
160 IEEE SIGNAL PROCESSING LETTERS, VOL. 8, NO. 6, JUNE 2001

Optimal Synthesis of a Fractional Delay FIR Filter in
a Reproducing Kernel Hilbert Space

Shiang-Hwua Yu and Jwu-Sheng Hu

Abstract—Based on a bandlimited signal model, the optimal
fractional delay finite impulse response (FIR) filter and corre-
sponding interpolating error bound is derived in a reproducing
kernel Hilbert space. The resulting optimal filtering is a projection
onto a prescribed finite dimensional subspace. The connection
of this filtering accuracy to the delay time and the filter order is
investigated via error analysis.

Index Terms—Bandlimited signal, fractional delay filter, repro-
ducing kernel Hilbert space.

I. INTRODUCTION

A FRACTIONAL delay (FD) filter is an interpolator used
to interpolate between samples of a bandlimited signal.

This filter is a digital signal processing (DSP) technique with
applications to a wide range of physical problems such as beam
steering of sensor arrays, modeling of musical instruments, and
echo cancellation (see an excellent review paper [1]).

Although FD filters can be synthesized to approximate an
ideal FD filter in either frequency or time domain, the fre-
quency-domain methods appear to attract more attention. This
fact is caused by various weighted least-squares fits in the fre-
quency domain being comparatively easy to modify and solve.
However, this letter focuses on a time-domain method based
on a bandlimited signal model. The finite-energy bandlimited
signals are notable for forming a reproducing kernel Hilbert
space (RKHS) in which the sampled value of each signal can
be evaluated using a kernel function (see [2], [3] for details). In
the RKHS setting, the FD finite impulse response (FIR) filter is
synthesized optimally by minimizing the worst-case magnitude
error that may occur in the filter implementation.

The rest of this paper is organized as follows. Section II first
recapitulates some important theorems of RKHS. Section III
presents the solution of the optimal FD FIR filter. Finally, the
properties of this optimal filter are investigated by error analysis
in Section IV.

II. BANDLIMITED SIGNAL MODEL

Without loss of generality, the signals are assumed herein
to contain no frequency components aboverad/sec and the
sampling period is 1 s. In this way, signals are critically sampled
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when 1, over-sampled when 1. The Fourier transform
(FT) of a bandlimited signal is a complex function with compact
support. For the interval , consider the Hilbert space

, of which the inner product is defined as

for (1)

where denotes the complex conjugate of . Thus, any
function in can be considered as the FT of a
finite-energy -bandlimited signal . Thus, the inverse FT
of can be written as

(2)

All of these transforms form a Hilbert space of -ban-
dlimited signals, represented by . This Hilbert space is an
RKHS with the kernel (see [3])

(3)

and the inner product

(4)

Notably, the FT is unitary, and thus (time domain) is iso-
morphic with (frequency domain). To derive the
optimal FD FIR filter in , the following theorems quoted
without proof (see [2]) are used.

Theorem 1 (The Reproducing Property):In an RKHS
, a uniquely determined kernel function

exists such that

(5)

Theorem 2: Assume that is a closed subspace of an RKHS
, then is also an RKHS. Additionally, if

(6)

then is the kernel of , and is the kernel of .
Theorem 3: Assume that if is a Hilbert space, and is

an RKHS subspace of , then for every

where is the projection operator onto , and is the
reproducing kernel of .
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III. OPTIMAL FD FIR FILTER

In this section, the optimal solution for a general FD FIR filter
is derived by minimizing the worst-case interpolating error. In
the following, the inner product and the norm are defined in

and thus the subscript is omitted.
Proposition 1 (Optimal FD FIR Filter): The best estimate

of an arbitrary through linear combination of
the sample values is

(7)

and

...
...

...
...

...

(8)

where

(9)

Proof: According to the reproducing property (Theorem
1) and Cauchy-Schwarz inequality

(10)

To minimize the absolute value of the estimate error for arbitrary
, the following problem is equivalently solved:

(11)

According to the projection principle, the aforementioned error
norm is minimized when

(12)

Further applying the reproducing property to (12) yields

(13)

Next, the optimal coefficients can be determined for any spe-
cific by solving the aforementioned linear equations.

The optimal filter in Proposition 1 has numerous interpreta-
tions. First, this optimal filter can be interpreted in a geomet-
rical way. Suppose the topic of interest is the projection of an
arbitrary onto the subspace generated by all fi-
nite linear combinations of . Since
every closed subspace of an RKHS is also an RKHS,is an
RKHS, and its reproducing kernel is assumed
to be some linear combination of .
Then Theorem 2 can be applied to achieve

(14)

where has the same expression as (8). Finally, applying The-
orems 1 and 3 yields the projection

(15)

which is identical to the best estimate obtained in Proposition 1.
Thus, the proposed optimal interpolation is actually a projection
operation onto the subspace.

An alternative interpretation uses a frequency-domain view-
point. When attempting to solve the following problem (see [1]):

(16)

the same solution as in Proposition 1 is obtained. Therefore,
the proposed filter approximates an ideal FD response in the
signal bandwidth while leaving the response in the remainder of
the frequency band as “don’t care.” This behavior is caused by
the -bandlimited signal model, and the optimization process
assumes no signal frequency content above.

IV. ERRORANALYSIS

The relationship between the interpolating performance and
three design parameters, namely,, , and , is interesting.
To clarify this relationship, this section estimates the magnitude
error, which may arise when implementing the optimal FD FIR
filter.

Proposition 2 (Magnitude Error Bound):When inter-
polating with the optimal FD FIR linear filter presented in
Proposition 1, the magnitude error bound of the signal can be
expressed as follows:

(17)

Proof: According to (15) and the Cauchy-Schwarz
inequality

(18)
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Fig. 1. Normalized error bounds for the critically sampled case (� = 1).

Since is orthogonal to by Theorem
2, then applying the Pythagorean Theorem produces

(19)

Substitution of (9) and (14) into (19) yields

(20)

Finally, substitution of (20) into (18) gives (17).
As an example, two cases can be considered: one critically

sampled ( 1) and the other with a sampling frequency four
times the signal bandlimit ( 0.5). By Proposition 1, the
optimal filter for any specific delay and filter order can be
obtained. Then, as Proposition 2 suggests, the normalized error

bound is calculated. Figs. 1
and 2 show some results.

Several features of Figs. 1 and 2 are notable.

1) Signal bandlimit . As the figures illustrate, the oversam-
pled case performs much better than the critically sam-
pled case. Closely examining (17) reveals that the inter-
polating error would be exactly zero for an extreme case
( 0). In this case, the system (13) is underdetermined
and thus has infinite possible solutions. Consequently, in-
finite filters can interpolate a constant signal perfectly.
Notably, however, (8) may have the numerical stability
problem with a small . With a very small , the columns
of the matrix in (8) become only “slightly” linearly inde-
pendent, making the matrix almost singular. Therefore,
to avoid an absurd solution from (8),should not be al-

Fig. 2. Normalized error bounds for the oversampled case (� = 0.5).

lowed to be too small, even when the sampling rate is ac-
tually much higher than the signal bandlimit.

2) The filter order . Errors decrease with increasing filter
order . However, for the critically sampled case, the
improvements are only slight.

3) The delay time . Like a Lagrange interpolation, these op-
timal filters interpolate the signal at the sample instants.
Thus, the filtering errors are zero for an integerwithin
the filter length. Notably, for a fixed , the intersampled
interpolations are generally more accurate when the delay
time is close to half of the filter length. Therefore, to op-
timally realize a long delay with a short-length FIR filter,
the desired delay can be split into an integer and a short
delay approximately half of the filter length. A cascade
of unit delay elements can then realize the integer delay,
while the optimal FD FIR filter realizes the remaining
short delay.

V. CONCLUSION

In this letter, the optimal FD FIR filter is synthesized by min-
imizing the worst-case interpolating error in a Hilbert space
of bandlimited signals. The resulting optimal filter interpolates
the sampled signal by projecting the original signal onto a pre-
scribed finite dimensional subspace. The underlying RKHS ge-
ometry not only helps explain the optimal interpolating process,
but also helps estimate the interpolating error, thereby benefiting
investigation of the properties of the proposed optimal filter.
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