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We consider a matrix Riccati equation containing two parameters c and � . The
quantity c denotes the average total number of particles emerging from a collision,

Ž . Ž .which is assumed to be conservative i.e., 0 � c � 1 , and � 0 � � � 1 is an
�Ž . 4angular shift. Let S � c, � : 0 � c � 1 and 0 � � � 1 . Stability analysis for two

steady-state solutions X and X are provided. In particular, we prove thatmin max
�Ž .4X is locally asymptotically stable for S � 1, 0 , while X is unstable formin max

�Ž .4S � 1, 0 . For c � 1 and � � 0, X � X is neutral stable. We also showmin max
Ž .that such equations have a global positive solution for c, � � S, provided that the

initial value is small and positive. � 2001 Academic Press

I. INTRODUCTION

This paper is concerned with the global existence and stability problem
of the matrix Riccati equation of the form

X � � B � AX � XD � XCX � FF X , 1aŽ . Ž .
X 0 � X . 1bŽ . Ž .0

Here, A, B, C, and D are matrices with the structure
1 1 1

A � diag , , . . . ,
c� 1 � � c� 1 � � c� 1 � �Ž . Ž . Ž .1 2 n

1 c c c. 1 2 n.� , , . . . ,. 2� 2� 2�1 2 n1

� 	 T T� diag � , � , . . . , � � eq � D � eq , 2Ž .1 2 n 1

1 Supported in part by NSC of R.O.C., Taiwan. E-mail: jjuang@math.nctu.edu.tw.
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1 1 1
TD � diag , , . . . , � qe 3Ž .

c� 1 � � c� 1 � � c� 1 � �Ž . Ž . Ž .1 2 n

� 	 T T� diag d , d , . . . , d � qe � D � qe , 4Ž .1 2 n 2

B � eeT , 5Ž .
C � qqT , 6Ž .

Ž .and the initial matrix X is nonnegative, i.e., X 
 0 for all i, j.0 0 i j
Ž .Equation 1a contains two parameters, c an � . The quantity c denotes

the average total number of particles emerging from a collision, which is
Ž . Ž .assumed to be conservative i.e., 0 � c � 1 , and � 0 � � � 1 is an

� 4n � 4nangular shift. The data � and c are sets of the Gauss�Legendrei i�1 i i�1
� 	nodes and weights, respectively, on 0, 1 with

1 � � � � � ��� � � � 0,1 2 n

and
n

c � 1, c � 0, i � 1, 2, . . . , n.Ý i i
i�1

� 	.Such an equation is induced via invariant imbedding 2�5, 10, 11 , and the
� 	integration formula from an ‘‘angularly shifted’’ transport model 6, 7 in

the slab geometry.
Ž .The solutions of 1 exhibit interesting behavior with increasing slab

thickness. The equation, with slab thickness z as a parameter, can be
analyzed in the context of a dynamical equation.

Ž .The purpose of this paper is twofold. First, stability analysis of Eq. 1
for two steady-state solutions X and X is provided. In particular, wemin max
show that the steady state X is locally asymptotically stable for allmin
0 � c � 1 and 0 � � � 1, except that c � 1 and � � 0, while X ismax

Ž .unstable for such c and � . For c � 1 and � � 0, X � X is neutralmin max
Ž .stable. Second, we show that Eq. 1 has a global positive solution for all

0 � c � 1 and 0 � � � 1. In Section 2, we recorded some of the needed
Ž .results concerning the steady-state solutions of Eq. 1 . The main results

are given in Sections 3 and 4.

II. STEADY-STATE SOLUTIONS

In the terminology of dynamical equations, the steady-state solutions to
Ž .1 satisfy

B � AX � XD � XCX � 0. 7Ž .
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Let the matrix H be defined in block form by

D �CH � ; 8Ž .B �A

Ž .we shall call this matrix a Hamiltonian-like matrix of Eq. 1 . The complete
Ž . � 	solution bifurcation diagram of Eq. 2 has recently been obtained in 8 by

considering the invariant subspace of H. Some of the results needed to
Ž .study the stability of 1 are recorded in the following:

Ž � 	. Ž .THEOREM 2.1 Lemma 2.1 of 8 . The matrix H, as defined in 8 , has
� 4only real eigen�alues �� , . . . , �� , � , . . . , � , which are arranged in ann 1 1 n

ascending order. Those eigen�alues of H satisfy the following secular equation
Ž .f � of H � �I:

n nq qi i
f � � 1 � � .Ž . Ý Ýd � � � � �i ii�1 i�1

Moreover, the following assertions and estimates hold:

Ž . Ž . Ž .i Let � and d , i � 1, 2, . . . , n, be given as 2 and 4 , respec-i i
tively. Then

�� � �� � �� � ��� � �� � �� � �� � �� � 0,n n n�1 2 2 1 1

0 � � � d � � � d � ��� � � � d .1 1 2 2 n n

Ž .ii � � 0 only if c � 1.1

Ž .iii � � 0 only if c � 1 and � � 0.1

Ž .iv For � � 0, � � � , i � 1, 2, . . . , n.i i

Ž � 	.THEOREM 2.2 Theorems 3.3 and 3.4 of 8 . Let 0 � c � 1 and 0 � �
Ž .� 1. Equation 2 has a unique nonnegati�e solution for c � 1 and � � 0.

Otherwise, it has two nonnegati�e solutions, say X and X with X 
min max max
Ž . �X � 0. Moreo�er, the spectrum � D � CX of D � CX is � , � ,min min min 1 2

4 � 4. . . , � , and that of D � CX is �� , � , . . . , � .n max 1 2 n

Ž � 	.THEOREM 2.3 see Theorem 5.4 of 8 . The minimum solutions Xmin
Ž . Ž . Žof Eq. 2 are strictly increasing in c for fixed � and decreasing in � for
.fixed c .

III. LINEARIZED STABILITY

Considering the linearized operator of FF at X � X�, where X� is a
Ž .stationary solution of 1a , we have that

FF
� X� R � �AR � RD � RCX� � X�CR . 9Ž . Ž .
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�Ž .The eigenvalue problems of FF X� can then be formulated as

FF
� X� R � �R . 10Ž . Ž .

or, equivalently,

� A � X�C R � R D � CX� � �R . 11Ž . Ž . Ž .

To see the eigenvalues of A � X�C, we need the following lemmas. Set

n n n n1 c 1 ck k
a� � c X� , b� � c X� ,Ž . Ž .k jÝ Ý Ý Ý i kj i2 � 2 �k kj�1 k�1 i�1 k�1

and

n n n n1 c 1 ck k
�� � c � X� , 	� � c � X� .Ž . Ž .k jÝ Ý Ý Ý i kj j i i2 � 2 �k kj�1 k�1 i�1 k�1

Here � � min or max.

Ž .LEMMA 3.1. i If c � 1 and � � 0, then a � b � a � b � 1.min min max max
1 � � 1 � � 1 � �Ž .ii If c � 1, and � � 0, then a � , b � , a � , andmin min max1 � � 1 � � 1 � �

1 � � 1 � �Ž .b � . iii For all c and � � 0, b � .max max1 � � 1 � �

Ž .Proof. Consider the component form of 7 . We get that

1 1
� Xi jž /� 1 � � � 1 � �Ž . Ž .i j

n n1 c 1 ck k� c 1 � X 1 � X . 12Ž .Ý Ýi k k jž / ž /2 � 2 �k kk�1 k�1

Ž .Multiplying Eq. 12 by c c and summing the resulting equation, we havei j

a� b� c
� � 1 � a� 1 � b� . 13Ž . Ž . Ž .

1 � � 1 � � 2

Ž .The first assertion of the lemma now follows from 13 and the fact that
Ž .for c � 1 and � � 0, X � X . After some algebra, 13 reduces tomin max

1 � � a� � 1 � � 1 � � b� � 1 � �Ž . Ž . Ž . Ž .

� 1 � c 1 � � 2 a� � 1 b� � 1 . 14Ž . Ž . Ž . Ž . Ž .
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Ž .Noting that the right-hand side of 14 is nonnegative we thus conclude, via
the fact that X 
 X , thatmax min

1 � � 1 � �
a � and b � , 15aŽ .min min1 � � 1 � �

and

1 � � 1 � �
a 
 and b 
 . 15bŽ .max max1 � � 1 � �

Ž .Note also, via 14 , that for c � 1, we have

1 � � 1 � �
�� � or b� � .

1 � � 1 � �

We next show that for c � 1 and � � 0, it is impossible to have both
1 � � 1 � � Ž .a� � and b� � . To see this, multiplying 12 by c c � , andi j i1 � � 1 � �

c c � , respectively, and summing the resulting equations, we get, respec-i j j
tively,

n n2	� 1 1 a�
� c c X � � 	� � � 	�a� , 16aŽ .Ý Ý i j i j1 � � 1 � � 2 2i�1 j�1

and

n n2�� 1 1 b�
� c c x � � �� � � ��b� . 16bŽ .Ý Ý i j i j1 � � 1 � � 2 2i�1 j�1

We have used the property of Gauss�Legendre nodes and weights, i.e.,
1n 1 Ž . Ž . Ž .Ý c � � H � d� � , to justify 16 . Now, multiplying 16a and 16b ,i�1 i i 0 2

Ž . Ž .respectively, by 1 � � and 1 � � , and taking the difference of the
resulting equations, we get

1 � � 1 � �
2 	� � ��ž /1 � � 1 � �

1 � � 1 � �
� � � 1 � � 	� � 1 � � �� � a� � bŽ . Ž . 0ž / ž /2 2

� 1 � � a� 	� � 1 � � ��b�. 17Ž . Ž . Ž .
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1 � � 1 � � Ž .If a� � and b� � , Eq. 17 would then yield that1 � � 1 � �

4�

 � � 0,21 � �Ž .

1 � �and, hence, � � 0, which is a contradiction. Hence, either a� � or1 � �
1 � �b� � . Moreover, for c � 1 and � � 0, it is impossible to have1 � �

1 � � 1 � �
a � , b � . 18Ž .min min1 � � 1 � �

Ž . Ž .If these were the case, substituting 18 into 17 , we would have

1 � � 1 � �
� � � � a � b � 0.min minž / ž /2 2

However, this is not possible since

2 21 � � 1 � �Ž . Ž .
� � � � � � 
 � 0.

2 1 � � 2 1 � �Ž . Ž .
Ž .We thus complete the proof of the first assertion of Lemma 3.1 ii . The

1 � �Ž .second part of Lemma 3.1 ii can be similarly obtained. If b � , itmax 1 � �
1 � �Ž .follows from 14 that c � 1. However, for c � 1 and � � 0, b � .max 1 � �

Ž .Hence, the assertion in Lemma 3.1 iii holds as claimed.

We are now ready to study the eigenvalues of A � X�C.

Ž . Ž . �LEMMA 3.2. i The spectrum, � A � X C , of A � X C is � , � ,˜ ˜min min 1 2
4. . . , � , where � � 0 for i � 2, 3, . . . , n. Moreo�er, � � 0 at c � 1;˜ ˜ ˜n i 1

Ž . Ž . �otherwise, � � 0. ii The spectrum � A � X C of A � X C is � ,˜1 max max 1
4 Ž� , . . . , � , where � � 0 for i � 2, 3, . . . , n. Moreo�er, � � 0 resp.,2 n i 1

2. Ž .� 0, � 0 if p � � 1 � b resp., � b , � b . In particu-Ž .c, � max max maxc 1 � �

lar, � � 0 at c � 1 and � � 0, for c � 1 and � � 0, � � 0, and � � 01 1 1
Ž .if c 1 � � � 1.

Ž . TProof. We rewrite A � X�C as A � X�C � D � e � X�q q �1
T � 	 Ž .D � q�q , where D � diag � , � , . . . , � is defined as in 2 . Using the1 1 1 2 n

Gaussian elimination technique, we see readily that � , i � 1, 2, . . . , n, arei
not eigenvalues of A � X�C. Thus, for � � � , i � 1, 2, . . . , n, we havei
that

det A � X�C � �I � det D � �I � q�qTŽ . Ž .1

�1 T� det D � �I det I � D � �I q�qŽ . Ž .Ž .1 1

� det D � �I f � ,Ž . Ž .1
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where

n q q�Ž . ii
f � � 1 � . 19Ž . Ž .Ý

� � �ii�1

Hence, finding eigenvalues of A � X�C is equivalent to locating the roots
Ž .of f � . Clearly, � and � , i � 2, 3, . . . , m, lie between � and � , and,˜i i i�1 i

hence, are all greater than zero. To see the sign of � and � , we note that˜1 i
Ž .c 1 � �Ž . � 	f 0 � 1 � 1 � b� . Clearly, for c � 1 and b� � b , it followsmin2

Ž . Ž .from Lemma 3.1 that f 0 � 0. The last assertion of Lemma 3.2 i follows
Ž .directly from Theorem 2.3 and Lemma 3.1 ii . For b� � b ,max

c 1 � � c 1 � � bŽ . Ž . max
f 0 � 1 � � .Ž .

2 2

Ž . Ž . Ž .Hence f 0 � 0 if p � b ; f 0 � 0 if p � b ; f 0 � 0 if p �c, � max c, � max c, �

Ž .b . The last assertions of Lemma 3.2 ii follow directly from Lemma 3.1.max

We are now ready to state our stability results. Let

S � c, � : 0 � c � 1, 0 � � � 1 .� 4Ž .

Ž .THEOREM 3.3. i The steady state X is locally asymptotically stable formin
Ž . �Ž .4 Ž .c, � � S � 1, 0 and is neutral stable for c � 1 and � � 0. ii The

Ž . �Ž .4steady state X is unstable for c, � � S � 1, 0 .max

Ž � 	. Ž �Ž ..Proof. It is well known see, e.g., 1 that the spectrum � FF X� of
�Ž .FF X� is equal to

�� � � : � � � A � X�C and � � � D � CX� . 20� 4Ž . Ž . Ž .

Ž .Now, the first assertion of Theorem 3.3 follows from Lemma 3.2 i and
Theorems 2.1 and 2.2. To complete the proof, it then suffices to show that

Ž . �Ž .4for c, � � S � 1, 0 ,

� � � if � 
 0. 21Ž .1 1 1

Ž . Ž . Ž . Ž .To this end, let g � � f �� , where f � is given as in Theorem 2.1 ,
and define

n nq q q � 1Ž .i i max i
h � � f � � g � � � .Ž . Ž . Ž . Ý Ýd � � � � �i ii�1 i�1
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For 0 � � � � ,1

n nq q q � 1Ž .i i max i�h � � � � � 0,Ž . Ý Ý2 2d � � � � �Ž . Ž .i�1 i�1i i

c cŽ . Ž . Ž . Ž .and h 0 � 1 � � � 1 � � b � 0. We have used Lemma 3.1 iiimax2 2
Ž . Ž .to justify the last inequality. Therefore, f � � g � for all 0 � � � � .1

Ž .Hence, 21 holds as claimed. We thus complete the proof of the theorem.

IV. GLOBAL EXISTENCE

Our objective in this section is to investigate the global solution of Eq.
Ž .1 . We note that the local version of the main result, Theorem 4.2, in this

� 	section is a direct consequence of Theorems 9.1 and 9.2 of Reid 9 . To
Ž . Ž .study the global solution of Eq. 1 , we first rewrite 1 as an equivalent

Ž .integral formulation. To this end, we begin with writing Eq. 1 as

X � � D X � XD � B � eqT X � XqeT � XCX . 22Ž .1 2

Ž .Premultiplying and postmultiplying Eq. 22 by the integration factors
e�Ž z�s.D1 and e�Ž z�s.D 2 , respectively, and integrating the resulting equa-
tion with respect to s from 0 to z, we obtain

X z � e�z D1 X e�z D 2Ž . 0

z
�Ž z�s.D T T1� e B � eq X s � X s qeŽ . Ž .H

0

�Ž z�s.D 2�X s CX s e dsŽ . Ž .
4

�z D �z D1 2� WX z � e X e � W X z , 23Ž . Ž . Ž . Ž . Ž .Ý0 i
i�1

where the operators W , i � 1, 2, 3, 4, are defined asi

z
�Ž z�s.D �Ž z�s.D1 2W X z � e Be ds,Ž . Ž . H1

0

z
�Ž z�s.D T �Ž z�s.D1 2W X z � e eq X s e ds,Ž . Ž . Ž .H2

0

z
�Ž z�s.D T �Ž z�s.D1 2W X z � e X s qe e ds,Ž . Ž . Ž .H3

0

and
z

�Ž z�s.D �Ž z�s.D1 2W X z � e X s CX s e ds.Ž . Ž . Ž . Ž .H4
0
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� Žm.Ž .4Let us define the standard Picard iteration X z by

X Ž0. z � 0 24aŽ . Ž .
X Žm�1. z � WX Žm. z . 24bŽ . Ž . Ž .

Ž . Ž .Notation: Let A � a and B � b be two square matrices of the samei j i j
size; we shall write A 
 B if a 
 b for all i, j.i j i, j

LEMMA 4.1. If X 
 X 
 0, then W is a monotone operator andmin 0
Žm.Ž . Žm�1.Ž . � .0 � X z � X z � X for all z � 0, � and all m � N. More-min

o�er, X Žm. is nondecreasing in z pro�ided that B � D X � X D 
 0.1 0 0 2

Proof. It is clear that W is a monotone operator provided X 
 0. The0
first two inequalities are a direct consequence of an induction. To see the

Žm�1.Ž .last inequality, assuming that X z � X for all z, we have thatmin

X Žm. z � e�z D1 X e�z D 2Ž . 0

z
�Ž z�s.D T T1� e B � eq X � X qeH min min

0

�Ž z�s.D 2�X CX e dsmin min

z
�z D �z D �Ž z�s.D �Ž z�s.D1 2 1 2� 	� e X e � e D X � X D e dsH0 1 min min 2

0

� X � e�z D1 X � X e�z D 2Ž .min min 0

� X .min

Žm�1.Ž .To complete the proof, we assume that X z is nondecreasing in z.
Set

K Žm�1. z � B � eqT X Žm�1. z � X Žm�1. z qeTŽ . Ž . Ž .
� X Žm�1. z CX Žm�1. z ,Ž . Ž .

Žm�1.Ž . Žm�1.Ž .and, hence, K z is increasing. Differentiating WX z with
respect to z, one obtains that

d
Žm�1.WX zŽ .

dz

� �e�z D1 D X � X D e�z D 2 � K Žm�1. zŽ . Ž .1 0 0 2

z
�Ž z�s.D Žm�1. Žm�1. �Ž z�s.D1 2� e D K s � K s D e dsŽ . Ž .H 1 2

0


 �e�z D1 D X � X D e�z D 2 � e�z D1 K Žm�1. z e�z D 2Ž . Ž .1 0 0 2

� e�z D1 B � D X � X D e�z D 2 
 0.Ž .1 0 0 2
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Žm�1.Ž .The fact that K s are increasing in s has been used to justify the
first inequality above.

Ž .THEOREM 4.2. i Let 0 � c � 1, and let 0 � � � 1. Moreo�er, the
initial �alue X is so small that X 
 X 
 0, B � D X � X D 
 0.0 min 0 1 0 0 2

Žm.Ž .Then the sequence X z con�erges pointwise to a continuous function
Ž�.Ž . � . Ž . Ž�.Ž . Ž . � .X z on 0, � . ii X z is an nondecreasing function in z on 0, � ,

Ž . Ž . Ž�.Ž .which is a global solution of 1 . iii The limit of X z as z � � exists, say
Ž�. Ž . Ž�. Ž .X . iv Moreo�er, the limit X is a solution of steady-state Eq. 7 .

Furthermore, X Ž�. � X .min

Ž . Ž . Ž .Proof. The assertions of Theorem 4.2 i , ii , and iii follow from the
Monotone Convergence Theorem and Lemma 4.1. To complete the proof
of the last assertion of the theorem, we need to show that X is a solution�

Ž .of 7 , or, equivalently, X satisfies�

�
�s D T T �sD1 2X � e B � eq X � X qe � X CX e dsH� � � � �

0

n

� lim W z X ,Ž .Ý i �
z��i�1

where

z
�s D �sD1 2W z X � e Be ds,Ž . H1 �

0

z
�s D T �sD1 2W z X � e eq X e ds,Ž . H2 � �

0

z
�s D T �sD1 2W z X � e X qe e ds,Ž . H3 � �

0

and

z
�s D �sD1 2W z X � e X CX e ds.Ž . H4 � � �

0

�Ž .Ž . Ž .Ž .	To this end, we need to show that lim W X z X � W X z � 0,z �� i � 2
Ž .i � 1, 2, 3, 4. Here W are defined in 24a . We illustrate only i � 2, 4; thei

other limits can be similarly obtained. Now,

z
�s D T �sD1 2W z X � W X z � e eq X � X z � s e ds.Ž . Ž . Ž . Ž .Ž .H2 � 2 �

0
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� 	Dividing the integration interval 0, z into two parts, we have the following
estimates:

z�2 �s D T �sD1 2e eq X � X z � s e dsŽ .Ž .H �
0

z�2 z�s D T �sD1 2� e eq X � X e dsŽ .Ž .H � 2
0

z�2 z�s D �1 T1� e D D eq X � X dsŽ .Ž .H 1 1 � 2
0

z�1 T� D eq X � X .Ž .Ž .1 � 2

Furthermore,

z
�s D T �sD1 2e eq X � X z � s e dsŽ .Ž .H �

z�2

z
�s D �1 T1� e D D eq X � X dsŽ .H 1 1 � 0

z�2

� e�Ž z �2.D1 D�1qT X � X .Ž .1 � 0

Ž .The fact that X z is increasing in z has been used to justify the above
inequalities. We now turn to the next estimate:

W z X � W X zŽ . Ž .Ž .4 � 4

z
�s D �sD1 2� e X CX � X z � s CX z � s e ds.Ž . Ž .Ž .H � �

0

We have, via similar estimates, that

z�2 �s D �sD1 2e X CX � X z � s CX z � s e dsŽ . Ž .Ž .H � �
0

z z�1� D X CX � X CX ,Ž . Ž .Ž .1 � � 2 2

and that

z
�s D �sD1 2e X CX � X z � s CX z � s e dsŽ . Ž .Ž .H � �

z�2

� e�Ž z �2.D1 D�1 X CX � X CX .Ž .1 � � 0 0

Ž .Ž . Ž .Therefore, W X z � W z X can be made arbitrarily small by choosingi i �

Ž .z sufficiently large. Hence X satisfies Eq. 2 as claimed. Finally, X must� �
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Žn.Ž .be equal to X . Since 0 � X z � X for all n and z, and X � X ,min min � min
then X � X .� min
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