.(1).
the flat FRW spacé8,9]. We will first briefly review the One can list all nonvanishing components of the curvature
approach of Ref[8] based on a redundant field equation, l€NSOr as
The proof will be shown to be incomplete. We will also

show how to complete the proof with the help of the Bianchi Ri] =1[HB+2B(H+ H2)]5‘- , (2
identity for some models where the redundant equation can

be recast in a form similar to the Bianchi identity in a FRW Rl =(H2B+ k/a?)Cl]. 3)
background.

In addition, the derivation of the Einstein equations in the i ijm _ _ .
presence of higher derivative couplings is known to be very1€r€ Cki=€""€mi With €' denoting the three space Levi-
complicated. The presence of a scalar field in induced graVQIVI'[a tensor[3]. Here the overdot denotes differentiation

ity and dilaton gravity models makes the derivation everWith respect tot and H=a/a is the Hubble constant. We
more difficult to derive. have writtenB=1/b? for later convenience.

Given a pure gravity model one can cast the action of the
system asS= [d*x\JgL=N/dta’L(H,H k/a?) in the FRW

ijk
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3L—H SL/SH +(H2—H) 6L/8H 5L(H » SL (Ho0)+ 5L (Ho,0) SH
oL l = o 0 —2 0
2H+ d 4H + d + o + 2k oL (4) 5H 5H o
dt dt/ s oH ok’ + (82LISH8H) (H,,0) 6H

Note thata3L is normally referred to as the effective La- =L1,(0)+Ly4(0)6H+L,40)8H, (10
grangian. We will also call the effective Lagrangian unless
confusion occurs. The above equation is the spacetjike oL . oL 5L
component of the Einstein equati@,,=t,, with t,, de- E(H’H)_ E(HO'O)“L SHSH (Ho,0)6H
noting the generalized energy momentum tensor associated
with the system. It is known that this equation is in fact a + [ 82L/(8H)?] (Ho,0)8H
redundant equation. Indeed, one can dekhg=G,,—t,, _
and write the field equation as,,=0. =L,(0)+Ly(0)SH+L,y(0)SH. (11

Hence, one has ) B
If we focus on the solutiofr =0 [8], one hassSH=A_e®+!

D, H*"=0 (5 +A_eB-!. Here A, denotes arbitrary constants aBd =
from the energy conservatioD(,t**=0) and the Bianchi 3Ho+ \_/Z_/2L22 dfenotes the characteristic roots of the
identity (D,G*”=0). Indeed, the extended Bianchi identity characteristic equation
(5) can be shown to give L 5(0)X2+3HL 1 0)X+ 6L 5(0) +3HL »1(0) — L1;=0

(9+3H)H+3a?HH;=0, (6) (12)
of the ODE (8). Here A=9HZL2,— 4L (6L ,+3HoL oy
—L4) denotes the discriminant of the characteristic ).

One can integratéH to obtain

as soon as the FRW metric is substituted into & Here
Hz=3h'H;; and g;j=a’h;;. It is now straightforward to
show thatH;;=Hgzh;;. In fact, Eq.(6) indicates thatH
=0 impliesH;=0 as long asa?H+0. On the other hand,
H3;=0 implies instead ¢+ 3H)H,=0. This impliesa®Hy,
=const. Hence, thg equation cannot imply the Friedmann i - ) _
equationH,=0; any conclusion derived without the Fried- Therefore, one fln-ds that_ stability of the de- Sltter-type infla-
mann equation is known to be incomplete. tionary splunon will require both chara_ctenstlc rods to

We will briefly review the stability analysis obtained from P& negative. If one of the roots is positive and the other one
the analysis based on the redundant equaddfg] here and S negatlve, 'Fhen _there_may exist a I|m|ted_ peno_d of |nflat_|on.
show how to make up the loophole in this approach. Supposgms sort of inflation W|I_I come to an.end ina tmg duration
that we are given a pure gravity theory, the stability of the®f the order of 1B, with B, denoting the positive root.
background inflationary solution for the Hubble constant Choosing a sufficiently small value ofB{ allows inflation
—H,, the redundant field equatio) can be obtained by [0 exit naﬁurally[S]. Therefore, the sign of the.roots to the
perturbing H=H,+ 8H. The leading order perturbation characteristic Eq(12) can be checked to see if the system

A A_
a(t)=agex H0t+—+eB+t+—eB—t . (13
B, B_

equation can be shown to be supports a stable inflationary de Sitter solution. If the dis-
criminant is negative, the solution &. will contain an
3HF+F=0 (7)  oscillating phase. Hence the system is stable again. Since this

argument is based on the redundant field equation, this sta-
along with the zeroth order equation that vanishes accordinbility analysis is not complete. In other words, the redundant
to the field equation. This in fact, takes some argument a&;; equation will normally take the form of(a3Gy) =0.
shown in Ref[8]. One can show that the zeroth order per-Hence, analysis based on tf¥g; equation will be quite in-
turbation equation from the perturbed Friedmann equatiomlirect and incomplete.
leads directly to the field equation for the background field. There are two problems with this stability condition. First
For simplicity the parametédsis set ak=0 in Ref.[8]. Here  of all, this condition is obtained from the redundant equation.

F is defined as One does not know the validity of the field equation, not to
) _ mention the stability condition derived from it. Second, there
F=L,,(0)5H +3HyL,5(0) SH +[6L,(0) are homogeneous terms in Ed) in addition toF=0, i.e.,

F=k,exdg —3Hqt] with an arbitrary constank,. The first
problem is not easy to answer for the moment. The second
problem can be resolved immediately. One notes that the
complete solution to the redundant equati¢r) is in

+3HpL,1(0) —L14]6H. (8)

In addition, the coefficients of expansion are defined by

L(H,H)=L(Hy.0) + (8L/8H) (Ho,0) oH fact 35H =A,eB+t+A_eB-t+ ki {[6L(0)+3HoL,1(0)
—Lyslag}. Hereag(t) =expHgt. This obviously will not af-
+(S8L/SH) (Ho,0) SH fect the stability analysis as long as we are interested in the
. inflationary universe where the particular solution is negli-
=L(0)+L1(0)6H+L,(0)6H, (9) gible in the above equation unless the denominator okthe
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term happens to vanish. In fact, we are going to show thatl4) is based on pure gravitational action. The derivation of
F=0 is not only a lucky guess, it can be derived from per-the Friedmann equation in the presence of other sources of
turbing the Friedmann equation. But one cannot be surénteractions is straightforward. In addition, the Friedmann
about this unless a closed form expression for the Friedman@duation inD-dimensional FRW spade. 1] can also be de-

equation is available so that a model independent analysis [&ved following similar arguments.
applicable. One can then apply the same perturbatidrs Hy+ 6H,

Nevertheless, one can still resolve this problem by look{0 the Friedmann equation. The zeroth order perturbation
ing into the details of the Bianchi identity. As to the first €guation gives exactly the field equation for the background
problem with this condition, one notes that in most cases, thi€!d H="H, while the leading order idH givesF=0 iden-
redundant equation can be rearranged,éa®H,)=0 using  ucally. Indeed, the perturbing equatioiv) gives
the Bianchi identity. The solution to the above equation is L 5»(0) 8H +3HL »,(0) SH+[6L,(0)

Hy=constxa 3. Hence one can show that the Friedmann
equation has to be of the for,=F+k;a 3=0 if the +3HoL21(0)—L11]6H=0 (15
redundant equation can be written as the combinatioto the leading order idH and its derivatives. Note that
5(a%E) =0 with E=0 the corresponding equation leading to @dependent terms always appear in a combinatior&s
the first order equatiof =0 shown in Ref[8]. To be more ~ +k/a” in Ry, as given by Eq(3). Hence, one can ignore the
specific, 5SF =F to the leading order i’H and its deriva- 5a-de§pend-ent terms during the inflationary phase when
tives. HereH=Hy+ 8H. This follows from the fact that ?eﬂge'lg(qfa;)oll?l-\ﬁ frltjlmatzrflfagturti?wztﬁ?r;a?;éttioig?y

3 i _ . . . fd -~ <
t())te[ apgg;;i)_rt:z))n]a_l Ci(;;nipallevii ttr? a;(;krfedgfr%riterr;(r:?tz:(_):spaﬁ to phase. Herat is: the time duration for the infla}ionary p_hase:
Therefore, one can effectively work with the=0 soluticth Therefore, one is able to show that the stability conditions in

. . . . ... the inflationary phase are indeed given by the result obtained
if we are working on an inflationary background de Sltterin Eq.(13). Hence, one would never need to worry about any

solution. This is becaudé,=F in the de Sitter background. ¢complication that can possibly weaken the validity of the
Therefore, any analysis based on the an§at0 can only  stability condition obtained in Ref8]. This stability condi-

be jUStIerd in the de Sitter backgl’ound. In particular, Stabil—tion hence serves as a Screening device for any possib'e can-
ity conditions derived fronF =0 adopted in Refl8] cannot  didates for a realistic cosmological universe without any am-
be justified from the above analysis in anti-de Sitter spacepjguity. In addition, the stability condition obtained earlier
This is because the undetermined pay ~° will affect the  works also for curved FRW spaces in the inflationary phase
result significantly. whereH>1/a2.

While we suspect that =0 should probably be the first  |n short, our result states clearly without ambiguity that
order Friedmann equation we are looking for, we are not surghysically acceptable inflationary models need to meet the
if the redundant equation can always be cast into the familiagtability conditions shown earlier in this section. The pertur-
form shown above. Moreover, the true Friedmann equatiomative stability indicates that a solution with a stable mode
can look likeF +k;/a®=0 even if we can write the redun- and an unstable mode can possibly exit the inflationary phase
dant equation in the above familiar form. Fortunately, onein due time. Our result based on the nonredundant Fried-
can, in fact, derive a closed form for the Friedmann equatio)mann equation is complete and remains valid for all FRW

similar to Eq.(4). models. Most of all, working directly on the Friedmann
The Friedmann equation can be recast as equation(14) we have just derived can save us a lot of
trouble in the complete analysis.
L+ (H d/dt +3H%—H)SL/S6H — (SL/SH)H=0 (14) The derivation of the Friedmann equation in the presence

of a scalar field is, in fact, rather straightforward since com-
after some algebra. This is done by a variatioh 8f*Wwith  plications only arise from complicated curvature interactions.
respect td (or equivalently, with respect tg,;) and setting Indeed, the inclusion of scalar interactions introduces a ki-
b=1 afterwards. Herd ®"""=[d%/(g,,=g5 ). One netic termT,=—3d,¢d,4g*". It will take the form T,
notes that the crucial point in the derivation is due to the=12B(t) if ¢(x,t)=¢(t). Hence the complete effective
observation that any variation afwith respect tHB hasto  Lagrangian in the GFRW spaces will take the form
be equivalent to the variation &fwith respect to BH. This  ba®L(g® W ¢)=ba’Ly+3a%/B¢?, L, denoting the
is because the terdB always shows up with BH as indi- graviton Lagran_gian plus eve_rything else except the kinetic
cated in the explicit formulas listed in E¢®), (3). Note that ~ term of scalar fieldr ,. Or equivalentlylo=L—T, with L
Eq. (14) is known as the minimum Hamiltonian constraint the complete effectlvg Lagrangian o_f the theory. Hence, one
H=ma—L(a,a)=0 in the case wheréL/sH=0. For ex- Ca" show that the Friedmann equation becomes

ample, one can write = — R=6[ k/a?>— H?] after proper in-
tegration by parts. Hence the Hamiltonian constraint is iden- Lo~ Tyt
tical to the Friedmann equatigqi4) in this model.

Note in particular that even the term containindoes not ~ Note that the minus sign in front df,, is due to thea®b L
get involved explicitly in the Friedmann equation, EG4) combination from the/g and theg'® component. In addition,
remains valid for arbitrark. Our derivation leading to Eq. the variational equation for the field can be directly ob-

d .
&gz |2E0 20,
H g +3H H)(SH H=0. (16)
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tained from the variation of the effective Lagrangiamvith
respect tog.

PHYSICAL REVIEW D 63 127301

A general analysis of the stability condition for a variety
of pure higher derivative gravity theories is very useful in

The method for deriving the Friedmann equation de-many respects. It is known that a stability condition should

scribed here can be extended to theories with any form ofiold for any potential candidate of an inflationary universe in
simple gravitational interactions in a straightforward way.the flat FRW spacg8]. We first briefly review the approach

For example, one can study the following action with Gaussof Ref.[8] based on a redundant field equation. The proof is
Bonnet couplind6]: L= —3R— 34, "¢+ f($)Rag with

RZg=

wapRY P —4R, R*'+R? denoting the Gauss-

Bonnet term. The effective Lagrangian is then

L=

3 f()

H2+ X
aZ

. 2 k E'Z . 2
H+2H2+ 5|+ 547+ 24(H +H?)

shown to be incomplete in this paper. We have also shown in
this paper how to complete the proof with the help of the
Bianchi identity for some models where the redundant equa-
tion can be recast in a form similar to the Bianchi identity in
a FRW background.

In addition, the derivation of the Einstein equations in the

once the FRW metric is applied. The Friedmann equatiorpresence of higher derivative couplings is known to be very
(16) becomes

3(H%+ k/a?)(1+8Hf)=¢?/2. 17

Furthermore, the variational equation @fis also straight-
forward. The result is

d+3pH—24(df/de) (H+H2)(H2+ k/a®)=0. (18

This agrees with the result if6] while the derivation is
much more straightforward. In fact this simple formula for was applied to provide an alternative and simplified method
the Friedmann equation can also be generalized to antp prove the validity of the stability conditions in pure grav-
scalar-gravity theory. It helps to reduce the labor in derivingity theories. This general formula for the Friedmann equation
gravitational field equations. It is especially helpful whenis also very useful in many areas of interest.

complicated interactions are present and higher derivative This work was supported in part under the contract num-
terms become important.

complicated. For example, the presence of a scalar field in
induced gravity and dilaton gravity models makes the deri-
vation even more difficult to derive.

We have developed, in this paper, a simpler derivation by
imposing the FRW symmetry before varying the action
while keeping the lapse function. We also tried to generalize
the work in[10] in order to obtain a general formula for the
nonredundant Friedmann equation in this paper. This result
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