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SUMMARY 

The dynamic constraints technique has been proposed for building geometrical models composed of 
rigid bodies, which are made to act naturally, according to Newtonian laws, by specifying constraints 
on their states. In computer animation, the dynamic constraints technique alleviates the work-load of 
animators who formerly had to plan animated sequences in detail by intuition alone. Nevertheless, for 
some real-world applications, it is desirable to have a mechanism that makes physically-based elements 
move according to a given scenario by providing some control states. The control states can be represented 
by transient constraints that are to be met and then released immediately. In this paper, a technique 
called the sequential-goal constraints technique is proposed to provide such a mechanism. With the 
sequential-goal constraints technique, it is easy to specify transient constraints according to a given 
scenario and derive proper forces and torques to drive an element to meet each transient constraint 
exactly at a specified time so that the whole motion of the element is continuous and integral. 
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1 .  INTRODUCTION 
In traditional animation techniques,' objects are modelled purely by using their 
geometrical characteristics, such as position, orientation and shape. The idea behind 
animating an object is simply putting the object in the desired position at the 
appropriate time. That is, the motion of objects is developed through the animator's 
intuition by using detailed descriptions of the position, orientation and shape of the 
objects. Though tedious, this approach is easy to use, and the concept behind it is 
simple. When dealing with complex compound objects, however, animation using 
traditional techniques becomes virtually impossible. Moreover, the animation effects 
produced by such traditional techniques are usually not realisticq2 Most animators 
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would prefer to focus their attention on high-level designation of object actions and 
to be free of the need to provide a detailed description of object behaviour. A 
more advanced technique providing more realistic animated pictures can help them 
to satisfy these desires. 

The dynamic constraints technique,”-” proposed by Barr et al. in 1988, is a technique 
that partially satisfies the desire of animators for objects composed of rigid bodies. 
In the dynamic constraints technique, physically-based elements (objects whose 
motion is driven by forces and torques according to Newtonian laws) are used to 
develop realistic animated pictures. Users may assemble designated compound 
elements by specifying certain geometrical constraints between elements, such as 
point-to-nail, point-to-point, and so on. Using inverse dynamic techniques, the mech- 
anism automatically derives proper constraint forces and torques over time to drive 
elements to meet the specified constraints; it then maintains those constraints forever. 
As long as the constraints are maintained, the compound element responds to 
external forces in the environment naturally and realistically. 

When using dynamic constraints, the emphasis is on building compound elements 
that behave naturally, and the behaviour of elements in the assembly phase (that 
is, the time from the initial states of the elements to the point when they begin to 
meet the constraint) is of less concern. As it happens, in dynamic constraints, the 
behaviour in the assembly phase is straightforward and the only factor that can be 
adjusted is the assembly rate. 

However, some real-world applications require more sophisticated control over 
elements in the assembly phase. For example, in a self-assembly mechanism system 
using dynamic constraints, the behaviour of components should be controlled in 
order to avoid improper collision. Moreover, one may want a physically-based 
element to perform any given action scenario. For example, just for dramatic effect, 
one might want to have an element turn a somersault somewhere in its motion. In 
a case where a scene with interactions among several elements is to be generated, 
say a bird catching a fish at certain place, the elements should be controlled so that 
they move to the same place at the same time. In other words, planning of the 
behaviour of elements driven by constraint forces is needed. In addition to the path 
of movement of elements, sometimes the timing of how they pass certain critical 
positions must be specified and fulfilled. 

Behaviour planning can be implemented, in a general form, by specifying a 
sequence of transient constraints c,, i = 1, ..., n ,  in temporal order, with some of 
them specified as time-critical (to be met precisely at a specified time). In the course 
between consecutive constraints, say c, and c , + ~ ,  the element is released from 
constraint c, and is on its way to meeting constraint c ,+ , .  As the constraints are 
sucessively met and released, the elements should move in accordance with the 
designated behaviour. 

Consider constraints between consecutive time-critical constraints, say c, and c, 
with specified time t, and tl, respectively. Since the times at which the constraints 
to be met are not critical, the routeing time, tl - t,, is usually distributed to courses 
between ck and ck+, ,  i I k 5 j - 1, by the animator’s intuition or by the distance 
between consecutive constraints. Routeing times for courses can be allocated in 
order to make the elements move in a designated rhythm. 

Finally, one may assume that a sequence of constraint-time pairs ( c , ,  t,), t, < t r t l ,  
i = 1, ..., n - 1, is given. These pairs are called goals. The problem, called the 
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sequential-goal problem, is to provide a mechanism for deriving proper driving forces 
and torques for the constrained element so that the element will move to meet 
constraint ci exactly (exactness) at a specified time t, (punctuality), i = 1, ..A, and 
so that the entire behaviour is continuous and integral (integrity). For goals at 
which interaction between elements occurs, exactness and punctuality are rigorously 
required. Although the entire behaviour is achieved by a sequence of transient 
constraints, it has to be integral from an outsider’s point of view. In general, the 
behaviour along the course between pairs of consecutive constraints should be 
continuous and natural. The main effort that must be expended lies in linking the 
behaviour in the transition from course to course in a continuous and natural way. 
Continuity and integrity of motion are basic requirements in producing natural 
animated sequences. 

In this paper, a mechanism that we call sequential-goal constraints is proposed to 
solve the sequential-goal problem. Since there is a sequence of transient constraints 
to be met, it seems that the problem can be resolved simply by applying dynamic 
constraints repeatedly. However, as we will see later, this simple strategy cannot 
provide element behaviour of the required integrity, exactness and punctuality. 

The rest of this paper is organized as follows. In Section 2, we review the 
dynamic constraints technique and discuss its feasibility for solving the sequential- 
goal problem. In Section 3, a new behaviour differential equation is introduced to 
provide a mechanism for solving the sequential-goal problem. Section 4 presents 
an animated sequence developed using the sequential-goal constraints technique. 
Concluding remarks are presented in the last section. 

2. DYNAMIC CONSTRAINTS AND THE SEQUENTIAL-GOAL PROBLEM 

In the dynamic constraints approach proposed by Barr et al.,7 a constraint is a 
specified configuration of states of elements in the model. The states of elements 
are composed of their geometrical attributes: position and orientation. A point-to- 
nail constraint, for example, specifies that a certain point on an element must 
coincide with a given nail (a  position in the world space). The position and orientation 
of the ith element in the model are denoted by Xi( t )  and Ri(t), respectively. The 
state of the model is thus represented by 

To measure the deviation of the model at time t from a given constraint, a 
constraint deviation function D( Ys(t),t),  a vector with any number of components, 
is defined such that D( Ys(t),t) = 0 if and only if the constraint is met. For example, 
for a point-to-nail constraint, D(t) = X(t) - Xu, where X(t) and X(, are the co- 
ordinates of the constrained point and the nail, respectively. The deviation function 
D( Y,(t),t), with non-zero initial value typically, is required to decrease to zero over 
a period of time in order to meet the constraint and then stay at zero to maintain 
conformance to the constraint. 

Second-order differential equations are used to describe the behaviour of deviation 
functions. The terms in the first-order differentiation of D( Y,(t),t) with respect to 
time are interpreted to be the linear momenta and angular momenta of constrained 
elements, and those in the second-order differentiation of D( Ys(t) , t )  are interpreted 
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to be forces and torques. With this interpretation, a system of linear equations on 
forces and torques for constraints can be derived. The constraint forces (needed to 
propel the element so that it meets all the constraints and satisfies the behaviour 
differential equations) can then be derived by solving this system of equations. 

In dynamic constraints, deviation functions must decrease exponentially to zero 
and remain at zero from then on. Let D(t) be a component of a deviation function. 
The behaviour differential equation for D(t) used by Barr et al.7 is 

d2 2 d  1 
- D(t) + ~ D ( t )  + T D ( t )  = O dt2 T dt 7 

for t  > to 

with initial conditions 

where Do is the initial state of D(t) and the parameter T is used to control the rate 
at which the constraint is met. 

The deviation function according to equation (1) is 

D(t) = e -‘’T(C, + C2t) 

where C1 and C2 are dependent on both Do and Db. The smaller 7 is, the more 
rapid the deviation function decays to zero and the faster the element meets the 
constraint. 

By equation (2), analytically, D(t) will approach zero asymptotically. Neverthe- 
less, it does not really reach zero. In the dynamic constraints technique, a common 
method is to set an error-tolerance E > 0, and a constraint is said to be met if 
lD(t)l < E. The drawback of dynamic constraints for the sequential-goal problem 
appears in the inevitable case where both 7 and E are small. To satisfy exactness, 
especially for time-critical goals, E should be sufficiently small; otherwise, an element 
may be considered to have already met a goal while still far away from it and then 
sent on its way to the next goal. With a small E, if the routeing time happens to 
be short, the parameter 7 should also be set small to ensure that the goal is met at 
the specified time. In this case, D ( t )  first approaches E rapidly in a short period of 
time, and then takes the remaining relatively long amount of time to reach E (see 
Figure 1). From a spectator’s point of view, the constrained point of the element 

t t 

0 
T 

Figure 1. Deviation function of dynamic constraints 
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first moves rapidly towards its goal, then remains near the goal for a rather long 
time, and then moves rapidly again towards the next goal. While remaining near 
the constrained point, due to the acting forces and torques, the element displays 
some superfluous motion, usually rotation or oscillation. The behaviour of the 
element appears discontinuous during the transition from course to course, Thus, 
the entire behaviour is not integral. 

3. SEQUENTIAL-GOAL CONSTRAINTS 
In this section, we will propose a mechanism-sequential-goal constraints-for 
resolving the sequential-goal problem. This method avoids the drawbacks involved 
in applying dynamic constraints directly. 

In sequential-goal constraints, first of all, users need to specify the routeing 
time for each course between consecutive constraints. Once the routeing times are 
obtained, a new behaviour differential equation for deviation functions is introduced 
to control the motion along the courses. Routeing time allocation can be used to 
control the average speed of each course. As pointed out in the preceding section, 
in order to yield exactness and punctuality in the element’s movement, the deviation 
functions satisfying the new equation should reach zero rather than be close to zero 
at the specified time. In addition, the speed of the deviation function should be 
stable, relative to the average speed, over the entire course so as achieve integrity 
of the whole motion. In particular, the speed at the end of a course should be kept 
sufficiently large relative to the average speed along the course. 

Let c l ,  ..., c,, be a sequence of constraints in temporal order, with time-critical 
constraints, cLhl 1 5 h 5 k ,  which have to be met at the specified time tLh.  We 
denote the deviation function of course i, between consecutive constraints c,- and 
c,, by D,. In general, users allocate a routeing time to each course on the basis of 
their intuition and experience. Usually, all the distances between consecutive con- 
straints are known in advance. For example, all the constraints between consecutive 
time-critical constraints might be point-to-nail constraints with respect to some co- 
ordinate system. In this case, one may assign each course a weight according to the 
designated rhythm of motion. Let w, be the weight and t, the routeing time to be 
allocated for course i. The average speed of course i is then I D,(O) I lt,. The routeing 
times are allocated such that the ratio of average speeds between courses i and j is 
w,Iw,, and the total time for the courses between the time-critical constraints 
elk and c , ~ + ~  is tci,+l - tLh, for 1 I h 5 k - 1. 

Next, we present the behaviour control for a particular course. Let the routeing 
time of the course be T and one component of the deviation function be D ( t ) .  
Without loss of generality, we assume that the initial time is 0 and D(0)  > 0. In order 
to obtain more flexibility in behaviour control, we introduce one extra parameter in 
the new behaviour differential equation for deviation functions; this parameter is 
not used in the dynamic constraints technique. The new behaviour differential 
equation with two parameters a and p is 

d’ d 
dt2 dt 
- D ( t )  - 2a - D(t) + (a’ + p’)D(t) = 0 (3) 

with initial conditions D(0)  = D,, and dD(0)ldt = 0;. The parameter a plays a 
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role similar to that of the assembly rate T in the dynamic constraints approach. The 
deviation function, D ( t ) ,  turns out to be 

D ( t )  = eat[ C,cos( P t )  + C,sin( P t ) ]  

and its derivative is 

d 
- D ( t )  = e"'[(aC1 + PC2) cos(pt) + (aC2 - PC,) sin(pt)] 
dt 

where C1 = Do and C, = (06 - do)/@. See Figure 2 for an illustration. 

and P must satisfy the following equation: 
To achieve exactness and punctuality in the element's motion, the parameters CI 

D( T )  = 0 (4) 

To ensure the integrity of the motion, the parameters are chosen to satisfy 

d Do 
- D ( T )  = -k- -  
dt T ( 5 )  

where k > 0 is a constant factor for the course. In general, the factor k is set such 

T 
(a) D: > 0 

T 
(b) D:< 0 

Figure 2. Deviation function of sequential-goal constraints 
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that the ending velocity dD(t)ldt is close to the average velocity of the succeeding 
course, in order to make the behaviour in the transition between courses continuous 
and to avoid superfluous rotation or oscillation. 

Let y = DA/Do. When combined with D(0)  = C, and dD(0)ldt = aCl + PC,, 
equation (4) is equivalent to 

a - y - p cot(PT) = 0 (6) 

Substituting y + p cot(pt) for a in equation ( 5 ) ,  we obtain 

The values of parameters a and p can be obtained from equations (6) and ( 7 )  by 
numerical methods. 

There are infinitely many solutions. Only solutions where 0 < f3 < n / T  are used, 
since all the other solutions will result in redundant oscillations of D ( t )  along the 
course. 

as follows: 
Exploring equations (6) and ( 7 ) ,  we find that the relation among a ,  P and y is 

(8) 

Since p is in the range (0, nlT) ,  yT  is an increasing function of PT and aT is a 
decreasing function of PT. By evaluating equations (8) and (9) at PT = 0 and 
PT = T ,  we find that aT ranges from log k down to --co and y T  ranges from 

To achieve integrity of motion, the value of k needs to be set properly in each 
component of the deviation function. By the above discussion, k < eyT+I. The 
ending velocity -kD,lT should also be as close to the average velocity of the 
succeeding course as possible. 

Next, we consider the components of the deviation function together. In practice, 
a constraint is composed of several basic constraints, such as a point-to-nail con- 
straint, an orientation constraint, and so on. Each group of components of the 
deviation function for a particular basic constraint can be dealt with separately. 
Without loss of generality, in the following discussion, we assume that the dimension 
of the deviation function is three. 

In a fixed co-ordinate system, although we may assign the ratio of average speeds 
of the deviation functions for consecutive courses by intuition, componentwise ratios 
can differ tremendously from the given ratio due to large differences in the magnitude 
of components. Such differences in ratios may result in a small ending velocity for 
some courses or a drastic variation in velocity along the whole motion, both of 
which should be avoided. 

To avoid drastic variations in componentwise velocities, a special local normalized 
co-ordinate system is used for each course. We denote the normalized co-ordinate 

log k - 1 UP to m. 



160 W.-B. LIU, M.-T. KO AND R. -C.  CHANG 

system for course h by S,. Let Dh(t )  = (Dh , l ( t ) ,Dh ,2 ( t )7Dh,3 ( t ) )  and A h + l ( f )  denote 
the deviation functions of courses h and h + 1, respectively, in co-ordinate system 
S,, for all 1 5 h I n. We make a practically reasonable assumption that the angle 
between A,+](()) and Dh(0)  is within n/6. The co-ordinate system Sh is defined by 
an orthonormal transformation from the world co-ordinate such that 

and is on the plane spanned by the vectors (1, 1, I )  and (1, 0, 0). We will 
set the values of the klIJs  with respect to the components of the deviation function 
of course h in the normalized co-ordinate system Sh. 

In the following, let us consider course i. In Si7 denote the ratio of the average 
velocities along courses i and i + 1 of the jth component, 

by pi,,. Let M be the co-ordinate transformation from S ,  to S l i l .  We then have 

By our assumption that the angle between A,+,(O) and Dl(0) is within ~ / 6 ,  we 
W A , + I ( N  = D,+,W. 

obtain 

and 

for j = 2, 3. 
Then, from the above, we have 

and 

for j = 2, 3. 

componentwise. 

kL, ,  is set such that 

From equations (10) and (11), there is no drastic variation in average velocity 

In our scheme, for thejth component of the deviation function in S,, when p,,, < 1, 
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kid < 1 and kj,j Di,j(0)/ti = C A ~ + ~ , ~ ( O ) / ~ ~ + ,  for some c > 0.8 (12) 

and when pi,i e 1, 

ki,j 2 1 and k,,jD,,j(0)lti = cAi+,,j(0)/ti+l for some c < 1 (13) 

In order to guarantee that the k l t l J s  for the succeeding course can be set properly, 
the k,,]s are set such that the ending velocity of course i in co-ordinate system Si+l 
satisfies 

It is not difficult to find ki,.s to satisfy equations (12), (13) and (14). 
From equations (12) and (13), when pi,j < 1, i.e. Ai+l,j(0)/ti+l < Di,j(0)/t i ,  

and when pi,) 2 1, i.e. Ai+l,j(0)/ti+, 2 D,,j(0)/ti,  

It is easy to see that the magnitude of the ending velocity of course i is between 
that of the average velocities of course i and course i + 1. It follows that the 
velocities in the transitions will not be too small. Superfluous rotation or oscillation 
are thus avoided. 

Let 

From equation (14), in co-ordinate system S i + l ,  

Thus, the upper bound of k i + l d ,  eYi'i+i+l, is greater than 1 and proper k i + l , j ~  can 
be set for course i + 1. 

The above discussion provides us with a coherent way to assign the values of ki,.s 
so that the whole motion is continuous and integral. 

4. IMPLEMENTATION 

Besides the point-to-nail constraint, orientation constraints, point-to-path con- 
straints, and so on may also be worked out successfully using sequential-goal con- 
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straints. Using the orientation constraint, animators can easily and precisely control 
the orientation of a modelled element during its travel and avoid unnecessary 
oscillation. The orientation constraint also provides a useful mechanism for generat- 
ing more dramatic action, such as turning a somersault somewhere in the motion. 
In sequential-goal constraints, the point-to-path constraint, i.e. a path constraint of 
timing, can be transformed into a sequence of point-to-nail constraints. That is, 
employing the path function, animators can set up a number of intermediate goals 
along the designated path and then have the objects meet them exactly and punctually 
in sequence. 

In animation, the modelled elements usually interact with other models or with 
the environment to produce natural and realistic visual effects. The ability to ensure 
exactness and punctuality makes the sequential-goal constraints technique compatible 
with other modelling techniques. For example, if we know when and where an object 
modelled by the kinematic method will be, an object modelled using sequential-goal 
constraints can interact with it properly. 

We used the sequential-goal constraints technique to produce an animated 
sequence on a Silicon Graphics 4Di310 workstation; the sequence is illustrated in 
Plates 1-8. In this sequence, three rods fly through the air along individually 
designated paths and finally hit a target. Each rod also penetrates a red ball at the 
beginning of the motion. 

The motion of each rod was modelled with a sequence of point-to-nail constraints 
and a sequence of orientation constraints. The point-to-nail constraints control the 
path of the rods and the orientation constraints control the orientation of the rods 
during the motion. There were 25, 16 and 17 transient constraints used for the paths 
of these threc rods, respectively. A kinematic model was used for the motion of 
the red balls. The penetration of the rods through the balls shows that sequential- 
goal constraints can easily be used in conjunction with other modelling techniques. 

5 .  CONCLUDING REMARKS 

The sequential-goal problem arises naturally when generating complicated or dra- 
matic animated sequences. We propose the sequential-goal constraints technique to 
remedy the deficiency of the dynamic constraints technique in solving the sequential- 
goal problem. Our technique not only preserves all the advantages of dynamic 
constraints but also provides the capability to guide constrained elements to meet 
goals exactly and punctually while ensuring that the whole motion is continuous and 
integral. With this technique, animators can generate animated sequences easily and 
intuitively by proper specification of transient constraints and respective routeing 
times. In addition, the exactness and punctuality of element motion obtained using 
sequential-goal constraints make it wasy to combine objects modelled using sequen- 
tial-goal constraints with objects modelled using traditional methods. 
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Plate 1 fa)  (Putrwaik and Mudur). A three-dimensional environ- 
ment with spherical light sources without a participating medium 

Plate I (h )  (Partunaill and Mudur). A three-dimensional environ- 
ment with spherical light sources with a participating medium 

Plate 2 (Pattanaik unrl Mudur). A plant modelled us apariicipat- 
ing volunie with around 161 spherical volume elements 

Plate 3 (Pattanuik und Mudur). A gaseous emitling volume 
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Plale 2 (Liu, KO and Chang) 
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Plate I (Bechmann und Dubreuil) 
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