7

ot

ELSEVIER

Future Generation Computer Systems 17 (2001) 1039-1049

FGCS

QUTURE
@ENERATION
@OMPUTER
©YSTEMS

www.elsevier.nl/locate/future

Managing and sharing collaborative files through WWW

Ruey-Kai Sheu?, Yue-Shan Chang®*, Shyan-Ming Yuan?

% Department of Computer and Information Science, National Chiao-Tung University, Hsin-Chu, Taiwan, ROC
Y Department of Electronic Engineering, Ming Hsing Institute of Technology, 1 Hsin-Hsing Road, Hsin-Fong, Hsin-Chu 304, Taiwan, ROC

Abstract

The increasing complexity and geographical separation of design data, tools and teams have demanded for a collaborative
and distributed management environment. In this paper, we present a practical system, the CFMS, which is designed to manage
collaborative files on WWW. Wherever remote developers are, they can navigate the evolutions and relationships between
target files, check in and check out them conveniently on web browsers using CFMS. The capabilities of CEFMS include
the two-level navigation mechanism for version selection, the relationship model that conceptually manages the relationships
between physical files as well as the prefix-based naming scheme that can uniquely identify requested objects. © 2001 Elsevier

Science B.V. All rights reserved.

Keywords: Collaborative file management; Prefix-based naming scheme; Relationship model

1. Introduction

The increasing complexity and geographical sepa-
ration of design data, tools and teams have demanded
for a collaborative and distributed management envi-
ronment. That is, companies need good management
tools to leverage the skills of manipulating the most
talented and experienced resources, wherever in the
company or the somewhere they are located.

Major challenges for collaborative file management
include version control, configuration management,
concurrency access control, environment heterogene-
ity, and the dispersion of developers [1]. Take the
electronic design automation (EDA) paradigm, e.g.,
design teams realize that the number of tools needed
to implement complex systems is ever increasing,

* Corresponding author. Tel.: +886-3-557-2930;
fax: +886-3-559-1402.
E-mail addresses: rksheu@cis.nctu.edu.tw (R.-K. Sheu),
ysc@mhit.edu.tw (Y.-S. Chang), smyuan@cis.nctu.edu.tw
(S.-M. Yuan).

and such tools are generally provided by many dif-
ferent suppliers [2]. At the same time, developers
at different sites would parallelize the developments
with many variants of each component, which might
contain and share many files and many versions of
each file. When controlling versions, developers have
to deal with versions and configurations that are or-
ganized by files and directories. This is inconvenient
and error-prone, since there is a gap between dealing
with source codes and managing configurations. It is
necessary for engineers to be capable of identifying
the items which they are developing or maintaining.
In this paper, we concentrate on issues of developing
a web-based and visualized collaborative file manage-
ment system. The web-based design has advantages of
eliminating the need to install and administrate client
softwares, resolving the cross-platform problems, pro-
viding the accessibility for distributed developers, and
having a uniform and compatible interface for differ-
ent users. Not only does the proposed CFMS have all
the advantages of web-based environments, but also
captures and manages change requests among team

0167-739X/01/$ — see front matter © 2001 Elsevier Science B.V. All rights reserved.

PII: S0167-739X(01)00045-0

1040 R.-K. Sheu et al./Future Generation Computer Systems 17 (2001) 1039-1049

members transparently. Through the proposed two-
level navigation version selection mechanism, CFMS
users can define and choose the configuration of
the developed component dynamically and visually.
Without directly operating the bothersome chaos of
physical files, users only need to manipulate the con-
ceptual relationships between requested files on web.

The rest of the paper is organized as follows. In
Section 2, we discuss the related works about collab-
oration management tools. In Section 3, CFMS sys-
tem models are detailed. Section 4 briefly introduces
the CFMS system architecture. Section 5 shows the
implementation of CFMS. Finally, the conclusion is
given in Section 6.

2. Related works

There are several collaboration management tools
in many paradigms. To illustrate, RCS [3], SCCS [4],
DSEE [5], and ClearCase [6] concern the activities
for cooperative system development. RCS and SCCS
are the most widely known version management sys-
tem. These systems are built on the notion of vault
[7] from where users must extract all of the sources,
even you do not plan to change them. Besides, paral-
lel development will result in even more copies. These
copies are not under the control of configuration sys-
tems and may lead to more problems because they do
not support concurrency control facilities. There are
several later tools, such as CVS [8], built on top of
RCS. These tools improve the management of private
work areas, but do not really solve the fundamental
problem inherent in vaults.

DSEE and ClearCase are tools of the second-
generation configuration management environment,
which advance upon earlier tools for defining and
building configurations. They solve the problems
inherent in vaults through the use of a virtual file sys-
tem. Intercepting native operating system I/O calls,
they hook into the regular file system at user-defined
points by user-specified rules. Intercepting system
calls will tight the private work areas with the cen-
tral data center together and introduce problems
encountered in traditional systems. Additionally, the
rule-based configuration mechanism is too complex
to be used for web users.

To solve problems of old systems we design
the CFMS as a moderate three-tier architecture. A

middle-tier is introduced to decouple the front-end
users and the back-end file system, and simplify
the system complexity. In CFMS, a conceptual rela-
tion model is proposed. Instead of the text-based or
rule-based methodologies used in traditional tools,
front-end users could traverse the relationship graph
to define or navigate configurations The web-based
CFMS will promote the collaboration management
paradigm into the distributed heterogeneous environ-
ment.

3. System model

Three essential system models which compose of
the three-tier model, the relationship model and the
prefix-based naming scheme for collaborative file
management are clearly identified in this section.
These three models are orthogonal and are integrated
to form the building blocks of the CFMS.

3.1. Three-tier model

In comparison with the vault-based and virtual file
design of traditional collaboration management tools,
the three-tier model looses the tight-couple relation
between the client side representations of requested
objects and the back-end file systems. In the front-end,
users of different sites could define configurations for
their private workspaces and use SCCS-like check
in/out operations to access the requested files. In the
middle-tier, the relationships between all the managed
files are constructed and presented by a bi-direction
graph. Front-end users can surf back-end files by
traveling the relationship graph. The third-tier is the
vast file system, which consists of many types of files
generated by different tools. Each physical file could
be uniquely identified and conceptually versioned in
the second-tier. That is, the second-tier hides the com-
plexity of directly manipulating the physical files and
provides higher flexibility and extensibility for CFMS.
Fig. 1 shows the three-tier architecture of the proposed
web-based collaborative file management system.
Front-end browsers show the user-selected configura-
tion graphs, which might share nodes in the central
relationship graph. The middle-tier hides the com-
plexity to manage the relations for the third-tier flat
files.

R.-K. Sheu et al./Future Generation Computer Systems 17 (2001) 1039-1049 1041

Change
Request Front-end
Browsers
- CFMS
-~~~ Web Server
File
] System

Fig. 1. Three-tier architecture of CFMS.

3.2. Relationship model

The CFMS uses logic structures to manage files,
which are organized into a three-level hierarchical
architecture and they are projects, libraries and files
from the highest level down to the lowest one. A
project is the achievement of a specific objective. It
involves several libraries as well as stand-alone files.
A library is a frequently used group of files. The re-
lationship model identifies the correlations between
managed logic structures and classifies them into six
categories: version, build, configuration, equivalence,
hyper-link and sibling. The main contribution of this
paper is to identify and clarify these concepts into
orthogonal, rather than sequential relationships.

Version. Version relationships are composed of
branches and derived items, and can be represented
by two-dimensional graphs. In Fig. 2, the generic

version graph is described. Object A.1 is the root of
the version history for the logic structure A. Object
A.1.2 is a new version of A.1 after the creation time
of A.1.1. The relationship between A.l1 and A.1.2 is
the branch relation. Other edges in the version history
are derived relations. The logic structure A could be
a file, a library or a project.

Build. Build relation stands for the aggregation of
a specific logic structure. Fig. 3 shows the version
graph as well as the build relation of the logic structure
A. The logic structure A is composed of two logic
structures X and Y. Both X and Y could be any logic
structures that are lower or equal to the level of A in
the hierarchy of logic structures.

Equivalence. Equivalence relationships are dif-
ferent representations of a logic structure in differ-
ent development stages or platforms. For example,
a CH+ source program could be compiled as a

derived

Logic

Structure A

Fig. 2. The generic version graph of a logic structure.

1042 R.-K. Sheu et al./Future Generation Computer Systems 17 (2001) 1039-1049

AA A1 A1.1.1
Logic - y
Structure A L o - -
E A1.2 A1.21
EEREEETCTEEETPTTD —]

build

>

X
| -
| ®

Fig. 3. The build relation of the logic structure A.

PC-based or workstation-based object files. These
files are of the same meaning logically, but of differ-
ent representations in the real world. In Fig. 4, we
assume that X.1.Y.1 is created from X.1 and @.Y.1 is
created from X.1.1.1 by tools which take X-versioned
objects as inputs and generate outputs objects of
the same type as Y. Here, edge (X.1, X.1.Y.1) and
edge (X.1.1.1, @.Y.1) are two equivalence relations.
Where the ‘@’ notation is used to represent the prefix
discussed in next section.

Sibling. Siblings are relationships between parallel-
developed versions of a logic structure. In other words,
siblings are parallel version history paths of a logic
structure. Object Y.1, X.1.Y.1 and @.Y.1 are siblings
of Y in Fig. 4. When someone creates an new item
of Y type from X.1.1.1, @.Y.1 (@ =X.1.1.1) is the

Logic = |

AA A11 Al
Logic - : "

Structure A o 1
: Al2 Al21
frenanernnanaas S

equivalence
YA.1 Y111
X.1.Y.?
@Yl @Y.i.1

Fig. 4. The equivalence and sibling relation of the logic structure
A.

most adequate identity of version name than others.
Neither Y.1.1.1 nor X.1.Y.1 is the parent of @.Y.1 for
the derived relation. If we connect the edge (X.1.Y.1,
@.Y.1) or (Y.1.1.1, @.Y.1) with relations rather than
sibling, users will be confused with them.

Configuration. Configuration relationships consist
of snapshots of higher-level logic structures. Fig. 5
illustrates the snapshots of the logic structure A. Ob-
ject A.1 consists of X.1 and Y.1. Object A.l.1 is
composed of X.1.1 and Y.1. Object A.1.2.1 involves
X.1.1.1 and X.1.Y.1.

Hyper-link. Hyper-link relation tights the manipu-
lated files as well as the documentations that describe
the related information of them. In Fig. 5, we shows
the examples of hyper-link relations that record the

Structure A /;’ /

A1 A11 A1.1.1
| Hyper-linked
Web Page/
A1.2 Ay Documents
i—2
.

configuration

Hyper-linked
Web Page
Documentation

Fig. 5. The configuration and hyper-link relation of the logic structure A.

R.-K. Sheu et al./Future Generation Computer Systems 17 (2001) 1039-1049 1043

hyperlinks to web pages describing related informa-
tion, including why they are improved, when the ob-
ject is updated, who did the changes, where did the
author locate, how it is operated, etc.

3.3. Prefix-based naming scheme

Engineers must be able to identify the items which
they are developing or maintaining. In particular, each
item must have a unique name and the name must
be meaningful. In CEMS, the proposed prefix-based
name has the meaning of the evolution of the item,
the logic structure type and name, and the correspond-
ing development stages. The prefix-based name is pri-
marily used to help user to traverse and navigate the
multi-dimensional relation graph. It can also be used
for text-based query for version selection based on
logic structure names.

The followings are the productions for version name
resolution, where () stands for non-terminals and oth-
ers are terminals. Version names can be abstracted as
a prefix concatenating with the relationship name. To
be specific, the version name of a new item for the
derived relation will be the prefix, the original old ver-
sion name, concatenating with a derived name. The
prefix-based naming scheme gives each relationship a
unique name, respectively. Because the prefix-based
naming scheme gives a unique identity for each or-
thogonal relation, the version name for each object
will guarantee uniqueness even versioned objects have
the same prefix.

The BNF of the prefix-based naming scheme:

(version name) — (prefix).(relation)

(relation) — (equivalence)l(derived)|(branch)

(branch) — .(number of branches + 1)

(derived) — .1l(derived)

(equivalence) — (prefix).(base).(number of
siblings 4 1)

(prefix) — (base).(derived)l|(base).(branch)|
(version name)
(base) (logic name)l(logic name).1

N

(logic name) P_(name)|L_(name)|

F_(name)|F_{name) _(stage)

(stage) — (number of development steps+
number of platforms)
(name) — string of character set

excluding the dot

4. System architecture

The CFMS is a three-tier architecture, as shown
in Fig. 6. The front-end user interfaces are WWW
browsers. Through HTTP, users download the Java
Applet into the client sites. The Java Applet is re-
sponsible for drawing the partial relationship graph
based on configuration for users. The reason why
Java Applet is used here is that current SGML-based
standard markup languages are not suitable to draw
the complex multi-dimensional relationship graph. In
the middle-tier, the CFMS is composed of relation-
ship manager, query manager, concurrency control
manager and the resource manager. The relationship
manager administrates the relations between collab-
orative files. The query manager provides facilities
for text-based query. Users can submit search terms
to select the logic structures that satisfy the search
criteria. Concurrency control manager is responsible
for the management of parallel developments on tar-
get files. CFMS supplies the SCCS-like check in/out
operations to access files. It allows multiple read re-
quests for a specific file at a given time. Only the user
who gets the write lock can update that file. Resource
manager controls all the physical files through the
physical file I/O system calls.

5. System implementation

In this section, we discuss the most significant
portions, which represent the major prominent dis-
crepancies between CFMS and other collaboration
management tools.

5.1. Logic structure

Logic structure is the main idea to manage the logic
relationships of files. In CFMS, a database is used to
keep the mapping between relation graph and physical
files, which could be distributed in different locations.
That is, isolating the logic relations from the vault also
provides the potential for our further development of
CFMS to a distributed management fashion instead of
a centralized one.

In CEMS, the build and configuration relations are
kept in container objects. A container is composed of
tree objects. Each tree comprises many node objects.

1044 R.-K. Sheu et al./Future Generation Computer Systems 17 (2001) 1039-1049

Web e T ¥ s) e
Browsers e e =
Site A Site B SiteC
User A User B UserC
o
E
~ T Lz
WWW Server
Relationship Query
Collaborative Manager Manager
File Manage
System
Concurrency Control Manager
Resource Manager
Q
.] e = .
g
2
)
File System

Fig. 6. CFMS system architecture.

Container
Vector Build_relation
Vector Configuration_relation
Vector trees
String item_path

contains +1 Q *+1 contains
1.
+1. Node
Node Parent
Tree +1 has +1_* |Vector Child
Vector nodes > Vector Hyperlink_relation
Vector Equivalence_relation

String item_path

Fig. 7. Class diagram of logic structures.

R.-K. Sheu et al./Future Generation Computer Systems 17 (2001) 1039-1049 1045

Every edge in a tree represents the version and sibling
relationship. Each node plays the role of a versioned
item. In addition, each node keeps the equivalence re-
lationships between itself and other versioned items.
Each node also keeps hyperlinks referring to audit-
ing documents. The path of configuration relationships
will be retrieved and shown recursively from node to
node in a container. Besides the version and build re-
lationships, other relationships will be shown on the
web browser on demand.

The class diagram of Fig. 7 shows the relationships
between container, tree and node classes. In the real
cases, there must be some structures used to keep the
information about their inner ingredients, such as the
physical path in the storage. Generally, those structures

are projects or libraries, which could be represented
as a container node in the relation graph. A container
can involve other container nodes. That is, in some
project, a versioned library could be a root node of a
tree and it could be an internal node of a tree in an-
other project. The container and tree classes are also
used to keep the information of version, build, config-
uration relationships. On the other hand, all the phys-
ical stand-alone files are treated as a node structure
in the relation graph. The mapping between physical
files and the logic structures in CFMS can be various
and it is based on users’ criterion.

We have implemented a prototype of the CFMS.
The following figures show the front-end GUI while
using CFMS to navigate or define the configuration for

i =10 x|
Eile Edit View Go Communicator Help
L d O F 3 R . om o & O @ N
| Reload Home Search Netscape Print Security Shop
7wk Bookmarks £ Go toz] ~| @97 Whatss Related
i ﬁlnstam Message & Weblail = Radio [H) People B Yellow Pages Download Calendar (4 Channels
= |
Query: |2 ok | [pros B
.- derived
Configuration Proj A .1 1 .'M 9 1414 .1 1411 “q 11411
- build 11112 4.4.4.4.2.1
Configuration List b re g
= ranc
FileB1.1.1 a i dt et adaaeeT
LibC1.1.1.1 FieB ¢—a—e——
LibD1.111 1.1.1.4.2.1 :
________________ configuration
S e Lib C ‘1.1 .1.1.1 14.1.1.1.1 1114141
File E(1.3.1) AL A2
File F(1.1.1.1)
Menu Lib D '1.1 144 14,11 14144
T2 File [{1.2.1.2)
Logout File J{1.1) |
ﬂ
o == AppletApplet! running de Jdb AP E3) 2

Fig. 8. CFMS clients traverse the relationship graph for configuration.

1046 R.-K. Sheu et al./Future Generation Computer Systems 17 (2001) 1039-1049

FR [=FY
File Edit View Go Communicator Help

L4 ¥ A A w3 & B @
Reload Home Search MNetscape Print Security Shop

of “Bookmarks A& Location:|file:fp’fleProgram Files/VisualCafe/Projects/check-ont/antogen_version html
Alnstant Message 5 WebMail Radio People [H Yellow Pages B Download Calendar (&f Channels

-] @I What's Related

Query: |4

Check-out Proj A o .

a4 11111 145140

Check-out List

File B 1.1.1 _ it
Lib C1.11.1 FileB e

111421

LibD1.1.1.1.1

reset remove

Lib C o= ~—

fitd2

441421

1.1.1.1.1.1.1

1.1.1.1.1 1.9.4.1.41

Menu

1.1.1.1.1.1.2

LibD e

Logout

File I{1.2.1.2)
File J(1.1) 5

e % 92 @ N2

Fig. 9. CEMS clients traverse the relationship graph to check out files.

a collaborative purpose. In the prototype, a two-level
navigation mechanism is designed for version selec-
tion. The first level stands for the initialization for ver-
sion selection. Users can input a search term to get
all the logic structures that contain the term in their
version names. All logic structure will be returned
by default. The second level is the visualized navi-
gation by traversing the relation graph returned from
the first level search. Because the relation graph is
bi-directional, users can traverse the version graph in
any valid direction.

Fig. 8 describes that a project manager is defining
the configuration of version 1.1.1.1.2 for Project A.
The manager first submits a query term “A” to search
Project A. Then, he traverses the version graph of
Project A. The selected items for version 1.1.1.1.2 are
listed in the configuration list in the left side. Fig. 9
is an example to check out files. A user first submits

a query term “A” to search any logic structure that
contains “A” in its logic name. Then, the user selects
Project A from the list box in the corner of the right
side. The check out list shows items which he wants
to check out. Fig. 10 describes the case to check in
files. While users get into the check in menu, all the
checked out items are shown on the browser by default.
Users can choose items to check into the server-side
file system.

5.2. A sample scenario

In this section, a scenario for using the CEMS is
suggested. All users in CFMS system are cataloged
into three roles. As shown in Fig. 11, they are pub-
lishers, subscribers and committees, respectively. A
publisher is a user capable of checking in some docu-
ments. Generally speaking, after completing of a job,

R.-K. Sheu et al./Future Generation Computer Systems 17 (2001) 1039-1049

Eile Edit Mew Go Communicator Help
: 7 R S~ E

£ o)
I Reload Home Search Netscape Print Security Shop

j w§ Bookmarks & Location:lfile:ﬁ.t’lePxogram Files/VisualCafe/Projects/check-infantogen_version. html
7 B Instant Message [WebMail (B Radio [Pecple (& Vellow Pages [Download [B Calendar (- Channels

1047
(=]

- @7 What's Related

Applet Applet] running

B
Query: | 0)
Check-in File B .1_1 111 1.1 11111
1.4.41.2 144424
Check-in List i
File B 1.1.1
Lib C .1'1 ““‘“ 1.1.1.1 ‘11.1‘1‘1 1.1.4.4.1.1 1.4.11.1.1.4
File E{1.2.1) 1144412
File F(1.1.1.1)
reset remove Lib D .1-1 1.1.1 .1.1.1.1 e 1
i File 1{1.2.1.2)
File J(1.1)
Menu
Logout |
=
i Y AP B3

Fig. 10. CFMS clients traverse the relationship graph to check in files.

Private
Document
Repository

Status
Notify

Privately
Publish

Request

Submit /
Update

Revise

Grant

Retrieve

Status
Notify

Fig. 11. A CFMS scenario.

Status
Notify

Approval
I Classify
I Publish
I Update

Public
Document
Center

1048 R.-K. Sheu et al./Future Generation Computer Systems 17 (2001) 1039-1049

a publisher will check documents which are related
to that job into the public document center. The pub-
lic document center is conceptually a unique view for
all users and could be separated physically at several
different disks. A subscriber is a user who checks out
documents from public document center or is inter-
ested in documents. A committee is a user who has
the right to decide whether a document or file is suit-
able to be checked into the public document center. In
addition, the committee must define the access levels
based on the user roles as well as documents.

Assume that in an enterprise, there are two types
of view for navigating all documents or files. That is,
users can search the interested files from the document
relationship graph from two different viewpoints. One
is presented by organizational tree view and the other
is shown by catalogs of domain knowledge or projects.
To complete a mission, users usually need use docu-
ments to help them analysis its complexity, and fur-
ther find solutions for it. Consequently, they need to
get some documents from the public document center
or other employees’ private working spaces. In the be-
ginning, a user is playing the role of a subscriber and
he would try to get useful documents through the con-
ceptual view of document group using the two-level
navigation mechanism. Then he checks out the inter-
ested documents from the public document center or
others’ private working spaces based on the access
levels defined by committees. If a document is stored
physically at users’ private disks, the subscriber must
get the grant from the publisher or document owner.
Besides, if a newest version of a document is pub-
lished or checked out again, the system will notify
subscribers the update information automatically. Af-
ter getting the documents, the user will extend, revise
or renew them in his private working space. After the
modification of creation of documents, the user can
change his role from a subscriber to a publisher and
publish the document to the public document center
or just at his private working space. Committees will
review the published documents and approve the qual-
ified ones.

In this scenario, all the documents or files are
conceptually organized as a unique view and can be
physically stored in a public document center or dis-
persedly in several private user working spaces. After
finding the interested documents or files, users check
out documents from physical storages. Then, users can

do some changes to those files downloaded previously
and check them into the CFMS storages. If a new ver-
sion of document is checked into the CFMS, a correct
position for it will be generated to the unique concep-
tual view simultaneously. If a new file is checked into
CFMS, commiittees have the responsibility to organize
the document to a pertinent position in proposition to
the unique document relationship graph.

6. Conclusion

In this paper, the CFMS, a web-based collabora-
tive file management, is proposed and implemented
to demonstrate its feasibility. The relationship model
clarifies the relations between collaborative logic
structures, which represent physical files. Integrating
with the prefix-based naming scheme, the two-level
version navigation provides a visualized and dynamic
mechanism for version selection on WWW.

Acknowledgements

We are grateful for the many excellent comments
and suggestions made by the anonymous referees. We
also thank the Ministry of Education of the Republic
of China for their financial support through the project
titled as “MOE Program of Excellence Research” and
numbered as 89-E-FA04-1-4.

References

[1] U. Asklund, Distributed development and configuration
management, Licentiate Thesis, 1999. ISSN 1404-1219.
http://www.cs.Ith.se/~ulf/lic.html.

[2] L. Benini, et al., Distributed EDA tool integration: the PPP
paradigm, in: Proceedings of the International Conference on
Computer Design, 1996, pp. 448-453.

[3] ET. Walter, RCS — a system for version control, Software
Pract. Experience 15 (7) (1985) 637-654.

[4] M.J. Rochkind, The source code control system, in: IEEE
Transactions on Software Engineering, SE-1, No. 12, 1975.

[5] W. David, Methods and tools for software configuration
management, Wiley Series in Software Engineering Practice,
Wiley, New York, 1991, pp. 89-108.

[6] ClearCase Concepts, Atria Software, Inc., Natick, MA, 1993.

[7] ET. Walter, Configuration Management, Wiley, New York,
1994.

R.-K. Sheu et al./Future Generation Computer Systems 17 (2001) 1039-1049 1049

[8] CVS — Concurrent Versions Systems, 2000. http://www.gnu.
org/software/cvs/cvs.html.

Ruey-Kai Sheu was born on August
29, 1974 in MiauLli, Taiwan, Republic
of China. He received his BS and MS
degrees in computer science from Na-
tional Chiao-Tung University in 1996 and
1998. He is now a PhD student ad-
vised by S.M. Yuan. His research in-
terests include distributed system design,
database, object-oriented technology, and
WWW technologies.

Yue-Shan Chang was born on August
4, 1965 in Tainan, Taiwan, Republic of
China. He received his BS degree in elec-
tronic technology from National Taiwan
Institute of Technology in 1990 and the
MS degree in electrical engineering from
the National Cheng Kung University in
1992. Currently, he is a candidate of PhD
in computer and information science at
National Chiao-Tung University. His re-

search interests are in distributed systems, object-oriented pro-
gramming, fault tolerant, and Internet technologies.

Shyan-Ming Yuan was born on July 11,
1959 in MiauLi, Taiwan, Republic of
China. He received his BSEE degree from
National Taiwan University in 1981, MS
degree in computer science from Univer-
sity of Maryland, Baltimore County in
1985, and PhD degree in computer sci-
ence from University of Maryland, Col-
lege Park in 1989. Dr Yuan joined the
- ' Electronics Research and Service Orga-
nization, Industrial Technology Research Institute as a Research
Member in October 1989. Since September 1990, he had been an
Associate Professor at the Department of Computer and Informa-
tion Science, National Chiao-Tung University, Hsinchu, Taiwan.
He became a Professor in June 1995. His current research inter-
ests include distributed objects, Internet technologies, and software
system integration. Dr Yuan is a member of ACM and IEEE.

