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Abstract

Electronic-controlled route to chaos in a quantum-well laser diode is carried out by a delayed-feedback technique. By
introducing an extra delayed-feedback control term ¢S, (¢ — ), chaotic light output can be achieved at relatively low
bias and small modulation depth. Bifurcation diagram, Poincaré map, and Lyapunov exponents suggests quasi-peri-
odicity route to chaos. © 2001 Elsevier Science B.V. All rights reserved.
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Dynamical chaos in laser diodes has become an
interesting topic due to its potential application in
private communication [1,2]. Chaotic light output
from a laser diode can be achieved by optical-
or electronic-controlled techniques. Optical-con-
trolled technique includes optical feedback using
an external cavity [3] or by an optical injection
from a second laser diode [4]. Electronic-con-
trolled technique is carried out by injecting a si-
nusoidal and a bias current into the laser diode
I = a + bsin 2nfyt, where a is the bias current, b is
the modulation current, f; is the external modu-
lation frequency [5,6]. In general, high bias and
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strong current modulation, or two tone modula-
tion are required to achieve chaos.
Electronic-controlled route to chaos in a laser
diode can be further expanded using a delayed-
feedback technique. This delay technique has also
been used to optical-controlled route to chaos in a
laser diode [7]. Hopf bifurcation subject to a large
delay is also verified [8]. In this work, the electronic
delayed-feedback technique is applied to a quan-
tum-well laser diode. A PIN photodetector can be
placed at the other side of the facet of the laser
diode, as the case of most commercial laser diodes.
The photocurrent is proportional to the output
photon density S,(¢). Since the chaotic output is
always a broadband signal, the bandwidth of the
photodetector should be high enough to ensure
the coverage of the chaotic spectra. An electronic
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Fig. 1. Schematic diagram of a laser diode using delay-time
feedback control.

delayed-feedback loop is then established by lead-
ing the photocurrent to a delayed-time circuit and a
gain stage, and then mixing with the sinusoidal
input, as illustrated in Fig. 1. The overall current is
then injected into the laser diode and is given by

I =a+ bsin2nfyt + cS,(t — 1), (1)

where c¢ is the current gain, and 7 is the loop delay
time. With the introduction of the extra delay term
¢S, (¢t — 1), it is shown that the chaotic light output
can be obtained at relatively low bias and small
modulation depth. Note that without modulation
and delay, the system always converges to a fixed
point. With delay only or small modulation depth
only, it is not possible to achieve chaos. The in-
teraction between modulation and delay forms a
quasi-two-period route to chaos. These chaotic
behaviors are further investigated by bifurcation
diagram, Poincaré map, and Lyapunov exponent.

The three-dimensional quantum-well rate equa-
tion to describe the dynamics of carrier in separate
confinement regions /;, in quantum well region 7,
and photon density S, using the delayed-feedback
technique is given by [9]

di; . s
T,— = a + bsin2nfyt + ¢S, (t — 1) — <1 + i )IS,
dt T,
ds
n_n:Is_In_Gl_ nSnSm
Ty (1 —€,S,)
C,ds, S,
T df - G(l 6nSn)Sn—’_ﬁIH FR 9

P

Table 1
The parameters used for the simulation of quantum-well lasers
Parameters Value Unit
T, 6 ps
T, 2.25 ns
€ 107" cm?
r 0.2 -
R, 59.5 Q
C, 0.0489 pf
B 104 -
D 1.79 x 107% V1A Tmé
qVa 6.85 x 1073 m3C

where 1, is the carrier transport time across sepa-
rate confinement heterostructure regions, 7, is
the bimolecular recombination lifetime, I’ is the
optical confinement factor per well, f is the
spontaneous emission factor, and e is the gain
compression factor. In addition, the optical gain
function is expressed by a square dependence on
the recombination current J,on [10], G = D(Jyom—
2 x 10")?, where D is a constant, Jyom = 1,/ Vs, and
V., is the active layers volume. Table 1 lists all
the parameters of the QW laser diode used in
the simulation. Without feedback and modula-
tion (b = ¢ =0), L-I curve simulation suggests a
threshold current I, of 38 mA. This agrees with a
simple steady state analysis, in which the threshold
current can be approximated as (1 + t,/7,)(VuNo +
Va/+/TR,D). The step-response simulation (switch-
ing from 0 to a, where a = 1.51,) results in a re-
laxation oscillation f; of 2.12 GHz and a period T
of 0.471 ns.

To solve the delay differential equations, Eq. (2)
can be expressed as 4 = Z (1, %) + A% (t — 1),
where 2 € R® is the state variable 2 = (X!, X2,
X3 = (I,1,,S,), #F =R x R®* — R* is a nonlinear
function, and 4 € M>*? is a matrix with a nonzero
term at a;; from Eq. (2). By modifying the fourth-
order Runge-Kutta—Fehlberg method (RKF45)
[11] for fixed time step A(= t/n), we have

%m = (p(%mfl ) %‘mfn)

5
- %‘m—l + Z ci};;‘m7 (3)

i=0

where
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FE)m = f(m/lw%‘m—l) +A%m—na

i—1
F;m =7 (m/l +qi, Xm1 + Z hiijm> (4)
Jj=0
A—yg qi
A *‘%ﬂmfn _%‘mfn )
+ [ 1 + 1 +1]

and m is the time-step index (m > n), and ¢;, ¢; and
h;; are the coefficients of the RKF45 [11].

Fig. 2 shows the bifurcation diagram with S,
versus b when a = 1.5I,, T = 0.75T, ¢ = 0.035, and
fo=1/2f;. In the three-dimensional phase dia-
gram ([, I,, and S,) of the rate equations, let X be
a two-dimensional hyperplane through a point
(0.05, 0.0377, 0.4) with normal direction [0, 1,0]. If
the trajectory in the phase diagram mapped on the
hyperplane densely fills out closed curve, then the
solution forms a quasi-two-periodic orbit. When
b € (0,3.5) the system has a quasi-two-period at-
tractor. When b varies from 0.41 to 0.45, the effects
of quasi-periodicity route to chaos are observed.

Fig. 3a and b shows Poincaré maps at b = 0.2
and 0.44. When b = 0, the system has an asymp-
totically stable fixed point. As b increases to 0.2,
the fixed point expands into an invariant closed-
loop circle, a set like a circle which captures the
point of a solution sequence. When b = 0.44, the
circle breaks up into a complicated attracting set.
These behaviors characterize the quasi-period and
chaos in the system.
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Fig. 2. Bifurcation diagram with S, versus b when a = 1.5/,
7 =0.75T, ¢ = 0.035, and f, = 1/2f,.
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Fig. 3. (a,b) Poincaré maps at b =0.2 and b= 0.44 when
a= 1.5y, 1= 0.75T, ¢ = 0.035, and fo = 1/2f;.

Lyapunov exponents are the generalization of
the eigenvalues at an equilibrium point of char-
acteristic multipliers. They can be used to deter-
mine the stability of quasi-periodic and chaotic
behaviors, as well as that of equilibrium points
and periodic solutions. Following the Farmer’s
approach [12], a detailed formation to calculate
the Lyapunov exponents for the delay differential
equation are described by

.1
By = Jim - In|pi(1), (5)
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where p,(¢) is the /th eigenvalue of the Jacobian of
G"(¥,). And,

0 7 N |
L 0 T
@m = =
%m+rz—1 c. . I
0 0
%mfl 0
X + :
%‘m+n72 (p(%'meana '%ﬁmfl)
=G(W,_1), (6)
where &, = @(Zn_1, Zm_n). Thus, the Jacobian of
G(% ) is given by
0 I . . 0
c T :
DG(¥,_,) = : S
0 . 0 I
Dy 0 --- 0 Do
(7)
where
5
quD(.%’ern,g, %m—l) =1+ Z cl.DxF;ernfl,
i=0
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Fig. 4. The three Lyapunov exponents f§ versus b when a =
1.51,, ©=0.75T, ¢ = 0.035, and f; = 1/2f;.

Egs. (3) and (5) are to be readily expanded to
adaptive time step for improving the accuracy if
necessary. If the delayed term 4 = 0, D, ¢ equals to
zero. The eigenvalues of the Jacobian of G™(%,)
becomes the eigenvalues of D, ¢, which agrees with
the conventional definition of the Lyapunov ex-
ponents.

Fig. 4 shows the three Lyapunov exponents f
versus b when a = 1.5I,, t = 0.75T, ¢ = 0.035, and
fo =1/2f;. Note that the second and the third
Lyapunov exponent are all negative. ff; ~ 0 when
b € (0,0.35). This implies a nonchaotic quasi two-
period attractor which agrees with the results from
Poincaré maps. Because at least one Lyapunov
exponent of a chaotic system must be positive,
chaotic behavior can be established in regions
where one positive Lyapunov exponent is shown in
the figure. The system also has a chaotic window
for b € (0.364,0.386), therefore, in this region
there is no positive Lyapunov exponent.

In conclusion, it is proposed that a delayed-
feedback technique is used to achieve route to
chaos in a quantum-well laser diodes at rela-
tively low bias and small modulation depth. Quasi-
periodicity route to chaos can be visualized by
the bifurcation diagram and Poincaré map, and
further be supported by the calculation of Lya-
punov exponents for the delay differential rate
equation.
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