
Termination Detection Protocols for
Mobile Distributed Systems

Yu-Chee Tseng, Member, IEEE Computer Society, and Cheng-Chung Tan

AbstractÐThis paper studies a fundamental problem, the termination detection problem, in distributed systems. Under a wireless

network environment, we show how to handle the host mobility and disconnection problems. In particular, when some distributed

processes are temporarily disconnected, we show how to capture a weakly terminated state where silence has been reached only by

those currently connected processes. A user may desire to know such a state to tell whether the mobile distributed system is still

running or is silent because some processes are disconnected. Our protocol tries to exploit the network hierarchy by combining two

existing protocols together. It employs the weight-throwing scheme [9], [16], [21] on the wired network side, and the diffusion-based

scheme [5], [13] on each wireless cell. Such a hybrid protocol can better pave the gaps of computation and communication capability

between static and mobile hosts, thus more scalable to larger distributed systems. Analysis and simulation results are also presented.

Index TermsÐDistributed computing, distributed protocol, mobile computing, operating system, termination detection, wireless

network.

æ

1 INTRODUCTION

ONE major breakthrough in computer communication
recently is the extension from wired to wireless

transmission. Wireless communication products ranging
from LAN, MAN, to WAN are available commercially [7],
[8]. Another breakthrough in computing devices is the
maturity of light-weight, economic, hand-held laptop and
palmtop computers. This has made mobile computing (or
nomadic computing) possible [11]. Users can carry computers
(or mobile hosts) while moving around and remain in touch
with networks.

Designing a distributed system with wireless commu-
nication components does pose some new challenges. First,
distributed processes in mobile hosts have mobility. Second,

mobile hosts are inherently weaker in computing capability
than fixed hosts. Third, wireless communication has less
(about an order or two) bandwidth and higher error rate
compared to wired communication. These have interested a
lot of researchers. Issues that have been considered on

mobile distributed environments include message causal
ordering [2], [18], [24], fault tolerance [1], distributed
snapshot [23], and distributed checkpointing [12], [19].

In this paper, we study one fundamental problem, the
termination detection problem, in a mobile distributed system.

As a basic problem in operating system design, termination
detection refers to the necessity of determining whether a
set of distributed processes has entered a ªsilentº status
where all processes are idle and no further computation is

possible, taking the unpredictable message delays into
account [20]. This problem was first identified by Dijkstra
and Scholten [5], which has then inspired a lot of studies [4],
[6], [9], [13], [14], [16], [17], [21], [22]. It has applications in
diffusion computation [5], distributed workpool [15], and
distributed garbage collection. It also serves a part in
checking stable states (such as deadlock and token loss) in a
distributed system [10], [20].

Under a wireless network environment, we propose a
termination detection protocol that can handle the host
mobility and disconnection problems. We assume that the
mobility problem is not directly supported by the under-
lying protocol, and should be taken care of by the
termination detection protocol. In particular, when some
distributed processes are temporarily disconnected, we
newly define a weakly terminated state where ªsilenceº has
been reached only by those currently connected processes
in the distributed system. Our protocol can catch such a
state so that a user will not be caught in the dilemma of
wondering whether the mobile distributed system is still
running or is silent because some mobile processes are
disconnected. To exploit the network hierarchy, our
protocol is in fact a combination of two existing protocols
designed for static distributed systems. It employs the
weight-throwing scheme [9], [16], [21] on the wired network
side, and the diffusion-based scheme [5], [13] on each wireless
cell. It is shown that such a hybrid approach can better pave
the gaps of computation and communication capability
between static and mobile hosts, thus more scalable to
larger distributed systems. Through analyses and simula-
tions, we demonstrate that our protocol places less demand
of space and computing power on mobile hosts and of
communication bandwidth on wireless links.

The rest of this paper is organized as follows: In
Section 2, the distributed termination detection problem is
formally defined and two existing protocols are reviewed.
Our hybrid protocol is presented in Section 3, followed by

558 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 6, JUNE 2001

. Y.-C. Tseng is with the Department of Computer Science and Information
Engineering, National Chiao-Tung University, Hsin-Chu 30050, Taiwan.
E-mail: yctseng@csie.nctu.edu.tw.

. C.-C. Tan is with the Department of Computer Science and Information
Engineering, National Central University, Chung-Li 32054, Taiwan.
E-mail: cctan@iii.org.tw.

Manuscript received 14 July 1999; revised 26 Sept. 2000; accepted 7 Feb.
2001.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 110239.

1045-9219/01/$10.00 ß 2001 IEEE

comparisons and simulation results in Section 4. Conclu-
sions are drawn in Section 5.

2 PRELIMINARIES AND REVIEWS

2.1 Distributed Termination Detection

A distributed system consists of a set of autonomous

processes S � fP1; P2; ; Pngwhich cooperate with each other

to complete a job. Processes can communicate with each

other by message-passing. Logically, from each Pi to each

Pj, there is a communication channel Ci;j. A process may

switch between two states: active and idle. A process, when

performing some computation, is said to be in the active

state. An active process is free to send/receive messages

and may become idle spontaneously. On idle state, a

process does not perform any computation, but can

passively receive messages, on which event it becomes

active immediately and starts computations. For distinction,

computation carried out and messages transmitted by the

system are called basic computation and basic messages,

respectively.
A distributed system is said to be terminated iff 1) Pi is

idle and 2) Ci;j is empty, for all 1 � i; j � n. (Condition 2 is
necessary because message delays are unpredictable and
any ªhiddenº message will wake the system up later.)
When terminated, no distributed process can become active
and perform any further computation. Due to the variation
of processor speeds and the unpredictability of message
delays, detecting such a status is usually nontrivial. In the
literature, this is known as the distributed termination
detection problem. Extra messages (typically called control
messages) are sent and/or extra information is associated
with basic messages to detect such a state.

2.2 Review: The Diffusion-Based Scheme

The diffusion-based scheme [5], [13] detects termination
following the expansion of the basic computation. Below,
we present the version by [13]. The basic idea is to maintain
a logical tree connecting all active (and perhaps some idle)
processes. The basic computation is assumed to start from
process P1, which is regarded as the root of the tree. The
tree may expand or shrink dynamically. When the tree
shrinks to P1 only and P1 is idle, the system is terminated.

The tree is maintained by the following data structures in
each process Pi:

. pari: the parent of Pi. Initially, it is NULL.

. ini�1::n�: an array of integers, where ini�j� is the
number of basic messages that have been received
from Pj but have not been acknowledged. Initially,
this value is 0.

. outi: an integer indicating the number of basic
messages that have been sent by Pi but have not
been acknowledged. Initially, outi � 0.

The detection scheme consists of four event-driven rules
of the format ªevent) action,º where action is the program
segment to be executed when event occurs.

A1. On Pi sending a basic message to another process
) outi :� outi � 1;

A2. Pi receiving a basic message from Pj)
ini�j� :� ini�j� � 1;
if (pari � NULL� ^ �i 6� 1� then pari :� j;

A3. On Pi turning idle)
reply minor(i);
if �outi � 0� then reply major�i�;

A4. Pi receiving an ACK�k�)
outi :� outi ÿ k;
if (Pi is idle) ^ (outi � 0) then reply major�i�;

For the tree to shrink, acknowledgments should be sent.

We call a message a major message if it was from Pi's

parent, otherwise, it is a minor message. Minor messages

can be acknowledged whenever Pi turns idle, but major

messages can only be acknowledged when Pi is idle and all

Pi's outgoing messages have been acknowledged. The

following procedures are for this purpose:

Procedure reply minor�i�
begin

for each j 6� pari such that ini�j� 6� 0 do

else

send an ACK�ini�j�� to Pj;
ini�j� :� 0;

end for;
end.
Procedure reply major�i�
begin

if (i = 1) then report termination
send an ACK�ini�pari�� to process pari;
ini�pari� :� 0;
pari :� NULL;

end if;
end.

2.3 Review: The Weight-Throwing Scheme

According to the problem definition, to detect termination,

we mainly need to collect two kinds of information: 1) the

idleness of processes and 2) the emptiness of communica-

tion channels. The weight-throwing scheme [9], [16] collec-

tively represents them using one notion called weight. A

weight is simply a real number, which can either be held by

a process or be appended at a basic message while

transmitted.
Initially, a predesignated process Pc (called weight

collector) holds a weight wc � 1 and all other process
Pi; i 6� c; holds a weight wi � 0. Process Pc is typically
the one who starts the basic computation. It also serves
as the central coordinator for termination detection. The
protocol is derived based on a weight-invariant concept.
It consists of four rules:

B1. On Pi sending a basic message to another process)
partition wi into two positive reals x and y such that

x� y � wi;
append the weight x to the basic message;
wi :� y;

B2. On Pj receiving a basic message with weight x)
wj :� wj � x;

TSENG AND TAN: TERMINATION DETECTION PROTOCOLS FOR MOBILE DISTRIBUTED SYSTEMS 559

B3. On Pi; i 6� c; switching from active to idle)
send a weight-report message WGT �wi� to Pc;
wi :� 0;

B4. On Pc receiving WGT �wi� from Pi) wc :� wc � wi;
Throughout, two important invariants are preserved by

the protocol:

1. Every active process holds a positive weight. Every
in-transit basic and control message also holds a
positive weight.

2. The sum of weights held by Pc, all active processes,
all in-transit basic, and all in-transit control mes-
sages, is equal to 1 at the same time.

Therefore, when Pc becomes idle and finds a weight of 1 at

its hand, no processes can be active and no messages can be

in-transit. So termination of the system can be announced.

2.4 Discussion

Below, we compare the strength and weakness of these two

schemes, intending to motivate the work (a hybrid protocol)

in this paper.
Space Complexity. The diffusion-based scheme needs an

array of size O�n� (array in� �) in each process, where n is the

size of the distributed system, while the weight-throwing

scheme has a space complexity of O�1� in each process. So

the latter is more scalable in system size.
Computing Compelxity. Integers are used to maintain

the tree T in the diffusion-based scheme, while floating

numbers are used to represent weights in the weight-

throwing scheme. Note that the regular hardware-sup-

ported floating-point arithmetic (which usually incurs

truncating/rounding errors) should not be used with the

weight-throwing scheme. Weights must be lossless and

must be precisely represented to ensure correctness. This

implies a software-emulated floating-point arithmetic and

sometimes weight borrowing to take care of the repeated

weight-split and combine problems [9], [16]. The weight

calculation is computationally more costly.
Time Complexity. Let's define detection delay to be the

time that a protocol takes to correctly report the termination

status after a distributed system is terminated. In the

diffusion-based scheme, this is reflected by the height of T

and thus the detection delay is O�n�. The delay for the

weight-throwing scheme is O�1� as weights are always sent

directly to the weight collector.
Communication Bandwidth. Both schemes were proved

to be asymptotically optimal in terms of the number of

control messages sent per basic message [13]. Looking in

more details, we see that the weight-throwing scheme

needs to append a weight on each basic message while

there is no such cost for the diffusion scheme. However,

counting the number of control messages being sent each

time a mobile process turns idle, we see that exactly one

WGT �� message is sent by the weight-throwing scheme,

while the diffusion scheme will send nmaj and nmin ACK��'s
to acknowledge major and minor messages, respectively,

where nmaj � 0 or 1, nmin � 0, but nmaj � nmin � 1.

3 A HYBRID TERMINATION DETECTION PROTOCOL

3.1 System Model

A distributed system consists of a set of processes
fP1; P2; . . . ; Png. For distinction, a process Pi on a static
host will be called a static process and denoted as Ps

i and that
on a mobile host called mobile process and denoted as Pm

i .
We consider a network architecture consisting of a wired
part as the backbone connecting to a set of base stations
fPb

1 ; P
b
2 ; . . . ; P b

mg. Communications to and from a mobile
process must be relayed by a base station. The transmission
range covered by a base station is called a cell. Each base
station serves as a mobile-support station (MSS) [1], [2], [3],
[19], [24] and can cooperate with the distributed system to
detect the terminated status of the system. In general, any
Ps
i , Pm

i , and Pb
i can be referred to as a ªprocess.º Message

transmission between any two processes is reliable, but
unpredictable, and follows a FIFO (first-in-first-out) model.

A mobile process can roam around any base station, and
may roam off its current base station and become
temporarily disconnected. A disconnected process can still
perform computation, but all communication jobs to and
from it should be suspended for future processing. We thus
define two kinds of termination statuses as follows:

Definition 1. A distributed system is strongly terminated if all
processes are idle and there is no in-transit basic message. It is
called weakly terminated if such a state is reached by all
processes except disconnected processes.

Knowing a system has entered a weakly terminated state
is better than keeping a user waiting uncertain of the
system's current state. (Still running? Or some mobile hosts
being disconnected?) Our yet-to-be-presented protocol can
even determine which processes have reached such a state.

3.2 Basic Idea and Data Structures

Our protocol is a hybrid of the diffusion-based and weight-
throwing schemes. On each wireless cell, the diffusion-
based scheme is used. While on the wired networks, the
weight-throwing scheme is used. The base stations work in
between to bridge these two protocols together. Our
intention is to impose less burden (including storage,
computation, and communication) on mobile processes,
but not to sacrifice efficiency in the termination detection
job. Intuitively, the weight-throwing scheme is better in
both space and detection latency when the network scale is
large, but it has to deal with real numbers. The diffusion
scheme deals with only integer and, when applied on a
wireless cell, will be a fine choice because all mobile hosts
within a cell can talk to each other directly in one-hop. This
is why we make such combinations.

As the weight-throwing scheme is used on the wired
network, each static process Ps

k should keep a weight wk.

We assume that there is a special static process called Ps
c

serving as the weight collector (alternatively, we can let

some base station Pb
c play this role). Process Ps

c has an initial

weight of wc � 1. It also serves as the starter of the

distributed computation (or, any process intending to begin

a distributed computation cannotify Ps
c to ªstartº the

computation by sending a virtual basic message to it). In

560 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 6, JUNE 2001

addition, to handle the mobility issue, Ps
c needs three new

variables:

. 	: the set of temporarily disconnected processes.

. : the total weight held by the processes in 	.

. outc�1::n�: to store the numbers of unacknowledged
basic messages for those temporarily disconnected
processes in 	.

On each mobile process Pm
j , a simplified diffusion-based

scheme is used. Only one variable is kept by Pm
j :

. inj: the number of basic messages that have been
received (from base stations) but have not been
acknowledged.

Note that the pointer to Pm
j 's parent and the variable out

used in the original diffusion-based scheme are not needed

any more. Further, the array inj�1::n� is now reduced to a

scalar. Intuitively, this is because a mobile process always

regards its current base station as its parent, to which all

communications will be addressed.
Each base station Pb

i needs to run both protocols and,

thus, will keep the following variables:

. wi: the weight Pb
i holding at hand.

. �i: the set of mobile processes currently supported
by Pb

i .
. outi�1::n�: an array of integers, where outi�j� is the

number of basic messages that have been sent to
Pm
j 2 �i, but have not been acknowledged.

Note that on the contrary, the scalar outi in the original

scheme is now extended to an array. Intuitively, this is for

the purpose of detecting the weakly terminated state.
Some of these variables are illustrated and related by

messages in Fig. 1. The message types to be used in our

protocol are listed below.

. M: a basic message; if M is appended with a weight
w, we will write M�w�.

. WGT �w�: a message reporting a weight of w.

. ACK�k�: an acknowledgment of k basic messages.

. HF : handoff-related message which contains four
subtypes: HF:req;HF:ind; HF:reply; and HF:ack.

. DISC�Pm
k ; i; w�: a message associated with a weight

w to report that a mobile process Pm
k is disconnected

and has i unacknowledged basic messages.

3.3 The Protocol

3.3.1 Static and Weight-Collecting Process

Each static process, including the weight collector Ps
c , runs

the original weight-throwing rules B1±B4 in Section 2.3.

(How Ps
c announces termination is in Section 3.3.7.)

3.3.2 Mobile Processes

Each mobile process Pm
j runs a simplified diffusion-based

scheme by always assuming its current base station as its

parent and imagining all basic messages as being issued

from or addressed to the base station.

C1. On Pm
j sending a basic message to another process)

do nothing;
C2. On Pm

j receiving a basic message from its base station
) inj :� inj � 1;

C3. On Pm
j turning idle) reply();

Compared to the original diffusion-based scheme in

Section 2.2, A1 in fact turns to a null action (C1 is presented

here only for clarity), A2 is simplified, and A3 and A4 are

merged into a simpler rule. There is no concept of major or

minor messages within a cell, so reply major�� and

reply minor�� are merged into a simpler reply�� as follows:

Procedure reply��
begin

Send an ACK�inj� to its base station;
inj :� 0;

end.

3.3.3 Base Stations

Each base station Pb
i serves as a bridge between the wired

and wireless networks. It first tries to detect the termination

of all its local mobile processes based on the diffusion

protocol. On finding this being true, it reports to Ps
c

following the weight-throwing protocol:

D1. On Pb
i receiving an M�x� from the wired networks

destined to a Pm
j 2 �i)

wi :� wi � x;
outi�j� :� outi�j� � 1;
Forward M (without appending x) to Pm

j ;
D2. On Pb

i receiving an M from a local mobile process 2 �i

destined to a process Pj)
if Pj 2 �i, then /� for a local mobile process �/

TSENG AND TAN: TERMINATION DETECTION PROTOCOLS FOR MOBILE DISTRIBUTED SYSTEMS 561

Fig. 1. The data structures and messages used by our hybrid termination detection protocol.

outi�j� :� outi�j� � 1;
Forward M to Pm

j ;
else /� for a nonlocal process �/

Forward M�wi=2� to Pj;
wi :� wi=2;

end if;
D3. On Pb

i receiving an ACK�k� from a Pm
j 2 �i)

outi�j� :� outi�j� ÿ k;
if (outi�x� � 0 for all Pm

x 2 �i) then

Send a WGT �wi� to the weight collector Ps
c ;

wi :� 0;
end if;

The above rules guarantee two important properties:

Property 1. �outi�j� � 0��) (Pm
j 2 �i is idle) ^ (there is no

in-transit basic message between Pb
i and Pm

j).

Property 2. �wi � 0��) (each Pm
j 2 �i is idle) ^ (there is no

in-transit basic message between Pb
i and each Pm

j 2 �i).

To prove Property 1, first observe that when outi�j� � 0, all

basic messages sent to Pm
j have been acknowledged, so Pm

j

must be idle and the channel from Pb
i to Pm

j is empty. By C3,

when Pm
j turns idle, the last message sent out by it must be

an ACK��. As the channel is FIFO, this ACK�� will flush all

basic messages sent from Pm
j to Pb

i . So the channel from Pm
j

to Pb
i must be empty and this proves Property 1. Property 2

can be proven by examining each Pm
j 2 �i based on

Property 1. It follows that D3 will lead to Property 2.

3.3.4 Hand-Off of Mobile Processes

When a mobile process Pm
k is handed off from its current

base station Pb
i to another Pb

j , the following rules are used:

Fig. 2 illustrates these steps.

E1. On Pm
k intending to be hand-off from Pb

i to Pb
j)

Pm
k sends a HF:req�Pb

i � to Pb
j and waits for Pb

j 's
HF:ack until it times out;

Pm
k stops sending and receiving any message until

HF:ack is received;
E2. On Pb

j receiving HF:req�Pb
i � from Pm

k) Pb
j sends a

HF:ind�Pm
k � to Pb

i ;
E3. On Pb

i receiving HF:ind�Pm
k � from Pb

j)
�i :� �i ÿ fPm

k g;
if (outi�k� � 0) then /� Pm

k idle /�
Send a HF:reply�Pm

k ; outi�k�; 0� to Pb
j ;

else if (outi�x� � 0 for all Pm
x 2 �i) then /� processes

in �i idle �/
Send a HF:reply�Pm

k ; outi�k�; wi� to Pb
j ;

wi :� 0;
else /� some processes in �i active �/

Send a HF:reply�Pm
k ; outi�k�; wi=2� to Pb

j ;
wi :� wi=2;

end if;
E4. On Pb

j receiving HF:reply�Pm
k ; outi�k�; w� from Pb

i)
�j :� �j [fPm

k g;
outj�k� :� outi�k�;
wj :� wj � w;
Send a HF:ack to Pm

k ;

Note that the above four steps may not always complete
successfully. That is, Pm

k , after performing E1, may leave
base station Pb

j before the HF:ack returns. Thus, a timeout
parameter should be set to deal with this problem. In this
case, we regard that Pm

k has been handed off to Pb
j , although

Pm
k has not been committed of this event. Subsequent steps

E2 and E3, which only involve static processes, can
complete successfully and, thus, migrate Pm

k 's data struc-
ture from Pb

i to Pb
j . After the timeout period, if Pm

k fails
receiving HF:ack (due to mobility), it is free to hand-off to
another base station by restarting E1. It should indicate its
original base station as Pb

j instead of Pb
i . This will prevent

Pm
k from being blocked due to high mobility. Also note that

rule E1 ensures that Pm
k can only exchange messages with a

base station that is formally committed (by HF:ack) as its
current base station. Hence, the message exchange history
will be recorded correctly (by array out� �) and mobility will
not disrupt our protocol.

3.3.5 Temporary Disconnection and Rejoining of Mobile

Processes

A reasonable assumption for disconnection is that such a
status should be determined by each mobile host and base
station autonomously. Specifically, when a mobile process
finds that it is not connected to any base station, it can
decide to enter a disconnected mode at its own will.
Similarly, a base station determines that a mobile process
has entered a disconnected mode if it finds 1) that it cannot
hear from the process and 2) that there is no hand-off
request from this mobile process for a predefined time.

A disconnected process should stop any message
exchange (but local computation can continue). On the
other side, a base station can return the disconnected
process's data structure to the weight collector (in hope of
reaching a conclusion that the distributed system is weakly
terminated).

F1. On a Pm
k deciding to enter a disconnected mode) Pm

k

suspend all message exchange;
F2. On a Pb

i deciding that a Pm
k 2 �i has entered a

disconnected mode)
�i :� �i ÿ fPm

k g;
if (outi�k� � 0) then /� Pm

k idle �/
Send a DISC�Pm

k ; outi�k�; 0� to Ps
c ;

else if (outi�x� � 0 for all Pm
x 2 �i) then /� processes

in �i idle �/
Send a DISC�Pm

k ; outi�k�; wi� to Ps
c ;

wi :� 0;
else /� some processes in �i active �/

Send a DISC�Pm
k ; outi�k�; wi=2� to Ps

c ;
wi :� wi=2;

end if;

562 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 6, JUNE 2001

Fig. 2. The hand-off procedure.

F3. On Ps
c receiving DISC�Pm

k ; outi�k�; w�)
	 :� 	 [fPm

k g;
outc�k� :� outi�k�;
 :� � w;

F2 manages the weights based on different combinations
of processes' states. F3 appends the received weight to .
Depending on the value of , the weight collector will try to
determine the strongly/weakly terminated state of the
system (refer to Section 3.3.7).

In our protocol, disconnection is handled very similar to
hand-off. When a mobile process Pm

k in a disconnected
mode hears any base station again, it can enter a connected
mode again and execute the hand-off rule, E1, in the
previous section to rejoin the system. Suppose Pm

k 's original
and new base stations are Pb

i and Pb
j , respectively. On

hearing Pm
k 's hand-off request, if Pb

i still has Pm
k 's data

structure (i.e., Pm
k 2 �i), then the normal hand-off proce-

dure takes action (by executing rules E2-E4). Otherwise, if
Pm
k 62 �i, the hand-off request will be forwarded to the

weight collector Ps
c and the following rule will be executed:

F4. On Ps
c receiving the forwarded HF:ind�Pm

k � from Pb
i)

if (Pm
k 2) then

	 :� 	ÿ fPm
k g;

if (outc�k� � 0) then Send a
HF:reply�Pm

k ; outc�k�; 0� to Pb
j ;

else /� Pm
k active �/

Send a HF:reply�Pm
k ; outc�k�; =2� to Pb

j ;
 :� =2;
if (� ;) then wc :� wc � ;

end if;
end if;

Note that the ªif (� ;) then ...º statement is to ensure that
no weight is left in if there is no disconnected process.
Also, note that the above indices, i and j, do not have to be
different. The modification is straight forward: We simply
let Pb

i play both roles.
Finally, when the HF:reply from the weight collector

arrives at base station Pb
j , rule E4 will take action like a

normal hand-off. A note similar to the hand-off procedure is
that the above steps may not always complete successfully
after Pm

k performs E1. Still, we regard that Pm
k has been

hand-off to Pb
j , although Pm

k has not been committed of this
event. No message exchange should be done with Pm

k in the
meantime. The subsequent steps, which are on wired
networks, will eventually deliver HF:reply to Pb

j . If by the
time Pm

k has migrated to another base station or become
disconnected again, Pb

j simply serves as Pm
k 's current base

station and performs the above rules at its own determina-
tion. This ensures that temporary disconnection will not
disrupt our protocol.

3.3.6 Dangling Messages

Dangling messages are those that cannot be delivered due to
disconnection or host mobility. Since dangling messages
may be delivered at any time later, care must be taken to
avoid terminated states being falsely announced.

Dangling messages could exist in a mobile host when it
is experiencing hand-off or disconnection. Since we always
require that a base station obtain a mobile host's data

structure before exchanging any message with it (observe
the guarded conditions in D1-D3), these dangling messages
will be kept locally in the mobile process until a formal
hand-off is committed. So the message exchange history is
always correctly recorded.

Dangling messages could also exist in a base station or a
static process if the messages are destined to a hand-off or
disconnected mobile process. Ensured by the weight-
throwing rules, each process holding a dangling message
must have a nonzero weight at hand. A reasonable
approach is to forward dangling messages to the weight
collector as if they are destined to it. A nonzero weight
should be appended to each such message. The weight
collector includes these weights into and queues these
messages for future processing:

G1. On Ps
c receiving a dangling message carrying a weight

x) :� � x;
G2. On Ps

c sending a dangling message M to a reconnected
mobile process)

Append a weight =2 to M;
 :� =2;
if (dangling message list becomes empty) then

wc :� wc � ;
 :� 0;

end if;

3.3.7 Announcing Termination

The weight collector Ps
c can announce that the distributed

system has entered a strongly or weakly terminated state
once it has collected a sufficient weight of 1.

H1. On Ps
c finding wc � � 1)

if (> 0) then announce ªweakly terminated
(excluding processes in)º

else announce ªstrongly terminatedº;

A weakly terminated state guarantees that all currently
connected processes are idle and there are no in-transit
basic or dangling messages. It would be easier to design the
application programs on top of the termination detection
protocol because without the weight collector's permit
(rule F4), no further computation in a weakly terminated
system is possible. There are two possibilities for a weakly
terminated state: 1) some dangling basic messages at Ps

c 's
hand and 2) some disconnected processes not acknowl-
edging receipt of basic messages yet. In either case, the
weight collector will have a nonzero . On the other hand,
note that the system can be strongly terminated even if
some mobile processes are disconnected (6� ;), but the
whole system is terminated for sure.

4 COMPARISONS AND SIMULATION RESULTS

A comparison based on a nonmobile system is in Table 1
(i.e., we assume that there are no host mobility and
disconnection problems for the diffusion-based and
weight-throwing schemes). Since we assume that mobile
hosts are inherently weaker than static hosts, the compar-
ison focuses on the space and computation complexity on
mobile processes and the wireless bandwidth consumed.

TSENG AND TAN: TERMINATION DETECTION PROTOCOLS FOR MOBILE DISTRIBUTED SYSTEMS 563

ªSpaceº indicates the size of data structures used by each
protocol. ªComputationº indicates the data types to be
processed for the purpose of termination detection (weight
representation should be lossless, refer to Section 2.4).
ªDetection delayº is to count the maximum number of
communication hops happening on the wireless links for our
protocol to report termination once the system is terminated
(the communication on wired links are considered to be
much faster and, thus, is not counted in this metric).
ªControl messageº is to count the number of control
messages (ACK�� or WGT ��) sent on wireless links each
time when a mobile process turns idle. Note that our cost is
1 since we delegate the weight collector to a static process
whereas the costs for the diffusion and weight-throwing
schemes are doubled since each control message has to
traverse on two wireless links.

A simulator was also developed to calculate the exact the

wireless bandwidth consumed for the purpose of termina-

tion detection. We simulated a distributed system with m

base stations, with m ranging from 1 to 10. Each base station

owns four mobile hosts, each running one distributed

process. As our focus is on the wireless part, no static

processes were simulated. One process started the dis-

tributed system by injecting m basic messages into the

system. On receiving a basic message, a mobile host will

become active for A time units, where A is uniformly

distributed in �1; 49� with a mean of 25 time units. While

active, a process could generate a new basic message every

M time units, where M is also a random variable with a

certain mean. The destination of a basic message was

randomly selected from one of the other mobile processes.

The distributed system was run until it naturally terminated

or a preset timer of 2,000 expired.
Fig. 3 shows the number of control messages traveling on

wireless links by the three protocols. We varied the ratio

A=M (among 1=4; 1=2; 1; 2; 3; . . . ; 10) at different system

sizes (m � 2; 5; 8). Because mobility cannot be handled by

the other two protocols, hand-off and disconnection were

not simulated. The weight-throwing scheme uses about two

times the control messages used by the hybrid scheme. The

diffusion-based scheme has similar performance as ours at

low A=M ratios, but is getting worse and worse when the

A=M ratio gradually increases over 1/2. Both weight-

throwing and hybrid protocols are quite insensitive to the

A=M ratio.
An important factor that has been ignored in the

previous simulation is the extra weight that has to be

carried by each basic message in the weight-throwing

scheme. We adopted a simple assumption that each

ACK�k� costs 4 bytes (for an integer) and each WCT �x�
and basic message costs 8 bytes (for a real number). Byte

counts are important for systems frequently delivering very

short messages. Fig. 4 shows the average number of bytes

required by a mobile host per unit time under different

conditions (the other protocol overheads, such as packet

header and error-checking code, which should be the same

for different protocols, are not accounted in the simulation

figures). Under this metric, the weight-throwing scheme is

always most costly.
We also compare the three protocols by varying the

system sizes (m � 1::10) at A=M � 2; 5; 8. The results are

shown in Fig. 5 and Fig. 6. We observe that the curves for

the weight-throwing and hybrid schemes are both insensi-

tive to the system size, but the curves for the diffusion-

based scheme are slightly going upward as the system size

increases. So the weight-throwing and hybrid schemes are

more scalable to systems sizes.

564 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 6, JUNE 2001

TABLE 1
Comparison of Existing Hybrid and Our Hybrid Termination Detection Protocols for Mobile Processes

Fig. 3. Number of control messages consumed at different A=M ratios.

5 CONCLUSIONS

With the emergence of wireless networks, many distributed
protocols well suited for static hosts have to be reevaluated
for their appropriateness on wireless networks. Host
mobility and disconnection problems are particularly
important issues to be considered. In this paper, we have
shown how to handle these problems for the termination
detection problem. A newly defined weakly terminated
state is provided for users to tell whether a mobile
distributed system is still running or is silent because some
processes are disconnected. By exploit the network
hierarchy, our hybrid termination detection protocol can
take advantage of the short detection delays of the weight-
throwing scheme on the wired networks and the simplicity
and bandwidth-efficient properties of the diffusion-based
scheme on each wireless cell. It demands less space,
computation, and wireless bandwidth on mobile processes
and, thus, is more favorable.

ACKNOWLEDGMENTS

This research is supported by the Ministry of Education,
ROC, under grant 89-H-FA07-1-4.

REFERENCES

[1] S. Alagar, R. Rajagopalan, and S. Venkatesan, ªTolerating Mobile
Support Station Failures,º Proc. Int'l Conf. Fault-Tolerant Systems,
1995.

[2] S. Alagar and S. Venkatesan, ªCausal Ordering in Distrib-
uted Mobile Systems,º IEEE Trans. Computers, vol. 46, no. 3,
pp. 353-361, Mar. 1997.

[3] A. Archarys and B.R. Badrinath, ªA Framework for Delivering
Multicast Messages in Networks with Mobile Hosts,º ACM/Baltzer
J. Mobile Networks and Applications, vol. 1, no. 2, pp. 199-219, 1996.

[4] S. Chandrasekaran and S. Venkatesan, ªA Message-Optimal
Algorithms for Distributed Termination Detection,º J. Parallel
and Distributed Computing, vol. 8, pp. 245-252, 1990.

[5] E.W. Dijkstra and C.S. Scholten, ªTermination Detection for
Diffusing Computations,º Information Processing Letters, vol. 11,
pp. 1-4, 1980.

TSENG AND TAN: TERMINATION DETECTION PROTOCOLS FOR MOBILE DISTRIBUTED SYSTEMS 565

Fig. 6. Number of bytes consumed at different system sizes.

Fig. 5. Number of control messages consumed at different system sizes.

Fig. 4. Number of bytes consumed at different A=M ratios.

[6] N. Francez and M. Rodeh, ªAchieving Distributed Termination
Without Freezing,º IEEE Trans. Software Engr., vol. 8, no. 3,
pp. 287-292, 1982.

[7] J. Geier, Wireless Networking Handbook. Indianapolis: New Riders
Publishing, 1996.

[8] A. Hills and D.B. Johnson, ªWireless Data Network Infrastructure
at Carnegie Mellon University,º IEEE Personal Comm., vol. 3, no. 1,
Feb. 1996.

[9] S.-T. Huang, ªDetecting Termination of Distributed Computations
by External Agents,º Int'l Conf. Distributed Computing Systems,
pp. 79-84, 1989.

[10] S.T. Huang, ºA Distributed Deadlock Detection Algorithm for
CSP-Like Communication,º ACM Trans. Programming Language
and Systems, vol. 12, no. 1, pp. 102-122, Jan. 1990.

[11] L. Kleinrock, ªNomadic ComputingÐAn Opportunity,º ACM
Computer Comm. Review, pp. 36-40, year???

[12] P. Krishna, N. Vaidya, and D. Pradhan, ªRecovery in Distributed
Mobile Environments,º Proc. Workshop Advances in Parallel and
Distributed Systems, pp. 83-88, 1993.

[13] T.-H. Lai, Y.-C. Tseng, and X. Dong, ªA More Efficient Message-
Optimal Algorithm for Distributed Termination Detection,º Int'l
Parallel Processing Symp., pp. 646-649, 1992.

[14] T.-H. Lai and L.-F. Wu, ªAn �nÿ 1�-Resilient Algorithm for
Distributed Termination Detection,º IEEE Trans. Parallel and
Distributed Systems, vol. 6, no. 1, pp. 63-78, Jan. 1995.

[15] B.P. Lester, The Art of Parallel Programming. Prentice Hall, 1993.
[16] F. Mattern, ªGolbal Quiescence Detection Based on Credit

Distribution and Recovery,º Information Processing Letters,
vol. 30, pp. 195-200, 1989.

[17] J. Misra and K.M. Chandy, ªTermination Detection of Diffusing
Computations in Communicating Sequential Processes,º ACM
Trans. Programming Language and Systems, vol. 4, no. 1, pp. 37-43,
Jan. 1982.

[18] R. Prakash, M. Raynal, and M. Singhal, ªAn Efficient Causal
Ordering Algorithm for Mobile Computing Environments,º Int'l
Conf. Distributed Computing Systems, pp. 744-751, 1996.

[19] R. Prakash and M. Singhal, ªLow-Cost Checkpointing and Failure
Recovery in Mobile Computing Systems,º IEEE Trans. Parallel and
Distributed Systems, vol. 7, no. 10, pp. 1035-48, Oct. 1996.

[20] M. Singhal and N. Shivaratri, Advanced Concepts in Operating
Systems. McGraw-Hill, 1994.

[21] Y.-C. Tseng, ªDetecting Termination by Weight-Throwing in a
Faulty Distributed System,º J. Parallel and Distributed Computing,
vol. 25, pp. 7-15, 1995.

[22] S. Venkatesan, ªReliable Protocols for Distributed Termination
Detection,º IEEE Trans. Reliability, vol. 38, no. 1, pp. 103-110,
Apr. 1989.

[23] Y. Sato et al. ªA Snapshot Algorithm for Distributed Mobile
Systems,º Int'l Conf. Distributed Computing Systems, pp. 734-743,
1996.

[24] L.-H. Yen, T.-L. Huang, and S.-Y. Hwang, ªA Protocol for
Casually Ordered Message Delivery in Mobile Computing
Systems,º Mobile Networks and Applications, vol. 2, no. 4, pp. 365-
372, 1997.

Yu-Chee Tseng received the BS and MS
degrees in computer science from the National
Taiwan University and the National Tsing-Hua
University in 1985 and 1987, respectively. He
worked for the D-LINK Incorporated as an
engineer in 1990. He obtained the PhD degree
in computer and information science from Ohio
State University in January of 1994. From 1994
to 1996, he was an associate professor at the
Department of Computer Science, Chung-Hua

University. He joined the Department of Computer Science and
Information Engineering, National Central University in 1996 and has
become a professor since 1999. Since Aug. 2000, he has been a
professor at the Department of Computer Science and Information
Engineering, National Chiao-Tung University, Taiwan. He served as a
program committee member for the International Conference on Parallel
and Distributed Systems, 1996, the International Conference on Parallel
Processing, 1998, the International Conference on Distributed Comput-
ing Systems, 2000, and the International Conference on Computer
Communications and Networks 2000. He was a workshop cochair of the
National Computer Symposium, 1999. His research interests include
wireless communication, network security, parallel and distributed
computing, and computer architecture. He is a member of the IEEE
Computer Society and the Association for Computing Machinery.

Cheng-Chung Tan received the BS and MS
degrees in computer science from Tamkang
University and National Central University in
1997 and 1999, respectively. He has served as
an engineer at the Institute for Information
Industry in Taiwan since 2000. His currently
working on embedded operating systems and IA
products. His research interests include mobile
computing, networking protocol, and operating
system.

. For further information on this or any computing topic, please
visit our Digital Library at http://computer.org/publications/dlib.

566 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 6, JUNE 2001

