
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper.2001;31:667–695 (DOI: 10.1002/spe.383)

An enhanced thread
synchronization mechanism
for Java

Hsin-Ta Chiao and Shyan-Ming Yuan∗,†

Department of Computer and Information Science, National Chiao Tung University, 1001 Ta Hsueh Road,
Hsinchu 300, Taiwan

SUMMARY

The thread synchronization mechanism of Java is derived from Hoare’s monitor concept. In the authors’
view, however, it is over simplified and suffers the following four drawbacks. First, it belongs to a category
of no-priority monitor, the design of which, as reported in the literature on concurrent programming, is
not well rated. Second, it offers only one condition queue. Where more than one long-term synchronization
event is required, this restriction both degrades performance and further complicates the ordering problems
that a no-priority monitor presents. Third, it lacks the support for building more elaborate scheduling
programs. Fourth, during nested monitor invocations, deadlock may occur. In this paper, we first analyze
these drawbacks in depth before proceeding to present our own proposal, which is a new monitor-based
thread synchronization mechanism that we term EMonitor. This mechanism is implemented solely by Java,
thus avoiding the need for any modification to the underlying Java Virtual Machine. A preprocessor is
employed to translate the EMonitor syntax into the pure Java codes that invoke the EMonitor class libraries.
We conclude with a comparison of the performance of the two monitors and allow the experimental results
to demonstrate that, in most cases, replacing the Java version with the EMonitor version for developing
concurrent Java objects is perfectly feasible. Copyright 2001 John Wiley & Sons, Ltd.

KEY WORDS: JavaTM; thread synchronization mechanism; monitor

THE JAVA MONITOR AND ITS DRAWBACKS

The thread synchronization mechanism of Java [1] is a simplification of Hoare’s original monitor
concept [2]. To implement the monitor, each Java object contains a monitor lock and a condition
queue. The keywordsynchronized can be inserted into the definition of a method for the purpose
of specifying the method as a synchronized method. In a Java object, only one synchronized method

∗Correspondence to: Shyan-Ming Yuan, Department of Computer and Information Science, National Chiao Tung University,
1001 Ta Hsueh Road, Hsinchu 300, Taiwan.
†E-mail: smyuan@cis.nctu.edu.tw

Copyright 2001 John Wiley & Sons, Ltd.
Received 23 November 1999

Revised 3 February 2000 and 27 September 2000
Accepted 6 December 2000

668 H.-T. CHIAO AND S.-M. YUAN

can be run at a time. In addition, Java also offers synchronized blocks to reduce the size of critical
sections. For condition synchronization, Java provides each object with the following three methods:
wait() , notify() , andnotifyAll() . (In this paper, the Java termnotify and the conventional
monitor termsignalare interchangeable). These methods can only be invoked inside a synchronized
method or synchronized block.

The design philosophy of the Java monitor is to keep things as simple as possible. However, we
consider it over simplified. It has several drawbacks that both complicate the design of concurrent
objects, and bring extra synchronization overhead when contention increases. Besides, deadlock may
occur during nested monitor invocations, and can be prevented only by considerable effort. In this
section, we will discuss the drawbacks in detail one by one.

No-priority monitor

Many monitor variations have been proposed since Hoare’s first monitor [2]. Basically, they can be
classified according to both their monitor locks and the signal semantics they offer [3]. Logically, a
monitor lock contains three (or less) queues for storing the threads that intend to enter the monitor. The
entry queue holds the threads that cannot enter the monitor immediately after they invoke any one of
the monitor methods. The waiting queue stores the threads that have been signaled by other threads.
The signaler queue contains signaler threads that have signaled another thread in any condition queue.
To prevent starvation, the entry queue priorityEp should always be the lowest. For a monitor, if itsEp

is equal to either theSp (the signaler queue priority) or theWp (the waiting queue priority), we refer
to it as ano-priority monitor. In any other case it is apriority monitor.

Since bothnotify() andnotifyAll() do not release the monitor lock, and merely resume
either one or all of the pending threads in the condition queue, the signal semantic offered by the Java
monitor belongs to the so-callednon-blocking signal[3,4]. In addition, since no signaler thread has
to be stored after eithernotify() or notifyAll() is invoked, the Java monitor lock logically
contains no signaler queue. Furthermore, since the Java monitor lock combines entry and waiting
queues into a single queue, it is reasonable to assume that theEp and theWp of the Java monitor
lock are equal. Hence, we may classify the Java monitor as no-priority, but because of this property, it
presents the following two problems.

The first is that the post-condition ofwait() may be different from the pre-condition of
notify() [3–5]. In fact, this condition-breakup problem is caused by another intruding thread
that preempts a thread that has been notified, and enters the monitor to destroy the pre-condition of
notify() . Hence, as shown in the followingSemaphore Java class, theP() method has to enclose
thewait() method in a while loop to determine whether it is allowed to proceed.

public class Semaphore {

private int SemaphoreCounter = 0;

public synchronized void P() throws Exception {
while(SemaphoreCounter == 0)

wait();
SemaphoreCounter--;

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:667–695

JAVA THREAD SYNCHRONIZATION MECHANISM 669

}

public synchronized void V() throws Exception {
SemaphoreCounter++;
notify();

}

}

The second problem concerns the execution order among the synchronized methods or synchronized
blocks becoming more difficult to control. This may complicate the design of scheduling programs,
where ordering is important [3,5,6]. For example, the aboveSemaphore class cannot guarantee the
FIFO ordering of completing theP() method. (Here we assume that both the lock queue and the
condition queue of the Java monitor are FIFO-ordered. In fact their ordering is unspecified in the
specification of Java [1] and is implementation dependent.) Let us consider the following situation. A
threadT1 holds the monitor lock and begins to run theV() method. Another threadT2 is a pending
thread at the front of the condition queue. The third threadT3 intends to invoke theP() method,
and waits in the Java monitor’s lock queue. ThreadT1 first signals threadT2, sets the value of the
SemaphoreCounter to one, and returns. Then, threadT3 (the new invocation ofP()) preempts
threadT2 (the old invocation), and the FIFO ordering is violated. The correct implementation of FIFO
semaphore is shown below, but it is more complex and less intuitive.

public class FIFOSemaphore {

private int SemaphoreCounter = 0, PendingCounter = 0;

public synchronized void P() throws Exception {
if(SemaphoreCounter > 0)

SemaphoreCounter--;
else { // Semaphore Counter == 0

PendingCounter++;
wait();

}
}

public synchronized void V() throws Exception {
if(PendingCounter == 0)

SemaphoreCounter++;
else { // PendingCounter > 0

PendingCounter--;
notify();

}
}

}

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:667–695

670 H.-T. CHIAO AND S.-M. YUAN

In fact, a no-priority monitor not only complicates concurrent program design, but also incurs more
thread context switches. Consequently, it is not well rated in the concurrent programming literature [3].

Only one condition queue is offered

As stated previously, the Java monitor offers only one condition queue. When only one long-term
synchronization event is required, such as the above FIFO semaphore, the complications caused by
a no-priority monitor remain under control. However, if more than one long-term synchronization
event is required, the execution order and fairness of the invoked methods become unmanageable. For
example, the followingBoundedBuffer class requires two long-term synchronization events: with
the first, theBuffer becomes not full, and with the second, theBuffer becomes not empty. This
example is still simple enough for us to ensure that, at any one time, all pending threads in the condition
queue are waiting for the same synchronization event. However, we cannot ensure that the execution
order of thePut() method is always FIFO-ordered (and neither can we ensure this for theGet()
method). Unlike the previous FIFO semaphore, the plain FIFO-ordered implementation of a bounded
buffer is almost impossible to construct.

public class BoundedBuffer {

private int Front = 0, Rear = 0, Counter = 0;
private static final int Size = 10;
private Object Buffer[] = new Object[Size];

public synchronized void Put(Object Obj) throws Exception {
while(Counter == Size)

wait();
Buffer[Rear] = Obj; Rear = (Rear + 1) % Size; Counter++;
if(Counter == 1)

notifyAll();
}

public synchronized Object Get() throws Exception {
Object Result;
while(Counter == 0)

wait();
Result = Buffer[Front]; Front = (Front + 1) % Size; Counter--;
if(Counter == Size - 1)

notifyAll();
return Result;

}

}

Another problem of this implementation concerns performance. In order to ensure that all pending
threads in the condition queue are waiting for the same synchronization event, when either of the long-

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:667–695

JAVA THREAD SYNCHRONIZATION MECHANISM 671

term synchronization events happens, thenotifyAll() method has to be invoked to wake up all
pending threads in the condition queue. This action may generate lots of thread context switches and
lower the performance.

In brief, for any concurrent programs that require multiple long-term synchronization events, to
construct them by using the Java monitor straightforwardly will incur the same problems with ordering,
fairness, and performance.

No support for scheduling

Scheduling is an important aspect of thread synchronization [7,8]. To select out one from a number
of received requests, a scheduler must have some global information about the requests. When a
thread synchronization mechanism is able to provide tailor-made facilities to help retain scheduling
information, constructing schedulers is greatly simplified. For example, many existing monitors [5,9–
11] offer a prioritized condition queue to simplify the task of writing static scheduling programs.
However, the condition queue in the Java monitor is primitive and offers no support for scheduling.
Consequently, a Java program has to retain the required scheduling information in other more expensive
ways.

Deadlock of inter-monitor nested calls

Since the Java monitor has a nested mutually exclusive lock, deadlock never occurs during an
intra-monitor nested call, which means that a synchronized method calls any synchronized method
within the same object. However, deadlock may arise in inter-monitor nested calls, which means
that a synchronized method of an object invokes a synchronized method in another object. The
possible deadlocks can be further divided into two categories. The first ismutually dependent
deadlock[4,12,13]. Suppose that threadT1 is running inside objectM1’s synchronized method at the
same time that threadT2 is running inside objectM2’s synchronized method. This kind of deadlock
happens when threadT1 intends to invoke objectM2’s synchronized method at the same time as thread
T2 intends to invoke objectM1’s synchronized method. The second iscondition-wait deadlock[6].
Suppose that threadT3 consecutively invokesN synchronized methods from objectsM1,M2,M3, . . . ,
to objectMN , after which the thread callswait() to block itself in objectMN , and releases the
monitor lock ofMN only. Then, assume that threadT3 expects to be signaled by another threadT4 that
intends to invokenotify() in objectMN . If, before threadT4 reaches objectMN , it goes through
any object among objectM1 to the objectMN−1, the condition-wait deadlock arises.

THE EMonitor

To overcome the above-discussed drawbacks, we propose to replace the Java monitor with a new
monitor-based thread synchronization mechanism. The new monitor, termed EMonitor, has the
following design goals:

• it must successfully deal with all the above-stated Java monitor drawbacks;

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:667–695

672 H.-T. CHIAO AND S.-M. YUAN

• it should if possible offer similar syntaxes and features to those of the Java monitor, and thus be
more acceptable to Java programmers, and reduce the difficulty of translating existing concurrent
Java programs into the EMonitor’s form; and

• it should be portable. Java is a programming language that strongly stresses the property of ‘write
once and run everywhere’. If it is to be a really practical solution, the EMonitor itself must be
implemented solely by Java without any native codes.

The features of the EMonitor

The EMonitor is a language extension to Java. It is a priority monitor, and provides three kinds of
condition queues for different scheduling requirements. Of course, inside an object protected by the
EMonitor, more than one condition queue is allowed.

Conventionally, the semantic of Java inter-monitor nested calls belongs to the so-calledclosed-
call semantic. To prevent the above-discussed deadlocks of inter-monitor nested calls, the EMonitor
provides another semantic—theopen-call semantic[5,14]. Before a thread performs an open inter-
monitor nested call, it will completely release the caller object’s monitor lock, and save the lock-
nested count. After the inter-monitor nested call returns, this thread will acquire the monitor lock again,
reenter the caller monitor, and then restore the previous lock-nested count. Since any thread at any one
time holds at most one monitor lock, mutually dependent deadlock and condition-wait deadlock are
eliminated. However, open calls enforce extra restrictions on the programming style. Before invoking
an open call, the calling thread has to transfer the caller monitor’s state to a consistent state, in which all
the monitor invariants are true. Since preventing deadlock and keeping the programming style simple
are conflicting requirements, the EMonitor offers both open and closed call semantics.

An open call seems to be able to be simulated by synchronized blocks of Java. For example, suppose
a Java methodSource() intends to issue an open call to another methodDest.f() . The following
code fragment shows the implementation that employs two synchronized blocks:

void Source() {
synchronized(this) {

...
}
Dest.f();
synchronized(this) {

...
}

}

In fact, this implementation works correctly only when the nested count of the monitor lock is never
larger than one. This restriction implies that intra-monitor nested calls are not allowed. Consider the
situation where a thread that already holds the monitor lock intends to invoke theSource() method.
Leaving the first synchronized block reduces the lock nested count only by one. Since the count is still
larger than zero, the monitor lock will not be released. Consequently, mutually dependent deadlock
and condition-wait deadlock may still occur.

The Java monitor provides a non-blocking signal semantic only. We choose to retain this semantic
in our EMonitor because it is efficient and for reasons of compatibility, but we also feel that a blocking

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:667–695

JAVA THREAD SYNCHRONIZATION MECHANISM 673

signal semantic [3] is practical and should be included. Using a blocking signal means that the post
condition of the wait method always matches the pre-condition of the corresponding signal method,
making the blocking signal easier to use. Although, in theory, a blocking signal introduces more context
switches than a non-blocking one, our experience indicates that this semantic is slightly less efficient
than the non-blocking signal semantic and thus encourages us to include it in the EMonitor. After
consideration, we decided not to include other possible signal semantics. For example, the quasi-
blocking signal and the automatic signal, both of which are regarded as impractical semantics in the
literature [3], were excluded. Neither, because of possible implementation issues, did we include the
immediate-return signal semantic. The reasons for these decisions will be given later when we discuss
the implementation of the EMonitor. In summary, the EMonitor supports both blocking signal and non-
blocking signal semantics. The non-blocking signal-all semantic of the Java monitor is also included.

The syntax of the EMonitor

The EMonitor can be used in three ways, each with a different granularity of mutual exclusion. The
first option is through anEMonitored class, by which a new class modifier,EMonitored , is added
to Java. When this keyword is inserted into the declaration of a Java class, this class becomes an
EMonitored class. In an instance of an EMonitored class, only one invoked method can run at the
same time. However, for executing more than one method concurrently in an object, theEMonitored
methodcan be employed. We overload the keywordEMonitored as a new method modifier for Java.
Once the declaration of a method includes the keyword, it becomes an EMonitored method. Only one
invoked EMonitored method can be run in an object at the same time. Since the implementation of an
EMonitored class and an EMonitored method is similar, we consider only the EMonitored class in the
rest of this section.

The third option is throughEMonitored blocks, which are similar to synchronized blocks of Java.
The syntax is

EMonitored(EMonitorObject) { ... }

The EMonitoredObject is an instance of theEMonitor class, which implements the monitor
lock of the EMonitor (also called the EMonitor lock). All the statements inside the pair of
braces belong to the EMonitored block. Only one of the EMonitored blocks employing the same
EMonitoredObject is allowed to proceed at the same time.

The EMonitor provides three kinds of condition queues; FIFO, prioritized, and customizable
condition queues. Their class hierarchies are shown in Figure1. A description of each class in the
hierarchies follows.

• Condition class. This abstract class defines the common properties of the other three
public condition queue classes. The responsibility of this class is to maintain the association
between a condition queue and an EMonitor lock. The condition queue can only be accessed
within the critical section that is protected by the associated EMonitor lock. Otherwise, the
IllegalEMonitorStateException defined in the EMonitor class libraries is thrown.

• FIFOCondition class: This class is for the FIFO condition queue, which is primitive and
similar to that offered by Java.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:667–695

674 H.-T. CHIAO AND S.-M. YUAN

Figure 1. The class hierarchies of condition queues.

• PrioritizedCondition class: This class is for the prioritized condition queue, which
is similar to that offered by other existing monitors. A specialized wait method, the
Wait(int Priority) , is provided. In a prioritized condition queue, the pending threads are
sorted according to their priorities. The sorting direction depends on theDirection parameter
of the constructor. In addition, aFront() method is offered for returning the priority of the
first pending thread.

• CustomizableCondition class: This class is for the customizable condition queue, which
is very generalized and has enough expressive power to deal with dynamic scheduling problems.
Basically, it maintains a list of instances of theThreadNode class (usually its subclass). Each
instance of theThreadNode class represents a pending thread, and holds the pending thread’s
object reference. A programmer can customize a subclass of theThreadNode class, and add
any new attributes that have to be associated with a pending thread. Scheduling information is

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:667–695

JAVA THREAD SYNCHRONIZATION MECHANISM 675

carried in these user-defined attributes. Each customizable condition queue has its own cursor,
which can be manipulated by the following five methods:SeekToHead() , SeekToTail() ,
SeekAhead() , SeekBack() , andSetCursor() . A new instance of theThreadNode
class can be inserted into a designated position through either theInsertBefore() or
the InsertAfter() method. Before a thread blocks itself in a customizable condition
queue, it should create a new instance of theThreadNode ’s subclass, set the necessary
attributes, and then traverse the condition queue to find the right position for storing the new
instance. Once the new instance is inserted into the condition queue, the thread can invoke
the Wait() method to suspend itself. Signaling a designated pending thread is done through
either theBlockingSignal() or the NonblockingSignal() method, as long as the
ThreadNode instance of the pending thread is provided. If an unwanted pending thread is
discovered, it can be deleted by theRemove() method.

The EMonitor-versionBoundedBuffer class is shown below. Here we implement it as an
EMonitored class. This implementation avoids the ordering and performance problems of the Java
version.

import EMonitor.lang.*;

public EMonitored class BoundedBuffer {

private int Front = 0, Rear = 0, Counter = 0;
private static final int Size = 10;
private Object Buffer[] = new Object[Size];
private FIFOCondition NotEmpty, NotFull;

public BoundedBuffer() throws Exception {
NotEmpty = new FIFOCondition(this);
NotFull = new FIFOCondition(this);

}

public void Put(Object Obj) throws Exception {
if(Counter == Size)

NotFull.Wait();
Buffer[Rear] = Obj; Rear = (Rear + 1) % Size; Counter++;
if(Counter == 1)

NotEmpty.NonblockingSignal();
}
public Object Get() throws Exception {

Object Result;
if(Counter == 0)

NotEmpty.Wait();
Result = Buffer[Front]; Front = (Front + 1) % Size; Counter--;
if(Counter == Size - 1)

NotFull.NonblockingSignal();

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:667–695

676 H.-T. CHIAO AND S.-M. YUAN

return Result;
}

}

Two points should be noted in this example. First, all classes in the EMonitor class libraries
reside in theEMonitor.lang package, which last therefore must be imported before defining the
BoundedBuffer class. Second, for each condition queue belonging to an EMonitored class, the
instance of the EMonitored class should be passed to the constructor of the condition queue (for
creating the association with the EMonitor lock that is embedded in the instance of the EMonitored
class).

The remaining item of syntax to be introduced relates to inter-monitor nested calls. To issue an open
call, we create a new keywordOpenCall . The syntax of invoking an open call from theSource()
method (which belongs to anEMonitored class) to theDest.f() method is:

void Source() {
...

OpenCall Dest.f();
...

}

If no prefix is specified for an inter-monitor nested call, the original closed call semantic is employed.

The implementation of the EMonitor

We use a preprocessor to translate the EMonitor syntax into several Java codes that invoke the EMonitor
class libraries. The class libraries contain one Java interface, theEMonitoredInterface , and five
public Java classes, which comprise the three public condition queue classes described in the previous
subsection, anEMonitoredThread class, and anEMonitor class. Since both the preprocessor
and the class libraries are implemented by pure Java codes, the underlying Java virtual machine needs
no modification.

TheEMonitoredThread class is a subclass of thejava.lang.Thread class and any thread
using the EMonitor has to be an instance of this class or its subclass. Otherwise, when using any
other public class in the EMonitor class libraries, theNotEMonitoredThreadException will be
thrown. TheEMonitoredThread class contains a lock-count stack to store the lock-nested count of
unreturned open calls. In addition, since theThread.resume() andThread.suspend() of Java
are deadlock-prone [4], theEMonitoredThread class uses its ownResume() andSuspend()
methods in place of the original ones. The source codes of theEMonitoredThread class are shown
in AppendixA.

TheEMonitor class implements a nested lock—the EMonitor lock, and its source codes are shown
in AppendixB. Unlike the Java monitor lock, an EMonitor lock contains four FIFO queues for storing
pending threads: the entry queue, the waiting queue, the signaler queue, and the return queue. The
first three of these has been described in the previous section. The last, the return queue, holds the
pending threads that have just returned from open calls. The relative priorities of these queues are:
Wp > Sp > Rp > Ep (Rp denotes the return queue priority). To prevent the breakup of the

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:667–695

JAVA THREAD SYNCHRONIZATION MECHANISM 677

post condition of the wait method, we give the highest priority to the pending threads in the waiting
queue. For the discussion that follows below, we first show the translated codes of the EMonitored
BoundedBuffer class, where the underscored codes are inserted by the preprocessor.

import EMonitor.lang.*;

public class BoundedBuffer implements EMonitoredInterface {

protected EMonitor EMonitorInstance = new EMonitor();
public EMonitor GetEMonitor() {

return EMonitorInstance;
}

private int Front = 0, Rear = 0, Counter = 0;
private static final int Size = 10;
private Object Buffer[] = new Object[Size];
private FIFOCondition NotEmpty, NotFull;

public BoundedBuffer() throws Exception {
NotEmpty = new FIFOCondition(this);
NotFull = new FIFOCondition(this);

}

public void Put(Object Obj) throws Exception {
EMonitorInstance.Enter();
try
if(Counter == Size)

NotFull.Wait();
Buffer[Rear] = Obj; Rear = (Rear + 1) % Size; Counter++;
if(Counter == 1)

NotEmpty.NonblockingSignal();
} finally { EMonitorInstance.Leave(); }

}

public Object Get() throws Exception {
EMonitorInstance.Enter();
try {
Object Result;
if(Counter == 0)

NotEmpty.Wait();
Result = Buffer[Front]; Front = (Front + 1) % Size; Counter--;
if(Counter == Size - 1)

NotFull.NonblockingSignal();
return Result;

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:667–695

678 H.-T. CHIAO AND S.-M. YUAN

} finally { EMonitorInstance.Leave(); }
}

}
For each instance of an EMonitored class, an EMonitor lock,EMonitorInstance , is

created and embedded in the instance. In addition, to deal with inheritance, an interface,
EMonitoredInterface , is implemented. If an EMonitored class inherited a predefined and
compiled parent class, the preprocessor will determine whether theEMonitoredInterface has
been implemented in the parent class. If theEMonitoredInterface is found in the parent class,
the preprocessor will not create the EMonitor lock and implement theEMonitoredInterface for
the child EMonitored class.

The EMonitor class offers four public methods:Enter() , Leave() , IssueOpenCall() , and
OpenCallReturn() . Enter() is invoked before the first statement of an EMonitored block, or
before the first statement of a method in an EMonitored class. This method acquires the EMonitor lock,
and increases the lock’s nested count by one.Leave() is invoked when leaving an EMonitored block,
or when leaving a method in an EMonitored class. This is achieved by the Java exception handling
mechanismtry{ } finally{ } . Leave() reduces the lock’s nested count by one, which if
resulting in zero releases the EMonitor lock. Since theNotEMonitoredThreadException may
be thrown by any of the above four methods, for each method of an EMonitored class (except the
constructor), the preprocessor determines whether its throw clause covers the exception. If not, the
preprocessor appends the exception to the throw clause.

IssueOpenCall() and OpenCallReturn() are methods for handling open calls. The
translated codes of the previousSource() method are

void Source() throws NotEMonitoredThreadException {
EMonitorInstance.Enter();
try {

...
EMonitorInstance.IssueOpenCall();
Dest.f();
EMonitorInstance.OpenCallReturn();

...
} finally { EMonitorInstance.Leave(); }

}
IssueOpenCall() first pushes the nested count of the EMonitor lock into the lock-count stack of
the current thread, and then entirely releases the EMonitor lock.OpenCallReturn() reacquires the
EMonitor lock after an issued open call returns. The EMonitor’s lock-nested count is also restored to
the value popped from the top of the lock-count stack.

As previously explained, the responsibility of theCondition class is to maintain the association
between a condition queue and an EMonitor lock. The fieldAssociateEMonitor stores the
associated EMonitor lock of a condition queue. Constructing a condition queue that will be accessed
in an EMonitored block is simple. The association between the condition queue and the EMonitor lock
of the EMonitored block can be set up by passing the object reference of the EMonitor lock to the
constructor of the condition queue.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:667–695

JAVA THREAD SYNCHRONIZATION MECHANISM 679

package EMonitor.lang;

abstract class Condition {

protected EMonitor AssociatedEMonitor;

public Condition(Object object) throws IllegalArgumentException{
if(object instanceof EMonitor)

AssociatedEMonitor = (EMonitor) object;
else if(object instanceof EMonitoredInterface)

AssociatedEMonitor = ((EMonitoredInterface) object).GetEMonitor();
else

throw new IllegalArgumentException();
}

}

To create a condition queue that belongs to an instance of an EMonitored class, the object reference
of the instance should be passed to the constructor of the condition queue. The constructor obtains the
associated EMonitor lock through theGetEMonitor() method of theEMonitoredInterface .

In fact, the condition queue classes and theEMonitor class are tightly coupled. TheWait() ,
BlockingSignal() , NonblockingSignal() , andNonblockingSignalAll() methods
of any condition queue class can directly access the internal data structure (lock ownership,
lock counter, waiting queue, signaler queue) of theEMonitor class. We prefer efficiency of
implementation over data encapsulation. Further detail regarding implementation can be had by
referring to the source codes of theFIFOCondition class in AppendixC.

Finally in this subsection, we explain briefly why we excluded the immediate-return signal semantic,
which can provide two kinds of methods. The first, thesignal-and-exitmethod, reduces the overhead
introduced by a thread that calls a signal method and then leaves the monitor immediately. However,
since we use the Java exception handling mechanism to catch the leaving the monitor event, the
EMonitor.Leave() method is always invoked at that point. Thus, the signal-and-exit method
cannot be implemented as a shortcut that bypasses theEMonitor.Leave() and becomes useless.
The second, is thesignal-and-waitmethod. Implementing it, however, is troublesome, because the
EMonitor has more than one kind of condition queue. For any combination of two different kinds of
condition queues, the corresponding signal-and-wait method must be offered. In addition, once a new
kind of condition queue is introduced, each existing condition queue must be modified for the purpose
of adding a new signal-and-wait method.

PERFORMANCE

In this section, we compare the performance of our EMonitor with the Java version. All the
experimental results were gathered in a 266 MHz, dual-Pentium II machine. The operating system
is Windows NT 4.0, and the version of JDK is 1.2.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:667–695

680 H.-T. CHIAO AND S.-M. YUAN

Table I. The overhead when no contention presents.

Synchronized/ Nested Synchronized/ Synchronized/
EMonitored method EMonitored method EMonitored block Open call

Java Monitor 868 ns 171.4 ns 831.3 ns N/A
EMonitor 2600.2 ns 2513.5 ns 2545.9 ns 3260.1 ns

Figure 2. The experiment for testing scheduling programs.

We first compare the performance in the situation where no contention is present. We measure
the overheads of a null synchronized method, a null EMonitored method, a null synchronized block,
a null EMonitored block, and a null open call. The results are shown in TableI. Suppose that the
overhead of acquiring a Java monitor lock and then releasing approximates to the overhead of a null
synchronized block (as is the case for the EMonitor). In our experiments, the overhead of the Java
monitor lock plus the overhead ofThread.currentThread() ((831.3×2)+318.5 = 1981.1 ns)
is the dominant part of the overhead of the EMonitor lock. In addition, the open call overhead
clearly exceeds other EMonitor overheads. This is due to a null open call having to invoke an extra
Thread.currentThread() .

To compare performance in a contention situation, we conducted two different experiments. In the
first, the aforementionedBoundedBuffer classes served as the test program. A producer thread
and multiple consumer threads share a bounded buffer. All the consumer threads are created at once.
To control the contention level, we varied the total number of consumer threads (from 10 to 100,
and from 100 to 1300. The upper bound of 1300 was near the system limit of our test platform.)
For every 8 ms, the producer thread creates a new instance of theObject class, and invokes the
BoundedBuffer.Put() method to store the new instance in the shared buffer. The consumer
threads are issued at a fixed interval of either 5 or 6 ms. Once issued, a consumer thread invokes the
BoundedBuffer.Get() method to retrieve an object instance from the shared buffer. We measured
the time elapsing between when the first consumer thread is issued and when all consumer threads
obtain the desired object instances.

The second experiment concerned scheduling programs (see Figure2). All the test threads were
created in advance, and gathered in a test thread pool. From the starting point of the experiment, the

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:667–695

JAVA THREAD SYNCHRONIZATION MECHANISM 681

(a) 5 ms interval, 10 ~ 100 threads (b) 6 ms interval, 10 ~ 100 threads

0

3000

6000

9000

12000

15000

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

Total Number of Consumer Threads

E
la

ps
ed

 T
im

e
(m

s)

EMB EMNB JM

0

3000

6000

9000

12000

15000

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

Total Number of Consumer Threads

E
la

ps
ed

 T
im

e
(m

s)

EMB EMNB JM

(c) 5 ms interval, 100 ~ 1300 threads (d) 6 ms interval, 100 ~ 1300 threads

0

40

80

120

160

10 20 30 40 50 60 70 80 90 100

Total Number of Consumer Threads

E
la

ps
ed

 T
im

e
(m

s)

EMB EMNB JM

0

40

80

120

160

10 20 30 40 50 60 70 80 90 100

Total Number of Consumer Threads

E
la

ps
ed

 T
im

e
(m

s)

EMB EMNB JM

Figure 3. The experiment results of the bounded buffer.

threads were issued one by one from the pool. The interval separating the issue of the threads was set
at 1 ms. On issue, each thread sent a request to the scheduler. Once permission from the scheduler
was received, the thread took either 2 or 4 ms to perform a scheduled operation, before releasing the
scheduler. For each thread, the time elapsing between issuing the request to the scheduler and releasing
the scheduler was measured. Then, the average elapsed time was calculated.

Three test scheduling programs were used. The first is the above-mentionedFIFOSemaphore
class, which represents the type of problem simple enough to be straightforwardly dealt with by the
Java monitor. The program is basically the same for both the EMonitor and the Java-version, except
that the count of pending threads need not be explicitly maintained in the EMonitor-version. The
second is an elevator disk scheduler [2], which represents the type of static scheduling problem that
can be handled by the EMonitor’s prioritized condition queues. The third is an SSF (shortest-scan-
first) disk scheduler [6], which represents the type of dynamic scheduling problem suitable for the
EMonitor’s customizable condition queues. In this paper, we only show the EMonitor implementations

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:667–695

682 H.-T. CHIAO AND S.-M. YUAN

(a) 2 ms operation, 10 ~ 100 threads (b) 4 ms operation, 10 ~ 100 threads

(c) 2 ms operation, 100 ~ 1300 threads (d) 4 ms operation, 100 ~ 1300 threads

0

40

80

120

160

10 20 30 40 50 60 70 80 90 100

Total Number of Test Threads

E
la

ps
ed

 T
im

e
(m

s)

EMB EMNB JM

0

40

80

120

160

10 20 30 40 50 60 70 80 90 100

Total Number of Test Threads

E
la

ps
ed

 T
im

e
(m

s)

EMB EMNB JM

0

500

1000

1500

2000

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

Total Number of Test Threads

A
ve

ra
ge

 E
la

ps
ed

 T
im

e
(m

s)

EMB EMNB JM

0

500

1000

1500

2000

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

Total Number of Test Threads

A
ve

ra
ge

 E
la

ps
ed

 T
im

e
(m

s)

EMB EMNB JM

Figure 4. The experiment results of the FIFO semaphore.

(non-blocking signal) of the two disk schedulers in AppendixD and AppendixE, respectively. In
addition, one point needs to be mentioned about the Java-version disk schedulers. Since the monitor
lock of Java cannot be acquired or released explicitly, it cannot be used directly as the monitor lock of
the Java-version disk schedulers [4,15]. Here we use another mutually exclusive lock implemented by
Java (theBusyFlag class [4], a no-priority lock) in place of the Java monitor.

The experimental results of the bounded buffer are shown in Figure3. In addition, the results of the
three scheduling programs are shown in Figures4, 5 and6, respectively. In these figures, the term EMB
denotesEMonitor—blocking signal, the term EMNBEMonitor—non-blocking signaland the term JM
Java monitor.

First, we compare the performance of the Java monitor (no-priority, non-blocking signal) with that
of the EMonitor (except that here we temporarily consider the non-blocking signal only). Basically,
the Java version outperforms the EMonitor where thread contention is very low. However, with the
exception of FIFO semaphore, as contention increases the EMonitor correspondingly outperforms the

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:667–695

JAVA THREAD SYNCHRONIZATION MECHANISM 683

(a) 2 ms operation, 10 ~ 100 threads (b) 4 ms operation, 10 ~ 100 threads

(c) 2 ms operation, 100 ~ 1300 threads (d) 4 ms operation, 100 ~ 1300 threads

0

60

120

180

240

10 20 30 40 50 60 70 80 90 100

Total Number of Test Threads

E
la

ps
ed

 T
im

e
(m

s)

EMB EMNB JM

0

60

120

180

240

10 20 30 40 50 60 70 80 90 100

Total Number of Test Threads

E
la

ps
ed

 T
im

e
(m

s)

EMB EMNB JM

0

1000

2000

3000

4000

5000

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

Total Number of Test Threads

A
ve

ra
ge

 E
la

ps
ed

 T
im

e
(m

s)

EMB EMNB JM

0

1000

2000

3000

4000

5000

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

Total Number of Test Threads

A
ve

ra
ge

 E
la

ps
ed

 T
im

e
(m

s)

EMB EMNB JM

Figure 5. The experiment results of the elevator disk scheduler.

Java version. The turning point in performance is application-dependent. In the bounded buffer, it
occurs at around 40 threads. In contrast, the exact turning points with the other two disk schedulers
are more difficult to pinpoint. The EMonitor outdid the Java monitor at more than 80 threads.
With the FIFO semaphore, although the Java monitor consistently outdid the EMonitor, we found
a turning point (around 40 threads) above which the difference between them greatly narrowed.
In Table II , we summarize the difference in performance of the two monitors in terms of the
(elapsed timeJM − elapsed timeEMNB)/elapsed timeEMNB.

The bounded buffer program is used to exploit the effect of the single-condition-queue restriction
of the Java monitor. It can be observed that at around 700 plus consumer threads the Java monitor’s
average elapsed time increases dramatically. This also means that the Java monitor’s single-condition-
queue restriction will have significant impact on performance in situations of medium or high
contention.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:667–695

684 H.-T. CHIAO AND S.-M. YUAN

(a) 2 ms operation, 10 ~ 100 threads (b) 4 ms operation, 10 ~ 100 threads

(c) 2 ms operation, 100 ~ 1300 threads (d) 4 ms operation, 100 ~ 1300 threads

0

60

120

180

240

10 20 30 40 50 60 70 80 90 100

Total Number of Test Threads

E
la

ps
ed

 T
im

e
(m

s)

EMB EMNB JM

0

60

120

180

240

10 20 30 40 50 60 70 80 90 100

Total Number of Test Threads

E
la

ps
ed

 T
im

e
(m

s)

EMB EMNB JM

0

1000

2000

3000

4000

5000

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

Total Number of Test Threads

A
ve

ra
ge

 E
la

ps
ed

 T
im

e
(m

s)

EMB EMNB JM

0

1000

2000

3000

4000

5000

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

Total Number of Test Threads

A
ve

ra
ge

 E
la

ps
ed

 T
im

e
(m

s)

EMB EMNB JM

Figure 6. The experiment results of the SSF disk scheduler.

Table II. The performance differences between the Java monitor and the EMonitor.

Bounded buffer FIFO semaphore Elevator disk scheduler SSF disk scheduler

5 ms Inv. 6 ms Inv. 2 ms Op. 4 ms Op. 2 ms Op. 4 ms Op. 2 ms Op. 4 ms Op.

Before the
turning point −14% −16.1% −34.4% −19.4% −13.9% −9% −16.7% −10.2%
After the
turning point 183.9% 93.3% −4.6% −0.6% 16.7% 11.2% 13.8% 11.1%

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:667–695

JAVA THREAD SYNCHRONIZATION MECHANISM 685

In theory, the performance of a no-priority monitor fails to match that of a priority monitor. However,
in the case of FIFO semaphore we find the Java monitor slightly outperforming the EMonitor, a
phenomenon we attribute to implementation. Since the EMonitor is implemented by the Java monitor,
its implementation overhead outweighs the performance gain of being a priority monitor. Contrast
this with the other two scheduling programs, whose monitor lock, theBusyFlag class, is also
implemented by the Java monitor, and observe that here the EMonitor outperforms the Java version.
However, for these scheduling programs, we consider that the difference in performance of both
monitors is not obvious except where thread contention increases considerably (around 1000 plus
threads) .

In summary, where thread contention is either absent or very low and performance is the
consideration, we recommend the Java monitor for the task of constructing simple concurrent objects
that can be straightforwardly implemented. However, where thread contention exceeds the turning
point, we recommend the EMonitor for the same task because it both avoids the inconvenience of a
no-priority monitor and provides a performance almost equal to that of the Java monitor. We further
recommend the EMonitor for concurrent objects that require multiple or more elaborate condition
queues, tasks which the Java monitor handles only with great difficulty. We found the EMonitor
outperforming Java in dealing with these complex concurrent objects.

Finally in this section we compare the non-blocking and blocking signals of the EMonitor. In fact,
with the exception of the FIFO semaphore (with the 2 ms operation), there is only a light difference in
performance between the two signal semantics (within 4% in most cases). Furthermore, with the above
exception, the performance of the blocking signal is demonstrably poor only when the contention level
nears the system limit (above 1200 test threads). Consequently, since the blocking signal is both easier
to use and offers acceptable performance, we recommend employing it as necessary.

RELATED WORK

Several pieces of research work about thread synchronization mechanism on Java have been proposed.
Basically, they may be categorized into following three paradigms: monitor, active object [16], and
CSP [17]. In fact, among these, only the first is closely related to the EMonitor. Since the focus of this
paper is on offering an improved replacement for the Java monitor, detailed comparison between the
EMonitor and the other two paradigms is beyond our present scope. Hence, they are described only
briefly. Interested readers can find more information and details in the References.

Monitor

Two pieces of research have appeared in which a design pattern [15] and a package [4] are proposed for
providing more than one condition queue inside a Java object. Since how to construct a monitor is well
known, the implementation of the above two proposals is somewhat similar to the EMonitor. However,
apart from dealing with the restriction of a single condition queue, the above pieces of research do
not seriously explore the other drawbacks of the Java monitor. For example, theBusyFlag class [4]
proposed in the above package is merely a poor no-priority monitor lock. In contrast, our paper presents
a comprehensive analysis of the Java monitor and demonstrates that the EMonitor is better than the
proposals contained in the above pieces of research.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:667–695

686 H.-T. CHIAO AND S.-M. YUAN

Active object

The following pieces of research belong to this paradigm: CJava [18], CORRELATE [19], and an
active object design pattern [20]. An active object offers public methods that can be invoked by other
objects, in the same way as a monitor does. However, unlike a monitor, an active object employs
declarative synchronization mechanisms (usually method guards), by which the synchronization policy
of each public method can be specified at a high level and in an implementation-independent way. The
synchronization between method invocations is automatically managed by the run-time system of the
active object. Hence, constructing concurrent objects by active objects is easier. Besides, since well-
designed active objects can fully separate the sequential part from the synchronization part program [8],
they are also less sensitive to the so-called inheritance anomaly [21]. However, the performance of
active objects is poor, especially for pure active implementation [7]. Unfortunately, all the above
Java-based active objects fall into this category. Even when no contention occurs, invoking a method
on a Java-based active object inevitably generates context switches. In addition, since these Java-
based active objects use method guards, they also incur the fast-growing guard evaluation overheads.
Therefore, we consider these Java-based active objects suitable only for coarse-grain concurrent
systems.

CSP

Two other pieces of research belong to this paradigm—JCSP [22] and CTJ [23]. Both of them are Java
class libraries that provide the primitives of the CSP algebra with several extensions. A CSP process
can be regarded as an object with its own thread of control. In addition, a CSP process has no externally
invocable methods, and its own data and algorithm are private. A process can communicate to another
process only by reading and writing data through channels. Basically, channels are one-to-one and
zero-buffered. However, buffered, multiple-reader and multiple-writer channels may also be offered.
A higher-level process can be built through composition. Since the composition of processes can be
nested, to construct an elaborate and powerful process is possible. The chief advantage of a CSP-based
program is that its behavior can be formally verified. This enables the reasoning about race-hazards,
deadlock, starvation, and livelock. Furthermore, the behavior of the program can also be guaranteed.
In fact, the loosely coupled nature of a CSP-based program may generate more overheads. However,
when developing large-scale, reliable systems, performance is not a primary focus. We consider the
CSP-based libraries suitable for these circumstances.

CONCLUSION

We began this paper with a detailed analysis of four known drawbacks of the Java monitor. We then
proposed our own monitor-based replacement—the EMonitor. However, since only Java was used to
implement the EMonitor, no modification to the Java virtual machine was required. A comparative
analysis of the performance of the two monitors was made. We concluded that the Java monitor is
suitable only for constructing simple concurrent objects in situations where thread contention is absent
or very low. That apart, we recommend replacing the Java monitor with the EMonitor for developing
concurrent Java objects.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:667–695

JAVA THREAD SYNCHRONIZATION MECHANISM 687

APPENDIX A. EMonitoredThread CLASS

package EMonitor.lang;

public class EMonitoredThread extends java.lang.Thread {

private IntegerStack LockCountStack = new IntegerStack();
private Object SyncObject = new Object();
private boolean IsSuspended = false;
private boolean IsResumed = false;

/* The IntegerStack class is a variable-size integer stack without internal
synchronization. */

public void StackPush(int LockNestedCount) {
LockCountStack.Push(LockNestedCount);

}

public int StackPop() {
return LockCountStack.Pop();

}

public static EMonitoredThread CurrentEMonitoredThread() throws
NotEMonitoredThreadException {

try {
return (EMonitoredThread) Thread.currentThread();

}
catch(ClassCastException E) {

throw new NotEMonitoredThreadException();
}

}

public void Resume() {
synchronized(SyncObject) {

if(IsSuspended) {
IsSuspended = false;
try { SyncObject.notify(); } catch (Exception E) { E.printStackTrace(); }

}
else {

IsResumed = true;
return;

}
}

}

public void Suspend() {
synchronized(SyncObject) {

if(!IsResumed) {
IsSuspended = true;
try { SyncObject.wait(); } catch (Exception E) { E.printStackTrace(); }

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:667–695

688 H.-T. CHIAO AND S.-M. YUAN

}
else {

IsResumed = false;
return;

}
}

}

}

APPENDIX B. EMonitor CLASS

package EMonitor.lang;

public class EMonitor {

protected int LockNestedCount = 0;
protected EMonitoredThread LockOwner = null;
private FIFOThreadQueue EntryQueue = new FIFOThreadQueue();
private FIFOThreadQueue ReturnQueue = new FIFOThreadQueue();
protected FIFOThreadQueue WaitingQueue = new FIFOThreadQueue();
protected FIFOThreadQueue SignallerQueue = new FIFOThreadQueue();

/* The FIFOThreadQueue class is an unsynchronized, variable-size FIFO queue
that stores the instances of the EMonitoredThread class. */

protected EMonitoredThread GetResumedThread() {

EMonitoredThread ResumedThread = WaitingQueue.Delete();

if(ResumedThread == null) {
ResumedThread = SignallerQueue.Delete();
if(ResumedThread == null) {

ResumedThread = ReturnQueue.Delete();
if(ResumedThread == null)

ResumedThread = EntryQueue.Delete();
}

}
return ResumedThread;

}

public void Enter() throws NotEMonitoredThreadException {

boolean IsSuspend;
EMonitoredThread CurrentThread = EMonitoredThread.CurrentEMonitoredThread();

synchronized(this) {
if(LockOwner == null) {

LockOwner = CurrentThread;

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:667–695

JAVA THREAD SYNCHRONIZATION MECHANISM 689

LockNestedCount = 1;
IsSuspend = false;

}
else if(LockOwner == CurrentThread) {

LockNestedCount++;
IsSuspend = false;

}
else {

EntryQueue.Insert(CurrentThread);
CurrentThread.StackPush(1);
IsSuspend = true;

}
}

if(IsSuspend)
CurrentThread.Suspend();

else
return;

}

public synchronized void Leave() throws NotEMonitoredThreadException {

EMonitoredThread ResumedThread;

LockNestedCount--;
if(LockNestedCount == 0) {

ResumedThread = GetResumedThread();
if(ResumedThread != null) {

LockOwner = ResumedThread;
LockNestedCount = ResumedThread.StackPop();
ResumedThread.Resume();

}
else

LockOwner = null;
}
return;

}

public synchronized void IssueOpenCall() throws NotEMonitoredThreadException {

EMonitoredThread ResumedThread;

(EMonitoredThread.CurrentEMonitoredThread()).StackPush(LockNestedCount);
ResumedThread = GetResumedThread();
if(ResumedThread != null) {

LockOwner = ResumedThread;
LockNestedCount = ResumedThread.StackPop();
ResumedThread.Resume();

}
else {

LockOwner = null;

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:667–695

690 H.-T. CHIAO AND S.-M. YUAN

LockNestedCount = 0;
}
return;

}

public void OpenCallReturn() throws NotEMonitoredThreadException {

boolean IsSuspend;
EMonitoredThread CurrentThread = EMonitoredThread.CurrentEMonitoredThread();

synchronized(this) {
if(LockOwner == null) {

LockOwner = CurrentThread;
LockNestedCount = CurrentThread.StackPop();
IsSuspend = false;

}
else {

ReturnQueue.Insert(CurrentThread);
IsSuspend = true;

}
}

if(IsSuspend)
CurrentThread.Suspend();

else
return;

}

}

APPENDIX C. FIFOCondition CLASS

package EMonitor.lang;

public class FIFOCondition extends Condition {

private FIFOThreadQueue ConditionQueue = new FIFOThreadQueue();

// A protected field AssociatedEMonitor is inherited from the Condition class.

public FIFOCondition(Object object) throws IllegalArgumentException {
super(object);

}

public int Length() {
return ConditionQueue.Length();

}

public void Wait() throws IllegalEMonitorStateException,
NotEMonitoredThreadException {

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:667–695

JAVA THREAD SYNCHRONIZATION MECHANISM 691

EMonitoredThread CurrentThread = EMonitoredThread.CurrentEMonitoredThread();
EMonitoredThread ResumedThread;

synchronized(AssociatedEMonitor) {

if(AssociatedEMonitor.LockOwner != CurrentThread)
throw new IllegalEMonitorStateException();

CurrentThread.StackPush(AssociatedEMonitor.LockNestedCount);
ConditionQueue.Insert(CurrentThread);

ResumedThread = AssociatedEMonitor.GetResumedThread();
if(ResumedThread != null) {

AssociatedEMonitor.LockOwner = ResumedThread;
AssociatedEMonitor.LockNestedCount = ResumedThread.StackPop();
ResumedThread.Resume();

}
else {

AssociatedEMonitor.LockOwner = null;
AssociatedEMonitor.LockNestedCount = 0;

}
}
CurrentThread.Suspend();

}

public void BlockingSignal() throws IllegalEMonitorStateException,
NotEMonitoredThreadException {

EMonitoredThread CurrentThread = EMonitoredThread.CurrentEMonitoredThread();
EMonitoredThread SignalledThread;

synchronized(AssociatedEMonitor) {

if(AssociatedEMonitor.LockOwner != CurrentThread)
throw new IllegalEMonitorStateException();

SignalledThread = ConditionQueue.Delete();
if(SignalledThread != null) {

CurrentThread.StackPush(AssociatedEMonitor.LockNestedCount);
(AssociatedEMonitor.SignallerQueue).Insert(CurrentThread);
AssociatedEMonitor.LockOwner = SignalledThread;
AssociatedEMonitor.LockNestedCount = SignalledThread.StackPop();
SignalledThread.Resume();

}
}
if(SignalledThread != null)

CurrentThread.Suspend();
}

public void NonblockingSignal() throws IllegalEMonitorStateException,
NotEMonitoredThreadException {

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:667–695

692 H.-T. CHIAO AND S.-M. YUAN

EMonitoredThread CurrentThread = EMonitoredThread.CurrentEMonitoredThread();
EMonitoredThread SignalledThread;

synchronized(AssociatedEMonitor) {

if(AssociatedEMonitor.LockOwner != CurrentThread)
throw new IllegalEMonitorStateException();

SignalledThread = ConditionQueue.Delete();
if(SignalledThread != null)

(AssociatedEMonitor.WaitingQueue).Insert(SignalledThread);
}

}

public void NonblockingSignalAll() throws IllegalEMonitorStateException,
NotEMonitoredThreadException {

EMonitoredThread CurrentThread = EMonitoredThread.CurrentEMonitoredThread();
EMonitoredThread SignalledThread;

synchronized(AssociatedEMonitor) {

if(AssociatedEMonitor.LockOwner != CurrentThread)
throw new IllegalEMonitorStateException();

SignalledThread = ConditionQueue.Delete();
while(SignalledThread != null) {

(AssociatedEMonitor.WaitingQueue).Insert(SignalledThread);
SignalledThread = ConditionQueue.Delete();

}
}

}

}

APPENDIX D. ELEVATOR DISK SCHEDULER

import EMonitor.lang.*;

public EMonitored class DiskHeadScheduler {

private boolean IsBusy = false;
private int HeadPosition = 0;
private static final boolean UpDirection = false;
private static final boolean DownDirection = true;
private boolean Direction = UpDirection;

private PrioritizedCondition UpSweep;
private PrioritizedCondition DownSweep;

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:667–695

JAVA THREAD SYNCHRONIZATION MECHANISM 693

/* The pending threads in UpSweep are sorted ascendantly.
In contrast, the pending threads in DownSweep are sorted descendently. */

public DiskHeadScheduler() throws Exception {
UpSweep = new PrioritizedCondition(this, UpDirection);
DownSweep = new PrioritizedCondition(this, DownDirection);

}

public void Request(int TargetCylinder) throws Exception {
if(IsBusy) {

if((HeadPosition <= TargetCylinder) && (Direction == UpDirection))
UpSweep.Wait(TargetCylinder);

else
DownSweep.Wait(TargetCylinder);

}
IsBusy = true;
HeadPosition = TargetCylinder;

}

public void Release() throws Exception {
IsBusy = false;
if(Direction == UpDirection) {

if(!UpSweep.IsEmpty())
UpSweep.NonblockingSignal();

else {
Direction = DownDirection;
DownSweep.NonblockingSignal();

}
}
else { // Direction == DownDirection

if(!DownSweep.IsEmpty())
DownSweep.NonblockingSignal();

else {
Direction = UpDirection;
UpSweep.NonblockingSignal();

}
}

}

}

APPENDIX E. SSF DISK SCHEDULER

import EMonitor.lang.*;

class CylinderThreadNode extends ThreadNode {
protected int Cylinder;

}

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:667–695

694 H.-T. CHIAO AND S.-M. YUAN

public EMonitored class DiskHeadScheduler {

private boolean IsBusy = false;
private int HeadPosition = 0;
private CustomizableCondition PendingRequest;

public DiskHeadScheduler() throws Exception {
PendingRequest = new CustomizableCondition(this);

}

public void Request(int TargetCylinder) throws Exception {

CylinderThreadNode NewNode;
ThreadNode TailNode;

if(IsBusy) {
NewNode = new CylinderThreadNode();
NewNode.Cylinder = TargetCylinder;
TailNode = PendingRequest.SeekToTail();
PendingRequest.InsertAfter(TailNode, NewNode);
PendingRequest.Wait();

}
IsBusy = true;
HeadPosition = TargetCylinder;

}

public void Release() throws Exception {

CylinderThreadNode CurrentNode;
CylinderThreadNode SignalledNode;

IsBusy = false;
if(!PendingRequest.IsEmpty()) {

SignalledNode = (CylinderThreadNode) PendingRequest.SeekToHead();
CurrentNode = (CylinderThreadNode) PendingRequest.SeekAhead();

/* If the cursor has already pointed to the last ThreadNode instance
of a customizable queue, the SeekAhead() will return null. */

while(CurrentNode != null) {
if(Math.abs(CurrentNode.Cylinder - HeadPosition) <

Math.abs(SignalledNode.Cylinder - HeadPosition))
SignalledNode = CurrentNode;

CurrentNode = (CylinderThreadNode) PendingRequest.SeekAhead();
}
PendingRequest.NonblockingSignal(SignalledNode);

}
}

}

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:667–695

JAVA THREAD SYNCHRONIZATION MECHANISM 695

ACKNOWLEDGEMENTS

The authors wish to thank the two anonymous reviewers for their comments on an earlier version of this
paper. In addition, we gratefully acknowledge the financial support of both the National Science Council (grant
NSC88-2213-E-009-087 and grant NSC89-2213-E-009-069) and the ROC Economic Bureau (industrial research
program 89-EC-2-A-17-0285-006). We are also much obliged to our colleague, Pin-Huang Hsin, who helped solve
problems during the coding of the EMonitor’s preprocessor.

REFERENCES

1. Gosling J, Joy B, Steele G.The Java Language Specification. Addison-Wesley: Reading, MA, 1996.
2. Hoare C. Monitor: An operating system constructing concept.CACM1974;17(10):549–557.
3. Buhr P, Fortier M, Coffin M. Monitor classification.ACM Computing Surveys1995;27(1):63–107.
4. Oaks S, Wong H.Java Threads(2nd edn). O’Reilly & Associates: Sebastopol, CA, 1999.
5. Andrews G.Concurrent Programming—Principles and Practice. The Benjamin/Cummings: Redwood City, CA, 1991.
6. Gehani N. Capsules: A shared memory access mechanism for concurrent C/C++.IEEE Transactions on Parallel and

Distributed Systems1993;4(7):795–811.
7. Holmes D, Noble J, Potter J. Towards reusable synchronization for object-oriented languages.Proceedings of the Aspect-

Oriented Programming Workshop at ECOOP ’98, 1998.
8. McHale C. Synchronization in concurrent, object-oriented languages: Expressive power, genericity and inheritance.PhD

Thesis, 1994, Trinity College, Dublin, Ireland.
9. Olsson R, McNamee C. Experience using the C preprocessor to implement CCR, Monitor, and CSP preprocessors for SR.

Software—Practice and Experience1996;26(2):125–134.
10. Stubbs S, Carver D, Hoppe A. IPCC++: A concurrent C++ based on a shared-memory model.Journal of Object-Oriented

Programming1995;8(2):45–50, 66.
11. Yuan S, Hsu Y. Design and implementation of a distributed monitor facility.Computer Systems Science and Engineering

1997;12(1):43–51.
12. Brosgol B. A comparison of the concurrency features of Ada 95 and Java.ACM Ada Letters1998;18(6):175–192.
13. Varela C, Agha G. What after Java? From objects to actors.Computer Networks and ISDN Systems1998;30(1–7):573–577.
14. Kotulski L. About the semantic nested monitor calls.SIGPLAN Notices1987;22(4):80–82.
15. Lea D.Concurrent Programming in Java—Design Principles and Patterns(2nd edn). Addison-Wesley: Reading, MA,

1999.
16. Agha G.Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press: Cambridge, MA, 1986.
17. Hoare C. Communicating sequential processes.CACM1978;21(8):666–677.
18. Cugola G, Ghezzi C. CJava: Introducing concurrent objects in Java.Proceedings of International Conference on Object-

Oriented Information Systems, Brisbane, Australia, November 1997; 504–514.
19. Robben B, Matthijs F, Vanhaute B. Experience with CORELLATE. Proceedings of OOPSLA ’97 Workshop on Java-Based

Paradigms for Mobile Objects, 1997.
20. Carroll M. Active objects made easy.Software—Practice and Experience1998;28(1):1–21.
21. Matsuoka S, Yonezawa A. Analysis of inheritance anomaly in object-oriented concurrent programming languages.

Research Directions in Concurrent Object-Oriented Programming. MIT Press: Cambridge, MA, 1993; 107–150.
22. Welch P.CSP for Java (What, Why, and How Much?). JCSP Project Homepage http://www.cs.ukc.ac.ul/projects/ofa/jcsp

[November 1999].
23. Hilderink G.Communicating Threads for Java—Tutorial for the CSP Package Version 0.9, Revision 10. University of

Twente, Netherlands, http://www.rt.el.utwente.nl/javapp/ [1998].

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:667–695

	THE JAVA MONITOR AND ITS DRAWBACKS
	No-priority monitor
	Only one condition queue is offered
	No support for scheduling
	Deadlock of inter-monitor nested calls

	THE EMonitor
	The features of the EMonitor
	The syntax of the EMonitor
	The implementation of the EMonitor

	PERFORMANCE
	RELATED WORK
	Monitor
	Active object
	CSP

	CONCLUSION
	APPENDIX A. EMonitoredThread CLASS
	APPENDIX B. EMonitor CLASS
	APPENDIX C. FIFOCondition CLASS
	APPENDIX D. ELEVATOR DISK SCHEDULER
	APPENDIX E. SSF DISK SCHEDULER

