
326 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 1,  NO. 3, JULY 1993 

Discriminative Analysis of Distortion 
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Abstract-In a traditional speech recognition system, the dis- 
tance score between a test token and a reference pattern is 
obtained by simply averaging the distortion sequence resulted 
from matching of the two patterns through a dynamic program- 
ming procedure. The final decision is made by choosing the one 
with the minimal average distance score. If we view the distortion 
sequence as a form of observed features, a decision rule based 
on a specific discriminant function designed for the distortion 
sequence obviously will perform better than that based on the 
simple average distortion. We, therefore, suggest in this paper a 
linear discriminant function of the form A = ET=, w ( i )  * d ( i )  
to compute the distance score A instead of a direct average 
A = l/TCT=, d ( i ) .  Several adaptive algorithms are proposed 
to learn the discriminant weighting function in this paper. These 
include one heuristic method, two methods based on the error 
propagation algorithm [l], [Z], and one method based on the 
generalized Probabilistic descent (GPD) algorithm [3]. We study 
these methods in a speaker-independent speech recognition task 
involving utterances of the highly confusible English E-set (b, c, 
d, e, g, p, t, v, 2). The results show that the best performance 
i s  obtained by using the GPD method which achieved a 78.1% 
accuracy, compared to 67.6% with the traditional unweighted 
average method. Besides the experimental comparisons, an ana- 
lytical discussion of various training algorithms is also provided. 

I. INTRODUCTION 
N A traditional speech recognizer, an unknown input utter- I ance is compared to the stored reference patterns according 

to a certain distortiotddissimilarity measure. To cope with 
the inherent variations in speaking rate and articulation tim- 
ing, a dynamic programming procedure, usually imbedded 
in algorithms such as dynamic time warping (DTW) and 
hidden Markov models (HMM), is necessary to obtain the 
final dissimilarity score. The dynamic time alignment proce- 
dure produces a sequence of distortions of individual frames, 
{ d ( i ) } .  The index of the distortion sequence usually denotes 
the frame number associated with either the test token or the 
reference pattern. The final dissimilarity score is then obtained 
by averaging all distortions in the sequence. After calculating 
all dissimilarity scores, the reference pattern with minimum 
dissimilarity score is determined as the recognized word. 

If we view the distortion sequence resulted from dynamic 
programming as a form of observed features, it becomes obvi- 
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ous that a decision rule based on the simple average distortion 
seldomly guarantees an optimal classification. Such a problem 
has been considered previously [4], [ 5 ] .  In this paper, we 
explore the possibility of extensive discriminative analysis 
of the distortion sequence so as to improve the recognition 
performance of a traditional speech recognizer. Although 
discriminative training of reference models are currently being 
pursued, we in this paper concentrate on the analysis of 
discrimination for distortion sequences only, without changing 
the structure and parameters of the reference patterns. This 
may be attractive for existing systems since no major revision 
of the design would be required. 

In our discrimination analysis, a linear discriminant function 
of the form Aj = ET=, w j ( i )  * &(i) is used. The superscript 
j denotes the fact that the comparison is done on the j th 
reference template. It essentially treats the distortion sequence 
as a feature vector. The weighting function w j ( i )  is trained 
using a large set of utterances. Unlike the traditional case of 
learning discriminant function in a fixed dimensional vector 
space [6] ,  the feature vector, i.e., the distortion sequence, of 
our linear machine is of varying length and dynamic in nature. 
This is the problem that hampers the use of many neural 
networks related algorithms in speech recognition. 

The method of using a weighted distance instead of a 
simple average distance has been considered by Rabiner 
and Wilpon [4]. The weighting function in their work was 
determined by a statistical analysis method. In this paper, 
several discriminative training algorithms are proposed. These 
include one heuristic method, two methods based on the error 
propagation algorithm, and one method based on the general- 
ized probabilistic descent (GPD) algorithm [3]. Performances 
of these training algorithms are evaluated using a series of 
challenging experiments involving recognition of the highly 
confusible English E-set utterances. In our experiments, a 
conventional DTW algorithm is applied first for an input 
utterance to obtain the distortion sequence of best match 
with each reference template. The discriminant weighting 
functions are then trained in the training phase using distortion 
sequences of all training utterances. During recognition test, 
linear discriminant functions are calculated using the well- 
trained weighting functions after distortion sequences are 
obtained via dynamic programming. Finally the recognizer 
uses the linear discrimination functions rather than the average 
distortions for classification. The discrimination ability of 
various recognizers using the above training algorithms will 
be examined based on the recognition results. 

The remaining of the paper are organized as follows: In 
Section 11, the training methods for the discriminant weighting 
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function used in this paper are introduced. A series of exper- 
imental results are reported in Section 111. Discussions and 
analyses of the experimental results are presented in Section 
IV. Conclusions are given in the last section. 

11. DISCRIMINATIVE TRAINING OF WEIGHTING FUNCTIONS 

In an N-word speech recognition system, let us assume that 
each word is represented by a single reference template. So, 
a total of N reference templates { @ , j  = I, 2, . . . , N} are 
involved in this task. When a test token is given, it is first 
compared to each reference template by a dynamic program- 
ming (DP) procedure. After matching, a distortion sequence 

matched path is obtained. Here, mj is the number of frames of 
Rj. Traditionally, the distance score for a reference template is 
calculated by simply averaging the individual frame distortions 
d j ( i )  in the corresponding distortion sequence, i.e., 

D j  = { d j ( ‘  z ) , i  = 1,2,  .. . ,mi} associated with the best 

mJ 1 ’  
Ai = -dJ ( i ) .  

mJ 
i = l  

The final decision is made by choosing the one with minimal 
distance score. That is, the test token will be classified as the 
lth word if 

We now take the distortion sequence as the observed feature 
and introduce a linear discriminant function 

mJ 

Ai = w j ( i ) d j ( i )  (3) 
i=l  

as the new distance score for decision. The weighting function 
Wi = { w i ( i ) , i  = 1,2,...,mj} is to be trained using the 
distortion sequences of all training utterances. In the sequel, 
we use Dj and W j  to denote sequences as well as column 
vectors which should pose no ambiguity. 

According to the suggested discrimination scheme, each 
candidate contains two components. One is the reference 
template Ri and the other is the weighting function Wi.  
Though discriminative training of the reference template RJ 
is also important, we here focus our discussion on the training 
of the weighting function W J .  This means the reference 
template Rj is trained by a traditional method [7], before 
and independent of the weighting function training. In the fol- 
lowing, several training algorithms for the weighting function 
will be discussed. These include a heuristic method, an error 
propagation algorithm, a single-layer perceptron with error 
propagation, and a generalized probabilistic descent method. 

A. A Heuristic Method 
Let D! = {d ! (z ) , i  = 1 , 2 , . .  . ,mi} be the distortion 

sequence resulted from matching a training token of the lth 
word to the reference template of the jth word. We shall 
attempt to adaptively adjust the weighting functions { W j ,  j = 

1,2,  . . . , N} using the training distortion sequences. In doing 
so, the goal is to have 

W&, DE 5 Wi*DE 

wj* t+l ~j 2 > - w,~*D!, for a l i j , j  # 1 (4) 

where the index t indicates the tth iteration, and * is the 
operator of matrix transposition. Here, the adaptation is done 
sequentially, token by token if 

(5) A{ 5 Ai + c 

for any j ,  where 

Ai a Wj*Di 
2 -  

Ai Wi*DE 

and c is a threshold. One iteration corresponds to one adap- 
tation. 

If we constrain the weighting functions so as to satisfy the 
following conditions 

mJ 

i = l  

for all i and j, then one simple adjusting method to accomplish 
(4) is 

where 

dl‘ ( i )  = max dj (2’) - dj ( i )  
2’ 

or 

and for all j ,  j # 1, 

where 

(7) 

or 

ci;’(i) = 1, ifd!(i) = qind;(i’) 2’ 

= 0, otherwise (12) 

This is a heuristic training method. According to the conditions 
of (4), the weighting function is adjusted to reduce Af and 
to increase all AS, j  # 1, when the training token belongs 
to the lth word. Obviously, if we decrease the components 
of W’ corresponding to the larger distortion components of 
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DE and increase the components of corresponding to the 
smaller distortion components of DE, then A; will become 
smaller due to the constraints of (6). We therefore, in (7), adjust 
each w‘ ( i )  by adding q( maxi! df ( i ’ )  - df (i)) or, alternatively, 
only add a small positive constant q to the component of 
W‘ associated with the minimum of the distortion sequence. 
After normalization, the new W‘ will satisfy the conditions of 
(4) and (6). For the weighting functions of other words, the 
adjusting momentum is contrast to that of the lth word. Here, 
the momentum means the adjustment direction and quantity 
of the weighting functions. 

According to the above adjusting method, we iteratively 
adjust the weighting functions until some conditions are met. 
Note that the.condition of ( 5 )  indicates that not all distortion 
sequences 0; but those that would cause confusion are used 
to adjust the weighting functions W J .  If the condition of ( 5 )  
is not satisfied at all in one cycle, and thus none of weighting 
functions is adjusted, the iteration procedure stops naturally. 
Here, it is counted as one cycle when all training tokens are 
processed one time. Alternatively, the iteration procedure also 
stops if the iteration cycle exceeds one specified limit. 

B. Error Propagation 

According to (7) and (lo), there are two adjusting momenta 
in the above heuristic training method. They are used to 
decrease or increase the corresponding distance scores such 
that the decision boundary will be correctively moved. As 
the training process progresses, the training tokens will be 
gradually separated into their own groups. 

The error propagation algorithm can be used to simulate 
these two adjusting momenta. If we treat each W J  as the 
parameters of one single-layer perceptron, then a total of 
N single-layer perceptrons will be involved in our present 
task. When one training token of the lth word is provided as 
input, we can use the distortion sequence 0; to train the ,jth 
perceptron by using the error propagation algorithm. 

Basically, the error propagation algorithm is an iterative gra- 
dient descent algorithm designed to minimize the mean square 
error between the desired target values (usually binary) and the 
actual output activation values of a multilayer perceptron [ 11, 
[2]. However, as shown in Fig. 1 ,  our present network for each 
word is simply a single-layer perceptron with only one output 
unit. Basically, the learning procedure involves two steps: 

1) Forward step: Given a set of weights, activation values 
caused by a training pattern are calculated. Computations 
are propagated forward through the network. 

2) Backward step: Error signals between the output acti- 
vation values and the target values for neurons in the 
network are calculated and then used in weight update. 
Computations are carried out by propagating the error 
signals backward from the output to the input neurons. 

According to the network shown in Fig. 1, given the weights 
W J  and the training pattern D;,  the activation value aJ in the 
forward step is calculated as 

m’ 

bJ = x w J ( z ) d i ( i )  + 4J 
z = 1  

a1 

R 

Fig. 1. The network structure of a single-layer perceptron with only one 
output unit. 

aj = f ( b J )  
1 

1 + e-b’ 
- - 

where 4J is an offset and f ( . )  is an activation function. The 
selection of activation function plays an important role in the 
error propagation algorithm. In general, the sigmoid function 
as shown in (1  3) is used. In the backward step, the weights 
W J  and the offsets 4J are adjusted according to 

Wl+l = l4‘: + r/pDi’ 

&+I = 4; + 7lP 

where 

p = aJ(1 - a”(0J - U J )  

OJ = 0, forJ = 1 
= 1, otherwise. (14) 

In (14), the adjustment of the weights W J  and the offsets 4 3  

mainly depend on the error term, 3 - d ,  where OJ is the 
desired target value. If oJ = 0, the parameters are adjusted 
to decrease the actual output value u J .  According to (1  3), it’s 
equivalent to decreasing the distance score. It therefore will 
increase the distance score if oJ = 1. 

In fact, the above method can be analyzed as a scaled single- 
layer perceptron with N output units in which each output unit 
connects to its own input units. All weighting functions will 
therefore be adjusted during one iteration. 

C. Fully Connected Single-Layer Perceptron 

A fully connected single-layer perceptron as shown in Fig. 2 
is further considered. There are a total of N output units and 
each output unit is connected to the same M(= CJ=lmJ) 
input units. When a training token of the lth word is presented 
as input, the input vector to the perceptron consists of N 
distortion sequences { D i ,  j = 1.2,  . . . , N } .  It is different 
from the case in the previous section where the input vector 
connected to the jth output unit is the sequence Di only. This 
network is also trained by the error propagation algorithm. 

N 

D. The Generalized Probabilistic Descent (GPD) Method 

The GPD method was extended from the probabilistic 
descent (PD) method [SI which was developed as a generalized 
adaptive training scheme for classifying static patterns. The 
GPD method provides an enhanced capability in classifying 
dynamic patterns, of which the dimension of the feature vector 
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Fig. 2. The network structure of a fully connected single-layer perceptron. 

may be varying. Due to the fact that the characteristics of 
speech is dynamic in nature, such a capability is very important 
for speech recognition. In fact, the dynamic properties of 
speech have hampered the use of many neural networks related 
algorithms in speech recognition. 

Again, let us consider the adjustment of all the weighting 
functions m = { W J ,  j = 1,2. .  . . . N }  when one training 
token, X = { x ( i ) , i  = 1.2 , . . .  , 7 n X } ,  of the lth word 
is presented. According to the GPD method, the weighting 
function adjustment is 

_ 
Wt+l = Wt + S W ( X ,  R. w. 1) (15) 

_ 
where R = {RJ .  j = 1.2 :.., N } .  That is, the weighting 
functions are adapted by a small amount 6 W ( X ,  R, W .  1) 
every time a single training input token is presented. The cor- 
rection parameter S w ( X .  R. w. 1) is a function of X .  R. W ,  
and 1. If we set 

_ _  

_ _  

it can be shown that the adaptive training of (15) converges at 
_ _  

constant, U is a positive-definite matrix, and V~i;lll(X, R. W )  
is the gradient of a prescribed loss measure & ( X .  R. W ) .  Note 
that the GPD method allows adaptive training of the reference 
templates n and the discriminative weighting functions w 
simultaneously if we view R and W as part of the parameter 
set of the overall classifier. In our present study, we limit our 
attention to the weighting functions W only. To discuss the 
term V,lll(X. R. W ) ,  we should first define the discriminant 
measure, the misclassification measure, and the loss measure. 

A discriminant measure g , (X ,  R. W )  which is defined as 
a function of X .  R, W ,  and j ,  is used to indicate how likely 
the input X belongs to the j th word. Here, the discriminant 
measure should be differentiable with respect to the weighting 
functions. In our case, it can be defined as 

_ -  

_ _  

_ -  
_ _  

~ 

_ -  least to a local optimum solution [3]. Here E is a small positive bl(x. ~.mi = , 9 1 ( ~ .  R,  W )  

\ 

where T,(= 1, in the current example) is the number of 
reference template of the ,jth word, 0 is an index warping 
path between X and Rg, and D o ( X ,  Ri. W J )  is the distance 
score between X and Ri evaluated along the path 0. As 
( + CO, g J ( X .  R, W )  can be approximated by the minimal 
distance of the DP matching derived from the optimal path, 

_ _  
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i.e., 

where 
mj 

D Q ( X ,  RJ .W3)  = C ~ ( L ) ( X ( Z ~ )  - T J ( ~ ) ) ~  

1=1 

i=l 

RJ = {rJ((i),a = 1 , 2 , . . . . m j }  and 20 denotes the warped 
index function. 

According to the above definition of the discriminant mea- 
sure, the weighting function, in a general case, should be 
included in the DTW algorithm for the search of the optimal 
path. However, in our current simulation, we simply choose 
the optimal path based on the conventional DTW algorithm 
without involving the weighting function. After obtaining the 
optimal path, the discriminant measure is calculated using the 
distortion sequence and the pre-stored weighting function. This 
leads to no major revision for a conventional DP-based speech 
recognition system. 

A misclassification measure & ( X ,  R, W )  is used to indicate 
the amount that an input token of the Zth word deviates from 
the decision boundary. Here, larger Sl(X,  R, W )  implies _ -  that 
more likely the input is misclassified. Moreover, &(X, R, W )  
must be differentiable with respect to the weighting functions 
(or the complete set of classifier parameters if we also attempt 
to adjust the template parameters). Based on the above discus- 
sion, the misclassification measure used in our present study 
is defined as 

_ _  

_ _  

\ -1IC’ 

(20) 

When (’ i x, (20) can be approximated by 
_ -  

Di(X.R.W) E gi(X.R,W) - g J t ( X ,  R ,W)  (21) 
_ _  

where g j , ( X ,  R, W )  is the discriminant measure of the most 
probable incorrect word j ’ .  

A loss measure, 

B , ( X , R . W )  = B(S/(X,R,W)) 

is used to show the cost of misclassifying an input token X 
of the 1th word. It is required that the loss function e(.) be a 
differentiable, monotonically non-decreasing function. Here, a 
sigmoid function as (22) is used as it approximates well the 
0-1 cost function for classification error. 

According to (17), (20), and (22), and _ _  assuming in (17) C + 

cc. we can easily compute Vwli/(X. R, W ) .  In particular, 
_ _  

V,,-ili(S/(X. R, W ) )  = v D ~  (23) 
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where 

v = e(sl(xlx,w)) 
. (1 - e(sz(x,R,W))) .  (25) 

According to (15) and (16), and by setting U to be an identity 
matrix, the rules for adaptive weighting function adjustment 
in the GPD training method can be expressed as 

Y 

k,k#z 
for a l l j l j  # 1. 

If we further let in (27) <' + 00, the adjusting rule can be 
simplified as 

Therefore, in an extreme case where < and <' + 00, only W 1  
and Wj',  which is the weighting function of the most probable 
incorrect word j ' ,  will be adjusted. According to (25), the v 
shown in the above equations serves as an adaptive step size of 
weight adjustment. When the absolute value of &(X, R, W )  
is small, which implies that the training token is likely to be 
confused with the wrong word, v will be large, leading to a 
substantial amount of adjustment. When the absolute value of 
&(X1 R, W )  is large as in the case where the input token is 
either unlikely to cause confusion or obviously an extreme 
outlier, the amount of adjustment is therefore accordingly 
reduced. Finally, we note that the rules shown in (26)-(29) 
certainly meet the requirements of (4) because the term v is 
always nonnegative. 

We should emphasize here that with the choice of a proper 
loss function, such as a 0-1 function to which the sigmoid 
function of (22) is an approximation, the GPD method is 
aiming at direct minimization of the classification error. The 
error propagation method, on the other hand, attempts to match 
the activation value to a (binary valued) desired output using 
a mean square error measure and thus does not necessarily 
minimize the error rate [l], [2]. 

_ _  

_ _  

111. EXPERIMENTAL RESULTS 

A series of experiments were conducted to examine the 
effectiveness of the proposed training algorithms. The exper- 
iments involved recognition of the highly confusible English 
E-set. In this E-set database, it contains utterances of 9 English 
alphabets, namely, b, c, d, e, g, p, t, v, and z. The speech 

signals were recorded from 100 native Americans, including 
50 males and 50 females, through local dialed-up telephone 
lines. The sampling rate was 6.67 kHz and the bandwidth of 
the anti-aliasing filter was from 100 to 3200 Hz. Each talker 
spoke each word twice to produce two sets of databases. One 
was used as the training set and the other was used as the test 
set. During analysis, each data frame consisted of 300 samples 
with the last 200 samples overlapped with the next frame. An 
eighth-order LPC analysis was performed on each frame of 
data and the resultant coefficients were transformed into 12 
cepstral coefficients (with bandpass cepstral liftering [9]) and 
12 delta-cepstral coefficients [ IO]. 

A. The Conventional DTW Algorithm 

For performance comparison, a conventional DTW algo- 
rithm using an average distortion (1) as the distance score 
was first implemented. The experimental results are listed in 
Table I. In the 1st row of Table 1, rf  n denotes the case 
in which each word in the recognizer is represented by n 
reference templates. In the second 8c third rows denoted by 
Dl  and D2, we show the results based on the IC-" rules 
with k = 1 and 2, respectively. The DTW algorithm was 
implemented by warping the reference template to the test 
token. The length of the distortion sequence in terms of the 
number of frames is therefore identical to that of the test token. 
Usually, DTW algorithm is implemented in this way because 
the distance score can be obtained directly by summing the 
distortion sequence without a frame normalization. The best 
recognition rate is 69.6% for r f 11 and k = 2. Another type 
of DTW algorithm was also implemented by warping the test 
token to the reference template. In this case, the operation 
of frame normalization is necessary to compute the distance 
score. Experimental results are shown in the fourth row (D3) 
and the fifth row (D4) for k-NN rules with IC = 1 and 2, 
respectively. We provide only two result entries for D3 and 
D4 to show the effect of warping direction. A recognition 
rate of 67.6% was achieved for r f 1 2  and IC = 2 .  Compared 
to the recognition rate of 61.7% achieved by a continuous 
HMM recognizer with 5 states and 5 mixtures per state [ 111, 
recognition results of these two conventional DTW algorithms 
are reasonably good. 

In the following experiments, the simple average distortion 
of (1) is replaced by the weighted distortion of (3) in the DTW 
implementation. We also choose to warp the test sequence 
to the reference sequence because it avoids the need of 
multiple weighting functions for each reference sequence due 
to temporal variations. The k-NN rule with IC = 2 was used 
when each word was represented by 12 reference templates. 

B. The Heuristic Method 

The performance of the heuristic method is tabulated in 
Table 11. In the second row (Hl), the results were obtained 
using (8) and (11). In the third row (H2), the results were 
obtained using (9) and (12). 

Judged from the results shown in Table 11, the recognition 
accuracy indeed has been improved by the heuristic method 
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TABLE I 
RECOGNITION RESULTS BASED ON THE TRADITIONAL DTW ALGORITHM WITH DIFFERENT WARPING TYPES 
(Type 1: D1, D2; Type 2: D3, D4) AND DIFFERENT IC-" RULES ( I C  = 1: D1, D3; k = 2: D2, D4) 

r f l  r f2  rf3 r f4  rf5 6 6  rf7 r f8  r f 9  rf10 r f l l  rf12 
D1 58.8% 54.7% 57.8% 59.7% 58.7% 60.2% 63.0% 65.8% 66.2% 66.2% 65.9% 66.1% 
D2 49.9% 54.6% 58.2% 61.3% 63.2% 63.1% 63.4% 65.6% 68.1% 69.6% 69.3% 
D3 59.8% 

D4 67.6% 

TABLE I1 
RECIXNITION RESULTS BASED ON THE HEURISTIC METHOD WITH 

OF THE WEIGHTING FUNCTIONS WERE ADJUSTED IN ONE 
DIFFERENT ADJUSTMENT STRATEGIES (Hl: ALL COMPONENTS 

ITERATION H2: ONLY ONE COMPONENT WAS ADJUSTED) 

r f l  rf 12 

HI 60.2% 71.0% 
H2 66.6% 75.8% 

TABLE 111 
RECIXNITION RESULTS BASED ON THE ERROR PROPAGATION 

ALGORITHM WITH DIFFERENT ADJUSTMENT STRATEGIES (El: ALL 
WEIGHTING FUNCTIONS WERE ADJUSTED IN O N E  ITERATION; 
E2: ONLY Two WEIGHTING FUNCTIONS WERE ADJUSTED) 

r f l  rf 12 
El 61.9% 65.7% 
E2 62.7% 72.1 % 

as expected. In particular, the results corresponding to H2 
indicate a significant reduction in error rate, compared to 
the benchmark results shown in Table I. The conventional 
unweighted method resulted in 40.2% and 32.4% error rates 
for the case of 1 reference template per word and 12 refer- 
ence templates per word respectively while the H2 weighting 
method produced 33.4% and 24.2% error rate in the cor- 
responding cases. The performance of H2 where only one 
component of each weighting function corresponding to the 
maximal or minimal component in the distortion sequence was 
adjusted is better than that of H1 where all components of the 
weighting functions were adjusted at the same time. 

C. The Error Propagation Method 

The experimental results based on (14) are shown in the 
second row (El) of Table 111. As mentioned in Section II- 
B, the modified error propagation method can be analyzed as 
a scaled single-layer perceptron. In this case, all weighting 
functions were adjusted in each iteration. Alternatively, we 
may adjust only two weighting functions associated with the 
correct and the most probable incorrect words in each iteration 
as suggested by (28)-(30) of the GPD method. The results are 
shown in the 3rd row (E2). 

As can be seen from Tables I1 and 111, the modified error 
propagation method didn't perform as well as the heuristic 
method (H2). The best results with error propagation learning 
were obtained using the simplified method (E2). The improve- 
ments are only 2.9% and 4.5% in error rate reduction for the 
cases of 1 and 12 reference templates per word, respectively. 

TABLE IV 
RECOGNITION RESULTS BASED ON THE SINGLE-LAYER PERCEPTRON 

r f l  r f 2  

s1 63.9% 58.3% 

D. Fully Connected Single-Layer Perceptron 

The fully connected single-layer perceptron described in 
Section 11-C was designed only for r f l  and r f 2  due to 
complexity considerations. Experimental results are shown in 
Table IV. 

From Table IV the result of r f 2  is worse than that of rfl.  
It is probably due to the reason that the structural complexity 
of the case r f 2  is too excessive to be trained with the 
current limited database. Compared with previous methods, the 
recognition rates achieved by the fully connected single-layer 
perceptron are relatively low. 

E. The GPD Method 

Table V displays the performance of the GPD method. Two 
cases were considered first. The results shown in the second 
row (G1) and the third row (G2) were obtained by using 
(26) and (27) with <' = 30, and (28)-(30) respectively. The 
difference between these two cases is that in G1 all weighting 
functions were adjusted during one iteration while in G2 only 
two specified weighting functions were adjusted. In fact, as 
mentioned in Section 11-D, G2 is an extreme case of G1 when 
<' in (27) approaches CO. Alternatively, since (28) and (29) 
also meet the heuristic requirements of (4), adjustment of all 
weighting functions in one iteration based on these two equa- 
tions was also implemented. Specifically, the index j' in (29) 
was extended to all j except 1. Since the adaptive step size v 
depends on gz(X, R, W ) - g j f ( X ,  R, W )  according to (21) and 
(25), the weighting functions are, therefore, adjusted in pairs. 
That is, in the modified method, we treated each reference 
pattern Rj , j = 1 ,2 ,  . . . , N ,  j # 1, as a potential contender of 
R', the correct class reference. There were thus N - 1 pairs 
of weighting functions to adjust in each iteration for an N 
reference pattern set. As a result, each Wj was adjusted one 
time but W' was adjusted N -  1 times in one iteration. The ex- 
perimental results are shown in the fourth row (G3). Note that 
in the above three cases, according to (26)-(29) all components 
of the weighting functions were adjusted during each iteration. 
Alternatively, like the extreme case of H2, we may change 
the policy of weight adjustment in these three cases by only 
adjusting the component of W 1  corresponding to the minimal 

_ _  _ _  



332 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 1, NO. 3, JULY 1993 

TABLE V 
REC~GNITION RESULTS BASED ON THE GPD METHOD w m  DIFFERENT 
ADJUSTMENT STRATEGIES (Gl, G4 ALL WEIGHTING FUNCTIONS WERE 

ADJUSTED IN ONE ITERATION G2, G5: ONLY Two WEIGHTING FUNCTIONS 
WERE ADJUSTED G3, G6: WEIGHTING FUNCTIONS WERE ADJUSTED IN PAIRS) 

6 1  rf 12 
G1 70.0% 76.2% 
G2 69.9% 76.8% 
G3 67.7% 78.1% 
G4 60.1% 7 1 .O% 
G5 59.8% 70.7% 
G6 62.1% 69.3% 

J 
U 

0 200 
56.0 

Iteration Number 

(b) 

and open-set tests. (b) The loss measure. 
Fig. 3. Recognition results of G1. (a) The recognition results of close-set 

component of DE and adjusting the component of W J ( j  = 
1,2,  . . . , N ,  J’ # 2 )  corresponding to the maximal component 
of 0;. The results of single component adjustment correspond- 
ing to the cases of G1, G2, and G3 are shown in the fifth row 
(G4), the 6th row (G5) and the 7th row (G6), respectively. 

From Table V, it is found that the best recognition results 
of the GPD method are 70.0% (Gl) and 78.1% (G3) when 
each word is represented by 1 and 12 reference templates, 
respectively. It can also be found that the results of G1, G2, 
and G3 are better than that of G4, G5, and G6. The result 
is reverse compared to that of the heuristic method shown 
in Table 11. From the results shown in Tables I and V, the 
GPD method outperforms the conventional unweighted DTW 
method by about 10% in recognition rate. This is a significant 
improvement. 

To analyze the convergence characteristics of the GPD 
method, recognition results of the close-set and the open-set 
tests, and the loss measure pertaining to the case of G1 are 
shown in Fig. 3. The recognition rates and the loss measures 
were evaluated at the end of every cycle after all training 
tokens were run once. As shown in Fig. 3, the recognition 
rates for both the close-set and open-set tests were gradually 
increased, and the loss measure was monotonically decreased. 
While the recognition results of G1 and G2 corresponding to 
(’ = 30 and C’ -+ oa in (27), respectively, are almost the same 
as shown in Table V, the adaptation algorithm of G1 appears 
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heunstic method, (b) the error propagation algorithm, (c) the GPD method. 
Fig. 4. Recognition results of close-set and open-set test using (a) the 

to produce a smoother learning curve (Fig. 3(a)) than that of 
G2 (Fig. 4(c)). In the next section, we provide more detailed 
discussions on various algorithms. 

IV. DISCUSSIONS 

We find from the experimental results that the best per- 
formance was obtained by the GPD method. The heuristic 
method also led to good results. They are better than the other 
two methods based on the error propagation algorithm and 
the fully-connected single-layer perceptron. For performance 
comparison, we show in Fig. 4 recognition results of the close- 
set and the open-set tests pertaining to (a) the heuristic method 
(H2 in Table 11), (b) the error propagation algorithm (E2 in 
Table 111), and (c) the GPD method (G2 in Table V). From 
Fig. 4, it is found that the convergence speed of the heuristic 
method is the fastest. On the other hand, the recognition results 
using the GPD method are the best in both the closed test and 
the open test recognition experiments. 

Fig. 5 displays the weighting functions of the word ‘C’ 
based on the heuristic method, the GPD method, and the error 
propagation algorithm. The most significant weights appear 
at the beginning part of the utterance in all three cases. 
This matches the characteristics of the vocabulary in the E- 
set in which the acoustic differences mainly manifest at the 
beginning of the utterance. 

Comparing (14) derived from the error propagation algo- 
rithm and (28) derived from the GPD method, we find that 
they are very similar. The main difference is in the term p in 
the error propagation algorithm and the term v in the GPD 
method. In fact, 

p 0: ay1 - a l )  = @)(l - e @ ) )  
and 

v 0: l (6l(X,R,W))( l  - q&(X,R,m)) )  
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n -- -1 0.0961 (1 

(b) 
0.269 

-0.259 I 5 1  
42 

Frame Number 

(C) 

method, (b) the error propagation algorithm, (c) the GPD method. 
Fig. 5.  The weighting function of word ‘C’ trained by (a) the heuristic 

where 
m‘ 

bl = p ‘ ( i ) d f ( i )  + @ 
i = l  

1 
1 + e-” 

!(Z) = ~ 

and 
rn‘ 

i=l 

m3’ ... 

- Cd’(i)d;‘(i). 
i = I  

From the above analysis we can see that the convergence 
will be reached ,for the error propagation algorithm when 
b’ << 0 and b.1 >> 0, and for the GPD method when 
& ( X ,  R, W )  << 0. However, the final convergence goals for 
the error propagation algorithm and the GPD method are quite 
different. The error propagation algorithm only attempts to 
match the desired output value while the GPD method directly 
aims at minimization of the error rate. That is probably the 
reason why the GPD method performed better than the error 
propagation algorithm in our experiments. 

_ _  

V. CONCLUSIONS 
In this paper, the discriminative characteristics of distortion 

sequences generated by the DTW algorithm have been an- 
alyzed. A linear discriminant function is generated from the 
distortion sequence to serve as a substitute for the conventional 
dissimilarity score of average distortion. No major revision 
of the conventional system is required to incorporate the 
explicit discriminative analysis. Several training algorithms 

were suggested to train the weighting function of the dis- 
criminant function. The proposed recognition scheme has been 
confirmed to significantly outperform the conventional DTW- 
based recognition system. The best recognition rate of 78.1% 
was obtained by using the GPD training algorithm, tested on a 
highly confusible speaker independent English E-set database, 
compared to 67.6% with a conventional system. 

To further improve the performance, two extensions may be 
worth studying. One is to use a nonlinear discriminant function 
instead of a linear one. The other is to discriminatively adjust 
reference templates as well as the weighting functions. 
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