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Abstract: Space-time Viterbi equalisation for wireless communication has received much interest 
recently. The authors consider the associated signal and receiver design for improved transmission 
performance at high baud rates. Three techniques are proposed; two concern signal design and one 
concerns receiver design. First, special kinds of sequences called the min-norm training sequences are 
used for channel estimation. These sequences can minimise the mean-square estimation error in 
uncorrelated AWGN environments. Secondly, the authors consider using unequal power levels for 
the training signal and the data signal, with a higher power level for the former. They derive a 
mathematical expression for the optimal power ratio. Thirdly, a channel estimation method using 
reduced channel length is proposed. This method can reduce the channel estimation error in low SNR 
environments. Small-scale Monte Carlo simulations are conducted to investigate the performance 
gain of these techniques in wireless transmission. The results show varying degrees of advantage under 
different conditions. 

1 Introduction 

In the area of wireless communications, there has been 
increasing interest in space-time. signal processing [ 1, 21. 
Space-time processing is able to enhance the received signal 
subject to multidirectional, multipath propagation better 
than time-only processing. It is also able to separate signals 
travelling in different spatial directions better, facilitating 
reduced interference in a multiple-access system. These 
properties are of increasing importance in view of the 
increasing transmission rates of new wireless systems and 
the expected growth in wireless traffic. 

Among the space-time processing schemes, space-time 
Viterbi equalisation has been subject to much recent 
research. In this paper, we consider signal and receiver 
design for space-time Viterbi equalisation in high-speed 
nonspread-spectrum wireless communication and evaluate 
the resulting performance using computer simulation. 
Fig. 1 shows the structure of the transmission system, 
where the space-time Viterbi equaliser is composed of a 
vector channel estimator and a vector-channel Viterbi 
sequence estimator. The system employs a training 
sequence for the equaliser's use, but the receiver does not 
have to know the received signal's direction of arrival 
(DOA) or the array manifold vector. 

We propose three techniques to improve the transmission 
performance under the above receiver architecture. Two 
concern signal design and the third concerns receiver 
design. First, we consider the design of the training 
sequence for channel estimation. A design that minimises 
the mean-square estimation error is presented. Secondly, 
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we consider using unequal power levels for the training 
sequence and the data signal to effect a more accurate 
channel estimate for the benefit of data transmission per- 
formance. Thirdly, we consider the use of reduced channel 
lengths in channel estimation and Viterbi equalisation. We 
investigate the relationship between tap choice and estima- 
tion performance, and we demonstrate that reduced-length 
channel estimation can be advantageous especially in low 
SNR environments. 

As shown in Fig. 1, let ai be the ith transmitted (base- 
band) symbol, p(t)  be the pulse shape, q(t) be the impulse 
response of the receiver's front-end filters, M be the 
number of elements in the receiver's antenna array, and 
b(t) be the vector channel impulse response. We have 

M 

%=-CO 

00 

a=-m 
where T is the symbol period and ~ ( t )  is the combined 
impulse response of the pulse shaping filter, the vector 
channel, and the receiver's f rontad  filters. Sampling of 
~ ( t )  yields 

where 
- z ( k )  = Ra(k) + n ( k )  (2) 

R = [. . . , r (kT) , r ([k  + 1]T),r([k  + 2]T),  . . .] (3) 

(4) 

i.e. the overall channel impulse response matrix, and 

where ' denotes the matrix transpose. For convenience, we 
let each row of R have unit energy; that is, the sum of 
square values of each row of R is equal to one. 

Consider tentatively the transmission of the training 
sequence alone. Let the training sequence be of length L 
and start at time 1. Let q be the length of the sampled 
vector impulse response r(kT), that is, q is the number of 
columns in R. In addition, assume for simplicity that q 5 L. 

- a(k) = [.. .)ak,ak-l)ak-2,. . . I '  
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Then the centre section of the received data, where there is 
full convolution between the overall channel impulse 
response and the training sequence, has length L - q + 1 
and starts at time q. And we may express it in matrix foim 
as P I  

X = R G + N  (5) 

(6) 

where 

x = [z(4),:(4 + 1)) * * ,Z(-ql 
N is a matrix of noise samples, and G is the training sym- 
bol matrix given by 

(7) 

(8) 

1 1  G =  [s:,&..)9,1 

si = [.q-i+l, q q - - i i - 2 ,  * ’ * , .L-i+l] 

with 

We assume the noise into the different antennas to be zero- 
mean white, uncorrelated, and with an identical variance 
02. 

2 Min-norm training sequences 

Let fi denote the channel response estimate. Consider the 
least-squares estimation of the channel response from the 
training symbols as 

(9) 

where l / . l l F  denotes the Frobenius norm [3]. Setting the 
derivatives with respect to the unknowns to zero, we obtain 

ii = x ~ ~ ( ~ ~ ~ 1 - l  (10) 
where the superscript H denotes the Hermitian transpose. 
Thus the sum-squares error in channel estimation is given 
bY 

ilk - ~ 1 1 %  = II(RG + N ) G ~  ( ~ ~ ~ ~ 1 - l -  R I ~ $  
= I J N G ~ ( G G ~ ) - ~ J J ~ ,  (11) 

It is shown in the Appendix that minimisation of the mean- 
square estimation error is equivalent to minimisation of the 
following quantity: 

where 0;: are the singular values of G. For convenience, 
term the quantity in eqn. 12 the normalised error norm and 
term sequences minimising it the min-norm sequences. 

Note that, for any sequence, the normalised error norm 
can be reduced by simply increasing the sequence’s energy. 
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: space-lime Viterbi equaliser 

This trivial implication is certainly not what the above 
result is useful for. Therefore, in actual use of the result, we 
should minimise the normalised error norm subject to an 
energy constraint on the sequence. 

An interesting question is whether some of the well 
known kinds of sequences in communications, such as the 
maximum-length (ML) sequences [4], would have the min- 
norm property or be nearly so. While a theoretical deriva- 
tion is not conducted in this work, the simulation results 
presented later show that ML sequences can yield signifi- 
cantly higher estimation error than a sequence which mini- 
mises the normalised error norm. ML sequences are also 
less flexible in their lengths, which can only be equal to 2’” - 
1 where n is an integer, whereas a min-norm sequence can 
be of any length. 

For want of more precise characterisations of the min- 
norm sequences, they need to be found by an exhaustive 
search over all sequences of the considered length for the 
considered modulation method. A nonexhaustive search 
may be substituted to obtain suboptimal training sequences 
when the number of possible training sequences makes 
exhaustive seasch infeasible. Note that the search is 
conducted offline at the designing stage of the transmission 
system. It does not affect the computational complexity of 
the transceiver in actual signal transmission. 

The channel estimation computation (eqn. 10) requires 
matrix inversion, in principle. If needed to be carried out in 
real-time, its computational complexity could be a concern 
in practical implementation. However, since the matrix that 
needs be inverted is solely a function of the training 
sequence and hence is known in advance, its inverse can be 
precomputed and stored. Indeed, the whole multiplicative 
factor GH(GGH)-’ can be computed in advance. Thus 
matrix inversions do not constitute a part of the per-sample 
computational complexity, but only some matrix multipli- 
cations. The reduced-length channel estimation discussed 
later is similar. 

An independent study on training sequence design was 
reported in [5]. There the authors concentrated on single- 
antenna reception and (primarily) BPSK modulation. Our 
study also considers QPSK. Numerical results show that, 
for transmission systems employing QPSK modulation, 
BPSK-based min-norm sequences may yield more noisy 
channel estimates than QPSK-based ones. 

3 
signals 

Wireless communication systems are often designed to 
transmit a predefined sequence periodically for purposes of 
synchronisation and/or equaliser training. In usual system 

Unequal power levels for training and data 
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design, the percentage of time occupied by the training 
signal is much smaller than that by the data signal. Since 
the training signal determines the accuracy in channel esti- 
mation and thereby the subsequent equalisation perform- 
ance for the data signal, it appears that by increasing the 
relative power level of the training signal in comparison to 
that of the data signal (with the total transmission power 
kept the same), we may effect a better channel estimation 
performance and consequently a better data transmission 
performance. 

To investigate the possible gain with this arrangement, let 
the number of data symbols be D and let Xd denote the 
received data signal matrix. Then we have 

Xd=RS+Nd (13) 
where S is the matrix of transmitted data and Nd is the 
associated matrix of additive noise samples. S is of Toeplitz 
form as 

1 so 51 5.2 . . . I  
The Viterbi algorithm for maximum-likelihood sequence 
estimation (MLSE) [6] examines, in principle, each possible 
transmitted data sequence and computes its associated 
channel output in the absence of noise using the estimated 
channel response, and selects the sequence whose associ- 
ated channel output is closest to the actually received data 
signal. In uncorrelated AWGN channel transmission, 
therefore, it is de$rable to minimise the mean-square error 
between Xd and RS, the latter being the estimated received 
signal in the absence of noise with S as the channel input. 
Now since 

x d  = Rs+RS+Nd-kS = Nd-NGH(GGH)-'S 
(15) 

we have 

1 X [Nd - NGH (GGH)-'S] 

= tr NdNf - NdSH[(GGH)-'IHGNH 

- N G ~  ( G G ~ ) - ~  SN: 

+ NGH ( GGH ) -I SSH [ ( GGH ) -I] GNH 

{ 

(16) 
Assume that the transmitted data are zero-mean, i.i.d., and 
with variance 02. Then 

E{ l l x d  - k,sl/; = oh!02 
+ DMa2a2 + tr{ GH ( GGH)-' [ ( GGH) -'I G }  

where M is the number of array elements and d the vari- 
ance of noise samples. 

Let O: denote the mean-square value of the training 
symbols. For convenience, define 

a 1  GN = -G 
at 

= DMa2[1  + 0 2 .  tr{(GGH)-'}] (17) 

(18) 

that is, GN is the training data matrix formed of the 
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normalised training sequence. Then 

E{IIXd-kS11~}=DMf12 I++ . tr{(G,Gz)-'} 1 
(19) 

1 :: 
Therefore, if we were only to minimise the the mean-square 
error, then we should let o$/$ approach zero, or equiva- 
lently, let all the power be put into transmitting the training 
data. However, the error rate of Viterbi equalisation is not 
~nimised  by minimising the noise, but by minimising the 
noise at a given signal level, or equivalently by maximising 
the SNR given by c$/E{IIXd- k&'l$}. 

To proceed, let the total transmission power over a frame 
of data consisting of L training symbols and D data 
symbols be K, i.e. Lo? + D o 2  = K. Further, let g be the 
ratio of the power of the training signal to that of the data 
signal, i.e. 

Then 
(20) 

a 
g = a,"/o; 

K g 2  - ~ 

d - L g + D  
and consequently 

2 
fJ,f 

E{ l l X d  - k s l l $ }  
K 

(Lg 4- D)DMa2 [I 4- $ . tT{(GNG;)-l}] 
- - 

(22) 
Straightforward calculus leads to the optimal g as 

g = /; . t r {  (GNGc)- l}  (23) 

In most systems, D/L is approximately between 5 and 15. 
As an example, a (nonexhaustively searched) min-norm 
training sequence for QPSK modulation that we obtained 
has tr((GfiNH)-l) = 0.3383. If D/L = 10, then the optimal 
g is about d(l0 x 0.3383) = 1.8393. In other words, the best 
performance is obtained when the training signal power is 
2.65dB larger than the data signal power. 

4 Reduced-length channel estimation 

The complexity of Viterbi equalisation grows exponentially 
with the length of the model channel response used in the 
equaliser. Therefore, it is desirable to keep the length of this 
response short. One way to achieve it is to shape the 
response for a designed length through proper filtering 
[7, 81. Some propose considering only the stronger taps in 
the Viterbi MLSE, where the selected taps need not be 
contiguous in time [9]. But the discontinuity in tap loca- 
tions makes the control mechanism in the Viterbi algorithm 
somewhat complicated. In this work, we let the model 
channel response in the Viterbi equaliser comprise a contig- 
uous segment of taps, and we investigate the implication of 
tap choice on receiver performance. 

Employing the channel models of [lo], we find that most 
of the discrete mobile channels at a 106-baud symbol rate 
will have over 85% of the channel response energy con- 
tained within four taps. In fact, we find that, in low SNR 
environments, estimation of channel responses using 
smaller channel lengths may result in a smaller estimation 
error than using larger channel lengths. This is shown in 
the following. 
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To begin, let d be the length of the reduced-length chan- 
nel response estimate. We shall consider a delayed decision- 
feedback sequence estimation architecture [12]. Let J be the 
length of channel response used in the Viterbi equaliser 
part of the sequence estimator. Thus J I d. We seek to 
position these J taps where the channel response contains 
maximum energy. More precisely, let k be the least-squares 
estimate of the full-length channel response as before. Then 
choose dl according to 

where f i  is the tth column of R .  Form i: out of the dlth to 
the (dl + d - 1)th row of G. Then compute 8 as 

By a similar derivation to that in Section 3, we can show 
that the Frobenius norm of the noise error is equal to 

1 d 

i=l 

where Ci are the singular values of G .  Let q and Ci be 
arranged in descending numerical order, that is 

In11 > In21 > * > 1041 (30) 

15'11 > 1821 > q .  a > I c d l  (31) 
Then by the interlacing theorem [l 11, we have 

[nil > 18il > Inz+q-dl ,  i = 1,. . . ,d  (32) 
thus 

d 

i=l i=l 
(33) 

From the above discussion, when the SNR is low (larger 
noise power), using a reduced number of taps for channel 
estimation can be better. On the other hand, in high SNR 
environments (noise power is small compared to error in 
channel truncation), the noise error will not dominate the 
total estimation error and reduced-length channel estima- 
tion may not be better. Simulation shows that in the SNR 
range of 1-9 dB, reduced-length channel estimation often 
performs better than estimation with nonreduced length, 
especially when the normalised error norm associated with 
the training sequence matrix is sigmficantly greater than the 
minimum. 

which is the estimated channel with reduced channel length. 
To see the amount of estimation error in 8, define d2 4 

q - (dl + d - I) for convenience, where q is the number of 
columns in R. Since X = RG + N 

k = (RG + N)GH(GGH)-'  

o d i - 1  

= R [ y ] (GGH)-l 

5 Simulation results 

g q -  dz  + 1 I iq J 
(26) 

where 0, denotes a k-row null matrix of appropriate 
number of columns and gi - is the tth row of G. Therefore 

(27) 

where 

error = R 

We name the first RHS term the model error and the 
second the noise error. The model error comes from the 
truncation of channel response length, and the noise error 
is from the additive noise. When the energy of the trun- 
cated channel taps is much smaller than the noise power, 
the noise error constitutes the dominant error term. 

We can simulate space-time Viterbi equalisation. More 
exactly, we employ the delayed decision-feedback sequence 
estimation architecture [ 121. The receiver's antenna array 
contains three elements spaced one carrier wavelength 
apart. The length of channel response estimate used in the 
MLSE part of the receiver is four taps and that for deci- 
sion-feedback equalisation (DFE) part is one tap, whether 
the channel is estimated with or without reduced length. A 
reason for using a small 4-tap channel length in the MLSE 
is that, as mentioned in Section 4, this length is enough to 
capture the majority of the transmitted signal power for 
most of the channels we are considering. In addition, the 
number of states in the Viterbi equaliser would be large if a 
large channel length is used. The branch metric for the 
Viterbi equaliser used in our simulation is the squared error 
between the received signal samples and the convolution 
output of the estimated channel response with the data 
sequence corresponding to this branch. 

In general, if the tap number of the channel employed in 
the MLSE is J and the modulation is P-ary PSK, then the 
number of states is @-le The number of branch metric 
computations is p/-2 per state per sample. We consider 
QPSK modulation, hence P = 4. Since we have J = 4, the 
number of states is 64 and the number of branch metric 
computations is 16 per state per sample. And the total 
number of branch metric computations per sample is thus 
1024. 

To evaluate the performance of the proposed techniques 
on the above space-time Viterbi equaliser, 100 channel 
responses are generated according to the model of [lo]. The 
channels are time-invariant for simplicity in simulation, 
although the theory presented so far in this paper does not 
make that assumption. The average performance of differ- 
ent techniques over this set of channels is obtained. The 
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model of [ 101 covers different propagation environments, 
including urban, suburban, and hilly. The channels gener- 
ated have RMS delay spreads between about 1 and 10 
microseconds. The QPSK signals (a, E {fl ,  kj>) are trans- 
mitted at 1 Mbaud with raised-cosine pulse shaping with a 
= 0.75. We assume perfect carrier and timing recovery. To 
facilitate computation, in our simulation the channel 
impulse response matrix R is truncated to contain 99.9% of 
the power in the overall channel response @T) (see Sec- 
tion 1). 

First, consider the condition where the training signal 
and data signal have equal power. We examine the per- 
formance of different training sequences and the effects of 
the length of channel response estimate. Consider using a 
15 x 15 training symbol matrix G. To fill it takes 29 train- 
ing symbols. Disregarding the sequences which are different 
by a constant scaling factor of -1 or kj, we have 428 possi- 
ble QPSK training sequences, which are too many to be 
searched exhaustively for the min-norm one. By nonex- 
haustive search, we find that the following sequence has a 
low normalised error norm (equal to 1.058): 
1,-l,-j, -1, -l,-l, - j ,  l,l,-j, -I, -1, 

1, --1!j, 1,j, -1,&i,j, j ,  -1, - j ,  -1, -L&i,j, - j , j  
For ease of reference, this sequence will be referred to as a 
quasi-min-norm sequence. In comparison, the normalised 
error norm associated with the min-norm BPSK sequence 
(obtained by exhaustive search) is 1.152. 

SNR, dB 
Fig. 2 Nowalised mean-square chnnel estimation error (3-antenna aver- 
age) fvan using dgerent twining dequences with or without reduced-length esti- 
mation 
3 antennas, 100-channel average, IO4 symbols per channel run 
- 0- 
-0- 
- U- 
-%- 
- X- 
-X- 
- U-. 
-0- 

ML15 training at non-reduced length 
MLlJ training at reduced length 
norm = 10 812 training at non-reduced length 
norm = 10.812 training at reduced length 
norm = 1.614 training at non-reduced length 
norm = 1,614 training at reduced length 
norm.: 1.058 training at non-reduced length 
norm = 1.058 training at reduced length 

Fig. 2 shows some numerical results on the mean-square 
channel estimation error, normalised with respect to chan- 
nel transmission gain, using different training sequences 
with reduced or nonreduced channel lengths. Besides the 
quasi-min-norm training sequence, we also considered a 
MI. se uence of period 15 (the generating polynomial 

as well as two arbitrarily chosen non-min-norm training 
sequences. In using the ML sequence it was duplicated 
once to make it long enough to fill the training symbol 
matrix. The ML sequence-based training sequence has the 
advantage of low computational complexity, because the 
entries in @(GGH)-] are either 0 or 1/8. The normalised 

being D I e D e 1 and the binary symbols mapped to &I) 
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correlation between different rows of G are very small, 
being equal to 1/15. The associated normalised error norm 
is equal to 1.875. The normalised error norms associated 
with the two arbitrary sequence matrices are 1.614 and 
10.812, respectively. The results in Fig. 2 confirm the supe- 
riority of the min-norm training sequence over the training 
sequences of greater normalised error norms in non- 
reduced-length channel estimation. They also confirm the 
superiority of reduced-length channel estimation over non- 
reduced-length estimation in a IOW SNR environment, 
especially when the training sequences are associated with 
greater normalised error norms. The quasi-min-norm 
sequence performs closely in non-reduced-length and 
reduced-length estimation, and the performance is close to 
that of reduced-length estimation of the ML sequence and 
the sequence with norm 1.614. 

Some results on the average symbol error rates (SERs) 
are shown in Fig. 3. We see (not too surprisingly) increas- 
ingly significant improvement by using the quasi-min-norm 
training sequence compared to training sequences with 
increasingly greater normalised error norms. In addition, in 
the case of a non-min-norm sequence (such as the sequence 
with norm 1.614), the SER performance with reduced- 
length channel estimation can be significantly better than 
non-reduced-length estimation (up to about 0.7 dB in this 
case). 

10.41 1 I I 1 I I I I 
1 2 3 4 5 6 7 8 9  

SNR, dB 
Fig.3 Perforinance of d@mt training sequences with or without reduced- 
length channel esthation 
3 antennas, 100-channel average, lo4 symbols per channel run 
-#+- sequence norm = 10.812 at reduced length 
-.O-. sequence norm = 1.614 at non-reduced length 
-0- sequence norm = 1.614 at reduced length 
-.O-. sequence norm = 1.058 at non-reduced length 
-0- sequence norm = 1.058 at reduced length 

Next consider the effect of different power levels for the 
training signal and the data signal. We simulate several 
cases of power ratios between 0 and 5dB. Fig. 4 shows the 
resulting average SER values at SNR = 5dB, employing 
the quasi-min-norm training sequence and the sequence 
with norm 1.614. We see that the numerical data for the 
quasi-min-norm sequence verify our earlier theoretical 
result in Section 3 for the simulated conditions, that a 
power ratio of 2.65dB is nearly optimal. For the sequence 
with norm 1.614, the theoretically optimal power ratio is g 
= d(10 x 0.35) = 1.8708, or 2.72dB. The numerical data are 
again corroborative. Figs. 5a and b further compare the 
resulting average SERs using equal and unequal training 
and data signal power levels, at different SNR values and 
with reduced-length channel estimation, for the quasi-min- 
norm training sequence and for the training sequence with 
norm 1.614. Also shown for comparison are results from 
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non-reduced-length channel estimation with equal training 
and data signal power. The use of unequal power levels 
yielded consistently better performance. 

O . O l L - - - I  ’ ‘ ’ ’ ’ ’ ’ ‘ 
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

Transmission pesjixwuznce ut d@?rent power rutio,Y between the twin- 
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Fig. 4 
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SNR, dB 
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Fi .5 Trmiss ion  peformunce of’ dgerent schemes ut ddfrent SNR 

3 antennas, 100-channel average, lo4 symbols per channel run 
a With quasi-min-norm training sequence (normalised error norm = 1.058) 
-0- non-reduced length, traddata symbol power ratio = OdB 
-X- reduced length, traiddata symbol power ratio = OdB 
-0- reduced length, trainidata symbol power ratio = 2.65dB 
b With training sequence of normalised error norm 1.614 
-0- non-reduced-length, trainidata symbol power ratio = OdB 
-X- reduced-length, traiddata symbol power ratio = OdB 
U reduced-length, trainidata symbol power ratio = 2.72dB 

V 2 e S  

We have not investigated in great detail the performance 
of the proposed techniques in co-channel interference 
(CCI). Preliminary findings indicate that, for single-user 
detection with CCI treated as additive noise, the effect of 
CCI is similar to that of uncorrelated AWGN. More exten- 
sive results await further work. 

6 Conclusions 

We have considered signal and receiver design for space- 
time Viterbi equalisation in nonspread-spectrum wireless 
communication at high baud rates, where the Viterbi equal- 
iser is of the delayed decision-feedback sequence estimation 
variant. The examined system structure employed a train- 
ing sequence for channel estimation and used the estimate 
in space-time Viterbi equalisation. Three techniques were 
proposed to improve the transmission performance, of 
which two concerned signal design and the third concerned 
receiver design. On signal design, we first derived a condi- 
tion for the training sequence which minimised the channel 
estimation error, and obtained a quasi-optimal sequence 
for QPSK modulation. Simulation results verified the supe- 
riority of this sequence in channel estimation and transmis- 
sion performance. Secondly, we considered using unequal 
power levels for the training signal and the data signal. We 
derived a mathematical expression for computing the best 
power ratio. Simulation results confirmed that such une- 
qual power arrangement could enhance the transmission 
performance and that the theoretically derived best power 
ratio indeed yielded nearly the best performance. For 
receiver design, we considered using reduced channel 
lengths to perform channel estimation. We showed that if 
the resulting modelling error was relatively small compared 
to noise-induced error, then this could enhance the Viterbi 
equaliser’s perfomance. Simulation results also confirmed 
this point. 
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9 Appendix 

In this Appendix, we show that minimisation of the mean- 
square estimation error I I N @ ( G @ ) - ~ I ~  is equivalent to 
minimisation of the normalised error norm &Z1 l/lq12, 
where q are the singular values of G. 

For this, note that 

1 1 ~ ~ ~  ( G G ~ ) - '  
= t r {  [NGH(GGH)-'IH[NGH(GGH)-']} 
= tr{ [(GGH)-']HGNHNGH(GGH)-l} (34) 

Taking the expectation, we obtain 

E{ I I NGH (GGH ) - ' I I; 1 

= ~ ~ { M o ~ [ ( G G ~ ) - ~ ] ~ G G ~ ( G G ~ ) - ' }  
= M o 2  . ty([(GGH)-'lH} = M g 2  . t r{ ( G G ~ ) - ~  } 

(35) 
where we have employed the earlier assumption of white- 
ness and uncorrelatedness of noise into different antennas 
so that E{NHN) = M&Z (where Z denotes an identity 
matrix). Now tr{(G@)-') is equal to the sum of the eigen- 
values of (G@)-', which are the inverses of the eigenvalues 
of CCH or equivalently the inverses of the squared magni- 
tudes of the singular values of G. Therefore, minimisation 
of the mean-square estimation error is equivalent to mini- 
misation of the normalised error norm. 
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