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Abstract

Since efficient and relatively cheap methods were developed for determining biosequences, a lot of biosequence data
has been generated. As the main problem in molecular biology is the analysis of the data instead of the data
acquisition, part of the study of computational biology is to extract all kinds of meaningful information from the
sequences. Computer-assisted methods have become very important in analyzing biosequence data. However, most of
the current computer-assisted methods are limited to finding motifs. Genes can be regulated in many ways, including
combinations of regulatory elements. This research is aimed at developing a new integrated system for genome-wide
gene expression analysis. This research begins with a new motif-finding method, using a new objective function
combining multiple well defined components and an improved stochastic iterative sampling strategy. Combinatorial
motif analysis is accomplished by constructive induction that analyzes potential motif combinations. We then apply
standard inductive learning algorithms to generate hypotheses for different gene behaviors. A genome-wide gene
expression analysis demonstrated the value of this novel integrated system. © 2001 Elsevier Science Ireland Ltd. All
rights reserved.
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1. Introduction gene in a cell. Because this type of experiment

provides comprehensive information about regu-

The completion of genome sequences, e.g. Sac-
charomyces cerevisiae [1], has produced sufficient
data for biological analysis, and the advent of the
microarray and the genechip technology [2,3] has
resulted in the expanded ability of monitoring
simultaneously the levels of mRNA from each
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lation of mRNA levels of every gene, it becomes
theoretically possible to identify sets of genes that
are similarly regulated under a given condition.
This allows, (1) inferences about functions of
unknown genes that are co-regulated with genes
of known functions; (2) discovery of regulatory
motifs and combinations of motifs; and (3)
greatly improved understanding of the biology of
the cellular response to particular environmental
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stimuli. In order to realize the potential of infor-
mation emerging from such global gene regulation
studies, data from multiple genes must be ana-
lyzed in parallel.

As the advance of the microarray and the
genechip technology, two experimental methods
of monitoring complete yeast genome expression
have been described in the literature; the system
developed in the laboratory of P. Brown [2] and
the Affymetrix GeneChip system [3]. This technol-
ogy provides a global view of changes in gene
expression on a genomic scale. As more is learned
about the functions of every gene in the entire
genome, we have the ability to gain insight into a
cell’s response to a changing environment through
its global gene expression patterns. Potential ap-
plications include predicting drug interaction or
drug resistance, exploring the immune system, etc.

It is useful to obtain distinct temporal patterns
of gene expression, knowing how genes behave
differently under a certain condition. Neverthe-
less, in addition to the macro view of the changes
in gene expression level, biologists are also inter-
ested in the following questions, e.g. (1) is there
any consensus motif (i.e. pattern) in a given fam-
ily of genes; (2) if there exist several motifs com-
monly shared by a set of genes, what is the
correlation among them in terms of number of
repeats and locations, etc.; and (3) what makes
these genes behave differently in the same envi-
ronment, i.e. why some are up-regulated by the
stimuli, but some have no change?

To learn beyond how genes behave over time, it
would be valuable if we understand what actually
makes these genes behave differently. One way to
find possible answers to the questions is to look
into the regulatory regions of genes at the se-
quence level. In this paper, we introduce a method
for gene regulation analysis from a different point
of view.

2. Background

Biologists have traditionally studied the regula-
tion of genes selected for a particular type of
activity or function. Although this approach has
allowed the identification of regulatory proteins

that affect the expression of those genes, it has
tended to focus attention on specific sets of genes
and inferences concerning the regulation of those
genes that have by necessity been extended to less
well understood genes. It is likely given the num-
ber of genes for which no function is known
(estimated at one third of the yeast genome), that
regulatory proteins remain to be identified. In
addition, due to the relatively intensive study of
exemplary genes, certain aspects of regulation,
including positional effects, multiplicity of regula-
tory motifs, orientation of motifs and the role of
combinations of different motifs, although appre-
ciated conceptually, have not been explored com-
prehensively. Emerging knowledge of
genome-wide gene activity, combined with the
algorithms to infer motifs and to correlate activity
and motifs, could broaden our understanding of
gene regulation into under-explored areas.

Fundamentally gene regulation is determined
by chemical reactions which are, in turn, con-
trolled by the shape and physico-chemical proper-
ties of the molecules involved. One instance of
this is the interaction between regulatory proteins
and their target binding site. Unfortunately this
information is not typically available. We expect
that the local shape of a binding or receptor site
will be primarily determined by the bases in-
volved, acknowledging the fact that non-local
base changes can affect local shape. The difficulty
of finding the biologically meaningful motif re-
sults from the variability in (1) the bases at each
position in the motif, (2) the location of the motif
in the sequence, (3) the multiplicity of motif oc-
currences within a given sequence, and (4) the
orientation of the motif in the sequence. In addi-
tion, the short length of many biologically signifi-
cant motifs and the fact that motifs often gain
biological significance only in combinations, make
them difficult to determine using standard statisti-
cal methods.

A general framework for these computational
methods could be defined on the objective func-
tion we choose. The purpose of an objective func-
tion is to approximate the correlation between
sequence patterns and their biological meanings in
terms of a mathematical function. The objective
functions are only heuristics. Once the objective
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function is determined, the goal is solely to find
those patterns of high objective function value. To
reach this goal, two important associated issues
are the pattern representation and the search
strategy.

As the primary DNA sequences are described
by a double-stranded string of nucleic bases, the
most basic pattern representation is the exact base
string. Due to the complexity and flexibility of the
motif binding mechanism, there is rarely any mo-
tif that can be exactly described by a string of
nucleic bases. To obtain more flexibility, other
more expressive representations have been devel-
oped such as the TUPAC code, the position
weight matrix (PWM) and the hidden Markov
model (HMM).

Besides those uncertain factors mentioned ear-
lier, the search space of the patterns is also deter-
mined by the size of the given set of sequences
and the length of the patterns of interest. A
systematic search through the sequences for all
possible patterns can reach the best results; how-
ever, as the search space could be computationally
intractable, an exhaustive search strategy could
only deal with data sets of relatively small size
and detect shorter patterns. By random sampling
and iterative improvement, a stochastic approach,
on the other hand, could avoid computational
explosion, but may not guarantee the optimum
results.

3. Design considerations

The current motif detecting approaches alone
are not sufficient for the analysis of gene regula-
tion due to the inherent complexity of gene con-
trol which often involves motif interactions. We
thus propose a novel view of the gene regulation
analysis. With the assistance of the genechip tech-
nology, genes can be grouped into families ac-
cording to different temporal patterns. Our
analysis method for gene regulation focuses on
the search for significant motifs and their combi-
nations involved in the regulation as well as po-
tential hypotheses regarding how the gene
regulation is related to the motifs. This type of
analysis not only complements the global study of

the changes of gene expression by looking into the

involvement of the motifs in regulation, but may

also suggest further biological tests on the genes
through the inference from the hypotheses pro-
duced by the analysis.

The aim of our gene regulation analysis is to
extract the regularity from the DNA sequences.
However, the simple but uninformative string-
based representation shows very little valuable
information by itself. Meanwhile, the goal of con-
structive induction is to transform the original
representation space into a new one where the
regularity is more apparent. As a consequence,
these two paradigms become a perfect match.

There are four basic steps in our method of
analyzing gene regulation.

1. The first step of analyzing the sequence data is
to categorize the genes into families according
to their expression patterns. Then by multiple
sequence comparison and alignment we could
find some consensus information in a given
family. Patterns, also called motifs, common
to multiple sequences are related to molecular
structures, functions and evolution [6]. We use
the Affymetrix GeneChip system to collect the
data of genome-wide gene expression changes
corresponding to specific stimuli under a con-
trolled environment in a fixed period of time.
According to the gene expression changes over
time, genes can be clustered into families for
further analyses.

2. For any family of genes of interest, we extract
the control region for each gene and apply
some motif-finding algorithm to the family to
find significant motifs. As discussed earlier,
several methods have been developed for de-
tection of patterns shared by a set of function-
ally related biosequences [5—15]. In this paper,
we introduce a new motif-finding algorithm
called detecting motifs from sequences (DMS),
and apply it in our gene regulation analysis. A
particular challenge of finding regulatory mo-
tifs is that they can be quite short and thus not
statistically distinctive per se. As genes can be
regulated in many ways, redundancy, location
and combinations have to be considered to
distinguish regulatory motifs. Finding motifs
alone is not sufficient for the analysis of gene
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regulation. The motifs found will serve as the
building blocks for representational transfor-
mation in the next step. The change of repre-
sentation is necessary for revealing more
regularity originally implicit in the sequence
data.

3. Based on the information of the motifs found
by DMS, we transform the original sequences
into a higher-level representation. It includes
(1) the locations of the motifs, (2) the total
number of repeats of each motif, (3) the num-
ber of repeats of each motif within a selected
location range, (4) the distance between mo-
tifs, and (5) combinatorial motifs as Boolean
combinations. From the point of view of con-
structive induction, the objective of this step is
to transform the raw string-based representa-
tion into a new one for better understanding
and additional analyses. The new representa-
tion is used to manifest the regularity origi-
nally implicit in the raw string-based data. All
the information described by the new represen-
tation can be either used as a whole or par-
tially used for further analyses.

4. Finally, after the raw sequence data are re-
described in an appropriate higher-level repre-
sentation, we can apply a suitable standard
inductive learning algorithm on the data to
generate hypotheses. There are many inductive
learning algorithms available. Each has its
own advantages and limitations. In our experi-
ments, we applied a decision tree learning
algorithm to construct hypotheses represented
as decision trees. The hypotheses are easily
understood and provide a micro view of the
families as they suggest reasons for different
behaviors of the genes to complement the
macro view of the genome-wide gene expres-
sion changes.

4. System description

In this section, we will detail the new motif-
finding algorithm, DMS, explain how the original
string-based DNA sequences are transformed into
higher-level representation, and describe how to
apply a decision tree learning algorithm to derive
comprehensible hypotheses.

4.1. DMS: detecting motifs from sequences

As the sequence segments, such as binding sites
for a particular protein, are generally not accu-
rately represented by a single consensus sequence
pattern, some positions are more conserved than
others and the preference for each of the four
nucleic bases can be different. Thus, we adopt the
weight matrix as our motif representation. By
running an iterative sampling optimization pro-
cess, DMS outputs a user-specified number of
motifs. This number is only used to determine
how many motifs will be reported in the output,
i.e. the user has the option to see all possible
motifs or only part of them. It does not affect the
process of the algorithm in any way.

The weight matrix method approach has been
used in various pattern-identification problems
[6-9,14]. It is usually built from the base fre-
quency of example biosequences. If we divide
every element in the matrix by the total number of
sequences, we get a normalized matrix.

Based on the normalized motif matrix, we can
calculate the match score of any 6-base sequence
by dividing the sum of the value for each position
by the width of the motif. The success of these
analyses confirms the fact that the frequencies of
bases at positions within sites are related to the
importance of the bases to the functioning within
the sites [4]. The challenge is to find a matrix that
well represents the motif in terms of the objective
function.

We propose a new motif-finding algorithm,
DMS. Unlike other approaches, DMS uses a new
type of objective function that consists of multiple
components. They are the motif consensus qual-
ity, the motif multiplicity significance and the
motif coverage. The consensus quality is only
used to guide the search for well conserved motif
candidates, the motif multiplicity significance
reflects the value of multiple copies of a single
motif, and the motif coverage addresses the im-
portance of a motif’s being commonly shared by a
given family of sequences.

The consensus quality of a matrix is derived from
the entropy [16]. The lower the entropy, the better
conserved the motif. The entropy is calculated from
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the probability that each base occurs at each
position in the motif, P,. More precisely, the
entropy for a particular column # in the matrix is
given by:
b4

E(l’l) = - Z Pmi 10g2 Pmi

i=bl
where b1, ..., b4 are the bases A, G, C, T. If the
bases are uniformly distributed over a position,
then the maximum value of 2 is obtained. If only
a single base appears in a position then the mini-
mum value of 0 is obtained. Thus, we define the
consensus quality of column n as:

Cn)=2—En)

The final consensus quality of a matrix b, is
defined as the average of all position quality.

| v
Con(b) = - ; C(n)

where w is the width of the motif.

The multiplicity significance is derived from the
measure of precision as defined in the information
retrieval paradigm. It is simple and empirically
effective. We define the multiplicity significance of
a motif b as:

occg(h)

Mul() = occg(h)

where occg(b) is b’s occurrences in a given family
S, and occg(b) is b’s occurrences in genome.

The motif coverage is defined as the ratio of the
number of the sequences containing b to the total
number of sequences given.

contg(b)
N

where contg(b) is the number of sequences in S
that contain b, and |S| is the total number of
sequences in S.

Given a set of N biosequences, DMS carries out
an iterative improvement search that attempts to
find all potential motifs, e.g. d matrices, which
maximizes the consensus quality defined above.
These d matrices are motif candidates. DMS then
ranks these motifs according to a merit measure
based on the combination of the consensus qual-
ity, the multiplicity significance and the motif

Cov(b) =

coverage. Given the d motifs, we first normalize
the consensus quality, the multiplicity significance
and the motif coverage of each motif b, using the
maximum value, as defined below:

_ Con(b)
Con,om(b) = MAX(Con)
_ Mul()
MUInorm(b) - MAX(Mul)
_ Cov(b)
Covyorm(b) = MAX(Cov)

where MAX(Con) is the maximum consensus
quality of the d motifs, MAX(Mul), the maximum
multiplicity significance of the d motifs, and
MAX(Cov), the maximum motif coverage of the d
motifs.

Combining all the objective functions intro-
duced above, we propose the final merit measure
of a motif » as defined below:

Merit(b) =

1
1/3(1/Conyrm(b)) + 1/Mul, (D) + 1/C0Vyorm(b))

The value of merit is in the range between 0
and 1. It reflects the synergy of the consensus
quality, the multiplicity significance and the motif
coverage.

There are three steps in DMS that are detailed
in the following subsections.

4.1.1. Translating subsequences into matrices

As the motif location(s) is unknown, we begin
by allowing each subsequence of length w to be a
candidate motif. Like most current algorithms,
the length w is specified by the user. We convert
this particular subsequence into a probability ma-
trix in two steps, adopting an idea from [9]. First
we fix the probability of every base in the subse-
quence to some value 0 < X' < 1, and assign prob-
abilities of the other bases according to
(1—-X)/(4—1) (i.e. 4 nucleic bases). Following
Bailey and Elkan, we set X to 0.5. This gives us a
set of seed probability matrices to be used as
starting points for iterative improvement. For a
given family of sequences, we can either exhaus-



168 Y.-J. Hu / Computer Methods and Programs in Biomedicine 65 (2001) 163174

tively translate every subsequence into a matrix
for analysis or we can select a random subset of
the sequences and only generate candidate start-
ing points from this subset. Because significant
motifs are generally well conserved and thus occur
in most sequences, this subsetting strategy is effec-
tive without losing generality.

4.1.2. Filtering possible motif occurrences

Rather than making the common assumption
that each motif occurs only once per sequence, we
allow for the possibility that a motif may occur
multiple times in a single sequence. For each
matrix and each sequence, we find the position
that maximizes the match score and put it in the
list of potential motif positions. Then we set the
threshold for deciding if a motif occurs at any
position as the mean of match scores. Finally we
add to the list of motif positions any other posi-
tion whose match score is greater than this
threshold. Occurrence overlap is allowed. This
process defines a set of potential motif positions.

4.1.3. Finding and ranking motif candidates

After the likely motif positions are determined,
DMS performs an iterative optimization proce-
dure to find the motif probability matrix. Unlike
current approaches, such as the Gibbs sampler,
that search all possible positions within a se-
quence, DMS only considers the potential motif
positions determined in the previous step. This
strategy significantly constrains the search space.
For initialization, DMS randomly selects a posi-
tion from the set of potential motif positions that
are determined in the previous step to form the
initial probability matrix.

A sequence is then chosen at random for opti-
mization. DMS optimizes the consensus quality of
the matrix by checking every potential motif posi-
tion within the selected sequence. The position
that gains the highest consensus quality is chosen
to update the matrix. The process is repeated until
no improvement is noted. In each optimization
cycle, the order of sequences is randomly shuffled.
The randomization in each trial cycle is important
to remove implicit biases, such as the order of the
sequences that can be harmful in search al-
gorithms. At this point, in each sequence, the

subsequence that contributes to the last updated
matrix is determined. We then compute the mean
of the match scores of the subsequences that form
the matrix, and isolate all subsequences with a
match score over the mean as possible motif
repeats in each sequence. All these motif repeats
in sequences are used to form the final motif
matrix, and it becomes a motif candidate.

The same procedure is performed on all ma-
trices to produce the candidate motifs. Finally,
DMS ranks the candidate motifs according to its
merit measure.

4.2. Representational transformation

Two types of additional motif information be-
come available after DMS detects motifs from the
given family of sequences, the motif repeats and
the motif locations. Based on the information
available, we can transform the original sequence
data into a higher-level representation as a vector
space. This vector representation was chosen be-
cause it is the most widely used representation for
standard inductive learners in the machine learn-
ing community. It increases the applicability of
machine learning techniques. Each sequence is
transformed into a vector that contains the motif
information associated with the sequence, includ-
ing the number of motif repeats in the entire
sequence and the number of motif repeats within
a selected segment of the sequence. Given only
one family of sequences, the particular segment is
selected based on the background knowledge, i.e.
specified by the user. If two or more families of
sequences are provided, the sequence segment can
be either specified by the domain expert or deter-
mined by DMS. It is computationally prohibited
to find the optimal segment that gains the maxi-
mum discrimination between families by checking
all possibilities. Therefore, we divide the se-
quences into equal intervals. For each interval, we
compute the information gain according to the
number of motif repeats in that interval. DMS
thus selects the interval that attains the highest
information gain.

For example, assuming three motifs are found,
M,, M, and M;, an original nucleic sequence can
be represented as a vector, (M 1» Miotal 25
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Mtotalf}s MIOO 150 bp_1> M3OO 450 bp_2» MSO 100 bp73)'
The first three elements are the total number of

repeats of M,, M, and M;. The fourth element
presents the number of repeats of M; within the
range 100—150 bp in the upstream region of the
sequence. The last two elements present the num-
ber of repeats of M, and M, within the range
350-400 and 50-100 bp, respectively. For in-
stance, a sequence can be transformed into (5, 2,
3, 3, 1, 2). This means the sequence has totally
five copies of M,, two copies of M, and three
copies of M;. There are three copies of M, located
in 100-150 bp upstream of the sequence, one
copy of M, in 350-400 bp upstream, and two
copies of M; in 50—100 bp upstream.

Given multiple families of genes, after the
transformation, the original sequence data is rep-
resented as sets of vectors. These vectors are used
as the training examples for GALA [17,18] to
further analyze motif combinations. From the
point of view of GALA, each element of a vector
is a primitive attribute. The purpose of applying
GALA here is to find combinations of attributes
as new attributes to improve the quality of the
hypotheses that will be later generated by a stan-
dard inductive learning algorithm. GALA applies
Boolean operators to construct new attributes
represented as Boolean combinations. Boolean
combinations are understandable. Comprehensi-
bility allows domain experts to explore the new
attributes either for further improvement or for
justification.

4.3. Hypothesis generation

The final hypothesis for different gene behav-
iors in the same environment is produced by the
standard inductive learning algorithm C4.5 [17].
The input to C4.5 is a set of feature vectors
transformed from the original sequence data com-
bined with the combinatorial motifs, i.e. Boolean
combinations of motifs, generated by GALA.
With the input as the training examples, C4.5
produces a classification hypothesis that could be
used to explain why these families of genes behave
differently under the same condition as well as
suggest further biological tests on the genes.

5. Status report

In this section, we first report the experimental
results of DMS on ten regulatory families in yeast
genome. Second, we show the analysis results of
the yeast genome gene expressions under the oxi-
dative stress.

5.1. Finding motifs in real regulons

Yeast metabolism has been widely studied, and
in some cases the transcription factors involved in
the regulation of members of a common pathway
are known. Those families of co-regulated genes
provide ideal data sets on which to test the sys-
tems designed to detect regulatory motifs.

From the study of the literature, van Helden et
al. defined ten families of genes that have known
common regulatory site(s) or motif(s). There are
many additional motifs involved in regulation
generally, but the known ones in these regulons
define ten learning tasks for comparing the vari-
ous algorithms. It is assumed for this exercise that
the regulation of a gene is determined by motifs in
the upstream region. The 800 bp upstream region
was used for each gene, as this is the same sized
region used by van Helden et al. in their
experiments.

There are two parameters used by DMS. One is
the motif width, and the other is the random
subset size (refer to Section 4.1.1). To maintain
consistency, for those families with more than ten
members, we set the subset size to be 10; other-
wise, we set the subset size to be equal to the
family size. The motif width is set to that of the
published motif in each family. Except for these
two parameters, we did not tune DMS or modify
the sequence data in any way, e.g. by pre-specify-
ing the expected number of motif matches/occur-
rences. To test the stability of DMS, we ran DMS
on each family five times, using different random
seeds. The results showed that DMS identified all
the published motifs in all regulatory families in
each run. By ‘identified” we mean that the pub-
lished motifs are found and ranked in the top 40
motifs according to the merit measure as defined
earlier. Most of the published motifs are ranked
the top except for some weak motifs or short
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motifs, e.g. the motif in HAP family, CCAAY, is
ranked the 34th, and the less conserved motif in
PHO family, GCACGTTTT, is ranked the 18th.
We also varied the subset size (e.g. 15, 20, 25) to
check its effect, and found that the results of
different runs were similar.

5.2. Analysis of global gene expression

Regulation of the stress response occurs at
many levels including transcriptional, transla-
tional and post-translational mechanisms. These
forms of stress are sensed by different signaling
systems, and a signal in each case is transduced
through a MAP kinase regulatory cascade that
activates specific sets of transcription factors
[20,21]. Because the stress response is highly con-
served and there is a base of available information
against which the results can be evaluated, several
stress induction experiments have been per-
formed, using the Affymetrix GeneChip system.

In the Affymetrix GeneChip system, the yeast
gene expression probe array interrogates over
6200 yeast genes using 20 complementary 25-mers
per gene. These are arrayed at high concentrations
on four silicon chips, together totaling an area of
approximately 12 in. [3]. The oligonucleotide
probes are synthesized in situ using a photolithog-
raphy process and sequential rounds of masking,
photo-deprotection, and synthesis. Specificity of
hybridization is internally controlled by hy-
bridization of a set of antisense oligonucleotide
probes arrayed at neighboring positions on the
chips. PolyA RNA samples are converted to dou-
ble-stranded cDNA and transcribed into tagged
RNAs in the presence of biotinylated precursors,
providing a 20—200-fold amplification. RNA spe-
cies are fragmented and hybridized to the mi-
croarrays. Bound, biotinylated RNAs are stained
with streptavidin—phycoerythin conjugate. The
Affymetrix system reads out results using a scan-
ning confocal fluorescence microscope with an
argon laser light source, and the Affymetrix pro-
prietary software is used to process the image file,
resulting in the values for each gene proportional
to the level of expression of the gene.

The stress responses in yeast are mediated by a
network of interacting pathways [20]. The control

by different types of stress response genes is com-
plicated by the response of sequence elements to
multiple types of stress, and by the presence of
multiple, degenerate motifs mediating those ef-
fects. Analysis of the oxidative stress response
using genome-wide gene expression is expected to
result in the identification of candidate regulatory
motifs and proteins which can be tested and fur-
ther our understanding of this important cellular
defense mechanism. For the oxidative stress ex-
periment, cells were stressed according to the
standard protocols with H,0,. Total RNAs were
prepared from cells, PolyA RNA isolated, cDNA
synthesized, and biotinylated cRNA probes pro-
duced by in vitro transcription. Different RNAs
were used to hybridize to the yeast gene probe
array. Gene expression level changes were mea-
sured at 0, 5, 10 and 20 min. The results showed
that approximately 500 genes changed in tran-
scriptional level by greater than two folds over the
time course. Sets of genes that behave similarly in
terms of expression level changes over a time
course are likely to have common regulatory ele-
ments. Thus, the first step is to identify sets or
clusters of genes that are similarly regulated.
Genes were described as vectors of expression
levels, and those behaved similarly over the time
course were grouped automatically using a varia-
tion on the standard k-means clustering al-
gorithm. With this clustering algorithm, we
clustered the entire yeast genome into families
according to how their expression changes over
time. Two families were selected for further analy-
ses. In one of the families there were 58 up-regu-
lated genes under oxidative stress whose final
expression level exceeds 1000; in the other there
were 100 genes whose expressions remained nearly
unchanged over time at the average expression
level of 50. Certainly, there are other clusters also
worth further exploration. Due to the space limit,
in this paper, we only show one example to
demonstrate the value of the integrated analysis
system.

After we extracted a 500 bp upstream region
from each gene, we applied DMS to these se-
quences to find candidate motifs. As we focused
on short motifs in our current study, for DMS we
set the motif width to be 7 and 5. According to
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the merit value, 25 interesting motifs were se-
lected. In the 25 motifs, we found two known
motifs, the YAP binding site and the stress ele-
ment. Based on these selected motifs, we trans-
formed each raw DNA sequence into a vector
representation. Each vector indicates for each mo-
tif the number of total motif occurrences in a
sequence, and the number of motif occurrences
within a specific range in that sequence. Note that
the motif occurrences are determined by DMS
with the mean match score as the threshold as
explained earlier. From the point of view of in-
ductive learning, after the transformation, we
have a set of pre-classified data, i.e. oxidative
stress up-regulated genes and no-change genes.
We first applied GALA [17,18] to the new data set
to analyze motif combinations, and used the in-
ductive learning program C4.5 [19] to generate a
hypothesis, represented as the decision tree shown
in Fig. 1. The output of GALA is a list of
combinatorial motifs represented as Boolean com-
binations. These Boolean combinations will be
used by C4.5 to construct a decision tree hypothe-
sis. For example, node 1, 2 and 4 described as
Boolean combinations in the decision tree shown

in Fig. 1 are part of the output of GALA. We
modified the original output of C4.5 by directly
putting in the motif Boolean combinations
learned by GALA to increase readability. The
decision tree describes features that are found and
not found in genes that are positively or not
regulated by the oxidative treatment. This descrip-
tion can be applied to other genes in order to
predict their behavior under oxidative stress.

There are four condition nodes in the hypothe-
sis. Each node describes a condition with two
outcomes, true or false. In each node, “*’ means
an ‘AND’ and ‘4’ means an ‘OR’. For example,
the root (i.e. node 1) describes a condition (if
there is no Motif 3 or no Motif 12) AND (if there
is no Motif 8 or no Motif 25 located in 300—-400
bp upstream) AND ((if there is no Motif 4 and no
Motif 21) or (if there is no Motif 11 and there is
one or less Motif 22)). To classify a gene’s behav-
ior, the decision tree was traced from the top, i.e.
node 1, to the bottom, i.e. a class. Note that when
classifying a new gene, to keep the consistency, we
used the same threshold as used by DMS during
its search for motif occurrences to determine mo-
tif occurrences (refer to Section 4.1.2).

NODE 1 : ((M3 < 0) + (M12 < 0))*((M8 < 0) + (M25 in [300,400] < 0))*
(M4 < 0)*(M21 < 0) + (MI1 < 0)*(M22 < 1))

== TRUE

NODE 2 : ((M4 < 0) + (MIO < 1)*(M13 in [400,500] < 0))*
((M4 > 0) + (M2 in [0,100] < 0)*(M19 in [0,100] < 0))

== TRUE

Class: No-change

== FALSE

NODE 3 : (M2l < 0)
=== TRUE

== FALSE

=== FALSE

{ 0 up-regulated genes)
{92 no-change genes )

: No-change {1 up-regulated genes}
{2 no-change genes )

: Up-regulated {5 up-regulated genes}
{0 no-change gene }

NODE 4 : (M3 in [300,400] < 0)*(M17 in [300,400] < 0)*(M4 < 1)*
(M10 < 0)*(M24 < 1)*(M25 in [300,400] < 0)

== TRUE

Class: No-change

== FALSE

{0 up-regulated gene})
{6 no-change genes }

Class: Up-regulated {52 up-regulated genes}

{ 0 no-change gene }

Fig. 1. The hypothesis of oxidative stress genes (represented by a decision tree).
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To verify the usefulness of the motif combina-
tions generated by GALA, we performed two
iterations of 10-fold cross validation by running
C4.5 on the same data set with and without using
the motif combinations generated by GALA. To
perform one 10-fold cross validation, we first
randomly shuffle the total data, i.e. the 58 oxida-
tive stress up-regulated genes and the 100 no-
change genes, to remove the ordering bias. We
then divide the data into ten equal-sized sets, i.e.
each set contains 10% of the total data; the distri-
bution of the oxidative stress up-regulated genes
and the no-change genes in each set will be at
random. Each set of data will be iteratively used
as the validation data to test the accuracy of the
predictor, and the remaining nine sets of data will
be used for training the predictor. The final pre-
dictive accuracy of the predictor is the average of
the accuracy of the total ten runs of experiments.
Our experimental results showed that motif com-
binations significantly improved the predictive ac-
curacy by about 6% (82.24% with combinations
compared with 76.13% without combinations) in
paired z-test (confidence level > 99%).

6. Lessons learned

Computational tools for detecting subtle simi-
larities and classifying sequences have become an
essential component of the research process. This
is essential to our understanding of life and evolu-
tion, as well as to the discovery of new drugs and
therapies. Bioinformatics is emerging as a strate-
gic discipline at the frontier between biology and
computer science, impacting medicine, biotechnol-
ogy, and society in many ways.

Large databases of biological information cre-
ate both challenging data-mining problems and
opportunities, each requiring new ideas. In this
regard, conventional computer science algorithms
have been useful, but are increasingly unable to
address many of the most interesting sequence
analysis problems. This is due to the inherent
complexity of biological systems, brought about
by evolutionary stochastic process, and to our
lack of a comprehensive theory of life’s organiza-
tion at the molecular level. Machine-learning ap-

proaches, on the other hand, are ideally suited for
domains characterized by the presence of large
amounts of data, noisy patterns, and the absence
of general theories. The fundamental idea behind
these approaches is to learn the theory automati-
cally from the data, trough a process of inference,
model fitting, or learning from examples. Thus,
they form a viable complementary approach to
conventional methods. It is the confluence of all
three factors — data, computer and theoretical
framework — that is fueling the machine-learning
expansion, in bioinformatics and elsewhere [22].

We propose using multiple objective functions
to detect meaningful motifs from sequences. Our
experimental results demonstrated the synergy of
the information content and the multiplicity sig-
nificance helps maintain the balance between the
consensus quality and the over-representation of
motifs. The strategy of using multiple complemen-
tary objective functions alleviates the limitations
of current approaches.

The advent of the genechip technology has
provided a macro view of the gene expression on
a genomic scale. With this kind of technology, we
are finally able to realize the potential of informa-
tion emerging from such global gene regulation
studies. According to the time course, we are able
to obtain the distinct temporal patterns of gene
expression, and thus to understand different gene
behaviors in the same controlled environment. To
learn beyond how genes behave in the course of
time on a genomic scale, we propose a novel view
of the gene regulation analysis. With the assis-
tance of the genechip technology, genes could be
grouped into families according to different tem-
poral patterns. Our analysis of gene regulation is
focused on the search for significant combinato-
rial motifs involved in the regulation as well as
potential hypotheses of how the gene regulation is
related to the motifs. This type of analyses not
only complement the global study of the changes
of gene expression by looking into the involve-
ment of combinatorial motifs in regulation, but
also suggest to biologists further biological tests
on the genes through the inference from the hy-
potheses produced by the analyses.
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7. Future plans

Our yeast genome-wide expression studies and
the experimental results provide a useful model
system in which to explore computational ap-
proaches for several reasons.

1. The complete genome sequence of yeast is
known and several array systems are available
with which the yeast genome can be further
studied using the computational approaches;
thus, the contribution of these computational
approaches can be verified.

2. Because many protein functions and even reg-
ulatory motifs are conserved between yeast
and metazoan systems, much of what is
learned in the studies should be applicable to
more poorly understood complex systems.

3. The stress response itself is particularly con-
served and so information is particularly likely
to be transferable in many respects from the
model to human systems.

4. Besides the applications in yeast studies, the
computational tools can be extended, if neces-
sary, to analyze the human genome when it is
available.

Besides the cross validation introduced earlier,
the candidate motifs, their combinations and the
associated hypotheses need to be tested for bio-
logical activity. They will be validated in the
following way in the biology laboratory. First,
mutagenesis can be performed to test the role of
candidate simple and complex motifs in transcrip-
tional regulation. Examples of genes that contain
candidate regulatory motifs or combinations of
motifs which are predicted to be novel or of
particular interest can be subcloned onto a shuttle
vector with the endogenous gene copy disrupted.
Motifs can be mutagenized at important positions
and cells carrying the construct can be tested by
Northern blot analysis to determine whether the
motifs contribute, as predicted, to the regulation
of the gene. Second, reporter fusion constructs
can be used to model and systematically test the
roles of candidate complex motifs in transcrip-
tional regulation. For example, effects of motif
location, copy number, and combinations of mo-
tifs can be tested.

Our analysis method is part of the ongoing
yeast genome project. The goal of the project is to
develop computational tools for interpreting and
tracking the enormous amount of data emerging
from genome sequence projects and from genome-
wide gene expression studies. The objectives in-
clude (1) identification of host functions regulated
at the transcriptional level by exposure to stress,
(2) identification of sequence motifs and combina-
tions of motifs, (3) testing of candidate sequence
motifs and combinations of motifs for biological
activities, (4) identification of regulatory proteins,
and (5) enhancing our understanding of regula-
tory networks and cell functions including
metabolism that are involved in the stress
response.

We have already obtained several preliminary
but promising results of the yeast genome-wide
gene expression analysis. As the microarray and
the genechip technologies become more mature,
and more biological background knowledge be-
comes available, we expect to improve the perfor-
mance of this novel analysis method, and finally
achieve our ultimate goal.
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