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Abstract—This paper examines the edge direct tunneling
(EDT) of electron from nt polysilicon to underlying n-type drain
extension in off-state n-channel MOSFET's having ultrathin gate
oxide thicknesses (1.4-2.4 nm). It is found that for thinner oxide
thicknesses, electron EDT is more pronounced over the conven-
tional gate-induced-drain-leakage (GIDL), bulk band-to-band
tunneling (BTBT), and gate-to-substrate tunneling, and as a
result, the induced gate and drain leakage is better measured per
unit gate width. A physical model is for the first time derived for
the oxide field Eqx at the gate edge by accounting for electron
subband in the quantized accumulation polysilicon surface. This
model relates Eqox to the gate-to-drain voltage, oxide thickness,
and doping concentration of drain extension. OnceéEox is known,
an existing DT model readily reproduces EDTI-V consistently
and the tunneling path size extracted falls adequately within the
gate-to-drain overlap region. The ultimate oxide thickness limit
due to EDT is projected as well.

Index Terms—Author: Please e-mail keywords@ieee.org for
more info..

. INTRODUCTION

HE off-state drain leakage is one of the big issues for
aggressively shrunk MOSFET’s. The well recognized
mechanisms are the gate-induced-drain-leakage (GIDL) [1], 0_3 E) ] 0 1 2
[2], the bulk band-to-band tunneling (BTBT) [3], and the VoW
drain-induced-barrier-lowering (DIBL) enhanced subthreshold (b)
conduction. In the case of reverse substrate bias for suppression ,
of DIBL or subthreshold leakage, the bulk BTBT dominates 10 ‘ ‘ ‘ ]
[4]. On the other hand, the gate leakage due to direct tunneling 215 0m 4
(DT) [5] was measured per unit oxide area and a certain
criterion of 1 Alcn? set the ultimate limit of scalable oxide
thicknesses [6], [7]. Recently, Yargt al. [8] have originally
explored a dominant off-state leakage component via edge —— Simulation
direct tunneling (EDT) of electron fromn polysilicon to 10° o+ poly-gate n(MOSFET
underlying n-type drain extension. Also carried out in [8] is 10" P R R
the -V modeling obtained by following the procedure in [9], -[E | (MV/em)
[10]. However, some parameters of great relevance were not *

clarified yet, such as the tunneling path area and the dopant ©
Fig. 1. (a) HRTEM images of three nMOSFET gate stacKsx values
extracted from the canvases correspond to 2.16, 1.88, and 1.49 nm, respectively.
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[10], and is usually gained by means of the so-calied” | e $ :
. . . . D
integration technique [11]. However, unlike the whole area G to-Substrate Tunmeling 7 GioL ]

\\Drain Extension

counterpart, it is impossible to assess such oxide field at the
gate edge for the situation that the overlap capacitance is too —
small to detect using presefitV equipment. P-Well i
In this paper, we report that as scaled gate oxide thickness ap- Iy
proaches the DT regime, the EDT of electron frompolysil-
icon to underlying n-type drain not only dominates the gate
leakage, but also can prevail over the conventional GIDL, in
agreement with [8]. This phenomenon is more pronounced for
thinner oxide thicknesses, and EDT can even compete over the
bulk BTBT in the case of reverse substrate bias not mentioned in = . -
[8]. Itis clarified that the gate leakage in stand-by mode indeed ——
originates from the edge part rather than the whole gate oxide, % “Lome

n+ Poly Drain Extension

and thus should be measured per unit gate width rather thanper | K ——
unit oxide area as in [6], [7]. Also presented is a physical model
for the first time derived for the oxide fielHox at the gate edge

by accounting for electron subband in the quantized accumula-
tion polysilicon surface. This model is valuable in enabling con-
sistently the reproduction of EDI-V/, the extraction of EDT

path size and dopant concentration of drain extension, and even ©

the projection of ultimate oxide thickness Fig. 3. (a) Band diagram located at channel region far from drain extension.
' Accumulation hole DT(Zampr) and accumulation electron DT current

(IaepT) both contribute to gate-to-substrate tunneling current. (b) Schematic

II. EXPERIMENT AND CHARACTERIZATION cross section near gate/drain overlap region uhdex 0 VandVy = — V.
Different tunneling paths are shown. (c) Band diagram located at gate/drain

The nt po|y_gate nMOSFET's were fabricated by a 0.18-urpverlap region, showing EDT and GIDL under off-state condition.
process technology [12]. The gate oxides were grown in dilute
wet oxygen ambient to three different thicknesses. The gate ui+ig. 1(b) also produced the'rpolysilicon dopant concentra-
mension was drawn to00 x 100 pm?. Accurate determina- tion N,., = 6 x 10 cm™ and the effective channel dopant
tion of ultrathin oxide thicknes§ox is strongly demanded. concentrationVy.n = 5 x 10*7 cm~3, all being found to be
Three techniques in terms of high resolution TEM (HRTEM)onsistent with the SIMS doping profile. In Fig. 1(c), the de-
polysilicon depletion and quantum mechanics (QM) correctetites were biased in poly accumulation (negative gate voltage,
C-V [13]-[15], and DTI-V [9] were adopted as shown inVy < Vgp) with source, drain, and p-well tied to ground, and
Fig. 1, through which consistent results were achieved as cotne oxide field strengtlizox was obtained in advance by means
pared in Fig. 2. Fig. 1(a) just shows highly-localized HRTEMf the C—V integration technique [11]. With the effective mass
cross section while the variation across the wafer is depictedrin,.. = 0.61 m, for Franz-type dispersion relationship in the
Fig. 2 in terms of a bar. Ouf’-V" data in Fig. 1(b) was mea- oxide, the conduction electron DIFV fitting in Fig. 1(c) ex-
sured in parallel mode with 1-MHz AC frequency. QM cortractedZpx = 1.47,2.15, and 2.40 nm from three samples.
rectedC-V fitting based on van Dort’s model for surface quanNote that as all data go closer to the straight line with the unity
tization [13], [14] was carried out to extract physidalx. In  slope in Fig. 2, more confidence for IV extractedlox, as
particular, the singular point problem encountered around thell as its subsequent applications in consistently calculating
flat-band voltageVrg was eliminated by adopting a modifiedthe EDT current of electron fromnpolysilicon to underlying
version [15]. In Fig. 1(b)C-V fitting for Tox = 1.47 nmis n-type drain, can all be ensured.
limited to nondistorted range;1.4 V < Vi < 0.6 V, where the Fig. 3 illustrates the tunneling leakage paths and related
tunneling current effect or others can be negleoféel fitting band diagrams. With source open and under= —Vp, the
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Fig. 4. Displaying the measured terminal currents verBys; for three Fig 5. Measured terminal current versus gate voltage. The aspect ratio
different Tox (a), (b), and (c) undet’s = —Vp and source open. The v/ = 10 um/0.5 um. With source grounded arid, = 1V, (a)—(c) shows
aspect ratidV/L = 10 xm/0.5 um. (a) EDT dominates the drain leakage inthe measured terminal currents versus both polaritid&.ofor substrate bias

1V < Vpg < 1.8 V. (b) The edge tunneling mechanism dominatgsfor 1/, = ¢ and—1 V. (b) and (c) exhibits that off-state drain current does not

0V < Vpa < 2.2V, and GIDL constitutes drain leakage fohc > 2.2 V. come from GIDL or bulk BTBT but EDT due to the evidende, ~ Ip.
(c) The edge tunneling mechanism prevails over the drain leakage current.

Note that gate-to-substrate tunneling is an important leakage sourég far
0.5V < Vpa < 2 V. . .
P4 —0.5V < Vg < 0V, while such role is replaced by EDT

for thinner oxides. In Fig. 5(b) and (cJp ~ Ig for Vg <
7 lotted in Fig. 4 K. for th i ¢ oxid 0 V, which seems to be unchanged with and without substrate
5 are plotied In Fig. = VersuSpg Ior three ditterent oxide ;.o supporting the EDT mechanism responsible. This implies

thicknesses. Fig. 4 reveals that the drain current primar Hat EDT is only dependent on the vertical electrical field but

COMpriSes the GIDL, the .bu.lk BTBT, and the gate CUrreNlit the lateral electrical field; that is, the edge tunneling can be
implying the EDT as the origin of the latter component. It CaQssumed as one-dimensional approximation. Besides, we found

be observed that the EDT dominates the gate leakage, %L}ierimentally that the EDT leakage is indeed proportional to

there e>§ists a certain range where th_e EDT prevails_over %gatewidth, regardless of the aspect réifig/ ). This means
conventional GIDL and bulk BTBT. This phenomenon is mor at the gate leakage in stand-by mode (i.e., only source and

pronounced for thinner oxide thicknesses. In Fig. 4(c) for 1. te tied t d) should be ad tel d it gat
nm thick oxide, the polarity of the bulk current is reversed d ?d?hle 0 ground) should be adequately measured per unit gate

to gate-to-substrate tunneling.
With =1V, th inal
th source grounded ar_ie_in , the measgred_termlna . EDT MODEL
currents versus both polarities &, are plotted in Fig. 5 for
substrate biakz = 0 and—1 V. Obviously, forZ,, = 2.40 nm An analytic electron DT model [9] was again employed in
the bulk BTBT atVz = —1 V dominates the drain leakage in this study. One essential physical parameter, namely, oxide field

measured drain curredt, gate current/;, and bulk current
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Eox at the gate edge, has to be estimated under each value of
Vep. In our work, the mentioned-V integration technique
failed to extractFox because EDT occurs only within the area
of gate/drain overlap region and it is difficult to measure such
small capacitance in the overlap part. First of all, oxide field at
the gate edge can be obtained by solving the following equation:

N*-Poly Gate

Ecx By

Drain Extension
Ve — VFB(EO) = Vpoly +ToxFox + Vor (1) Ey ™~ (Deep-Depletion Assumption)
V,
whereV,,.1y is the potential drop in the polysilicon angy is I I S
that in the drain extension region. The chafgevailable for Voo N T Ec
the tunnel process is modeled as field induced, i.e., L E,

() = eoxEox- @ . . :
Fig. 6. Band diagram drawn along gate/Si@rain extension. The
: mulation potential bendin§/rory, with two-dimensional electron gas
DU(.B to the Iowe;t quantized energy, the gccumulated elecm?ﬁ%]EG) concept and the silicon surface potential bendifag;, with the deep
mainly fill in the first subband. Thus, relating this sheet charggpietion approximation are adopted in the procedutB&f extraction.
density to the number of occupied subband states constructs the

charge conservation relationship

q(ErN — El)ﬁms;,u = eoxFox ©)) R
mh 10°F & Measurement 147 1m 5
where Ery is the quasi-Fermi level in thetpolysilicon and < ¢ Simulation
7 is the degeneracy factor. Using triangle-like electrostatic po- g 10
tential approximation to the polysilicon surface, the quantized 5
energy of the first subband, can be calculated directly with Som- 3 —
merfeld-Wilson's quantization rule & 10 cEh
n" Polysilicon/NMOSFET§
2\ 9Imgeox o W0 T s yé 7 8 9 10
b= <2m5i7 l) < 8es, EOX) ' “) -Eox (MV/cm)

Applying the first subband approximation to the accumulatesy. 7. comparison of the EDT calculation and experiment. The extracted
n* poly gate and the deep depletion approximation to the ueffective EDT range is 6.25 nm wide from the gate edge, equal for three different

derlying drain extension region as shown in Fig. 6, we get  ©%ide thicknessi” = 10 um.

wh?

Vooly 22 EFN/q = coxEox pz— +Ei/q (9
22 where
Vop = 220X (6) Q sheet charge of the accumulation layer;
2qes, NpE f electron impact frequency on the poly/SiO, inter-
whereNpg is the dopant concentration of drain extension. Here, face;
ms, 1 = 0.32, m,, ms, | = 0.25m,, andn = 4 wereusedto 7T isthe modified transmission probability considering in-
approximate the band-structure f@rl0) oriented r-polysil- terface reflection factor [9].

icon grains [9]. As a result, (1) can further be rearranged as Once Eox was quantified, an excellent reproduction for

) 2/3 different oxide thicknesses was achieved Withr, = 3 x 10*?
Ve =a1Eox + CLQEOX + a3E0X (7)

l/cm® and effective mas#o. = 0.61 m, resulting from
where Franz-type dispersion relation in tunnel oxide, as depicted
in Fig. 7. The tunneling path extracted was 6.25 nm wide
a1 = Tox + — mh - (:.LTN) from the gate edge (d_ue WpE gxtracted). This is .
genms, || quite reasonable since the drain extension beneath the gate is
€2x less than 0.0um. Therefore, the consistent modeling work
az = 2ges, Npr validates the EDT as the origin of the leakage of concern.
9 1/3 2/3 It is recognized that the drain extension may be considered a
as = < R ) <97rq60x> ) nonscalable factor [16], implying a constdngy of 6.25 nm in
2ms;,1 es, the scaling direction. With this in mind, the conventional crite-

Thus, it is easy to gek.,. by solving (7) numerically. With the rion of 1 A/cn¥ can be transferred to 0.6268/cm. Using the

effective edge-tunneling ared,(=Lyx x W), the EDTI-V roadmap parameters [17], the electron EDT current is calculated
model reads [9] versus scaling generation oxide thickness as shown in Fig. 8. In

this figure, the new criterion due to electron EDT sets the ulti-
Igpr = AQfT = LW QT (8) mate oxide thickness of around 1.4 nm.
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Fig. 8. (a) The calculated electron DT current per gate width versug14]
scaling generation oxide thickness in NMOSFET's. The inset shows the

scaling parameters from [17]. (b) Exhibiting the EDT path in the structure of

NMOSFET. Ly = 6.25 nm.

IV. CONCLUSION
The EDT of electrons from *h polysilicon to underlying

[15]

[16]

n-type drain extension has shown its tremendous impact on the
drain leakage and gate leakage. This effect is more pronounced
for thinner oxide thicknesses. It is clarified that the gate Ieakagé”]
in practical stand-by mode should be measured per unit gate

width, particularly for MOSFETSs with oxide thickness less than
2.40 nm. Eventually, a physical model cited in the literature

does reproduce consistently experimental EI3V character-

istics and its tunneling area extracted indeed falls within tt
gate-to-drain overlap region. The ultimate oxide thickness d
to electron EDT has also been projected based on the mode
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