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Abstract. COSMIC is a joint Taiwan—US mission to
study the atmosphere using the Global Positioning
System (GPS) occultation technique. Improved formu-
las are developed for the radial, along-track, and cross-
track perturbations, which are more accurate than the
commonly used order-zero formulas. The formulas are
used to simulate gravity recovery using the geodetic GPS
data of COSMIC in the operational phase. Results show
that the EGM96 model can be improved up to degree 26
using 1 year of COSMIC data. TOPEX/POSEIDON
altimeter data are used to derive a temporal gravity
variation. COSMIC cannot reproduce this gravity
variation perfectly because of data noise and orbital
configuration, but the recovered field clearly shows the
gravity signature due to mass movement in an El Nino.
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1 Introduction

The Constellation Observing System for Meteorology,
Tonosphere, and Climate (COSMIC) is a joint Taiwan
(ROCQC)-US satellite mission to study atmosphere using
the Global Positioning System (GPS) occultation tech-
nique. This mission is to be launched in 2004 and will
deploy a constellation of eight micro-satellites, each
equipped with one GPS receiver and two antennas. One
antenna is to receive occulted signals for atmospheric
study, and the other un-occulted signals for precise orbit
determination (POD) (Kuo and Lee 1999). Although the
COSMIC mission is primarily for atmospheric research,
its POD GPS data can be used for geodetic research. In
the early, geodetic phase of COSMIC, selected satellites
will fly in tandem mode at altitudes ranging from 300 to
700 km. When using the GPS data in the tandem mode
the effect of non-conservative forces can be significantly

reduced because of the common mode cancellation. In a
simulation study Chao et al. (2000) show that the
COSMIC GPS data from the geodetic phase can improve
the accuracy of the EGM96 model (Lemoine et al. 1998)
for harmonic coefficients up to degree 40 and for selected
terms of higher degrees and orders. Other satellite
missions equipped with GPS receivers for atmospheric
study are, for example, UCAR’s (University Corpora-
tion for Atmospheric Research) MicroLab-1 and Ger-
many’s CHAMP missions; see also Yunck et al. (2000)
for a history of GPS sounding of the atmosphere. In
particular, CHAMP was launched in July 2000 and it is
also equipped with an accelerometer that measures its
surface perturbing forces. Thus, compared to COSMIC,
the problem of modeling surface forces for CHAMP is
substantially ameliorated. CHAMP will not only provide
real GPS data for testing the methods developed in this
paper, but also improve COSMIC’s data coverage for
gravity recovery, especially for the polar gap problem.
The geodetic phase of COSMIC will last for less than
1 year and the mission will soon be shifted to the
operational phase. Table 1 lists orbital characteristics of
COSMIC satellites in the operational phase, which are
largely based on Kuo and Lee (1999). The 80° inclina-
tion of COSMIC is not officially determined, but any
inclination less than 80° will introduce significant polar
gaps in the data coverage and will not be ideal for global
gravity recovery. In comparison, the GRACE and
GOCE missions have polar and nearly polar orbits that
will give a better data coverage (Balmino et al. 1998). At
an altitude of 800 km, the gravity content sensible to the
COSMIC satellites will drop to about harmonic degree
50 (Hwang and Lin 1998), so the data from the opera-
tional phase cannot produce high-frequency gravity in-
formation. Unlike the study of Chao et al. (2000), in this
paper we will use the COSMIC GPS data from the
operational phase for gravity recovery. Since the oper-
ational phase has a lifetime of 5 years, it will be possible
to see the time variation of gravity field with the
COSMIC GPS data. The COSMIC orbit is nearly cir-
cular; thus, given the GPS-derived positional data of
COSMIC satellites, it is convenient to use the linear
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Table 1. Orbital characteristics of COSMIC mission in the
operational phase

Number of satellites 8
Inclination 80°
Altitude 800 km
Eccentricity ~0

Orbital period 101 minutes
Number of orbital planes 8

Nodal period 314 days
Lifetime S years

orbital perturbation theory of Kaula (1966) for gravity
computation as in satellite altimetry research; see, for
example, Engelis (1987) and Hwang (1995). Kaula’s
theory is for the general case; in this study, perturbation
formulas in the radial, along-track, and cross-track di-
rections will be needed. Such formulas can be derived
from Kaula’s theory, and formulas of various accuracies
have been given by, for example, Schrama (1991) and
Rosborough and Tapley (1987). We will first derive
improved perturbation formulas with the aim of in-
creasing efficiency and accuracy. The accuracy of the
formulas will then be assessed. Finally, these formulas
will be used to compute the Earth’s gravity field from the
COSMIC positional data in various simulations. We will
pay a special attention to recovering a time-varying
gravity field due to oceanic mass movement derived
from TOPEX/POSEIDON (T/P) altimeter data.

2 Methods and data type for gravity
recovery from COSMIC

The primary purpose of this study is to recover, by
simulations, the geopotential coefficients, C,,, and S,,,,
in the spherical harmonic representation of the Earth’s
gravitational potential
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where R is the perturbing potential, GM is the product of
Newton’s gravitational constant and the Earth’s mass,
(r,¢,A) are the spherical coordinates (radial distance,
geocentric latitude, and longitude), a. is the semi-major
axis of the Earth’s reference ellipsoid, and P, is the fully
normalized Legendre function of degree n and order m
(Heiskanen and Moritz 1985). The coordinate system is
assumed to be geocentric, so the degree one terms are
absent in Eq. (1). There are several methods for recov-
ering the geopotential coefficients from COSMIC GPS
data. For example, Fig. 1 shows three possible methods
of recovery, as well as applications of global gravity in
engineering, oceanography, geophysics, and other disci-
plines. In one method, called the ‘““‘dynamic method”, we
can treat carrier phases and pseudoranges of GPS just

like such regular satellite tracking data as ranges from
satellite laser ranging (SLR) and Doppler data from
DORIS. Then, with sophisticated software for orbit
determination, for example, NASA’s GEODYN (Pavlis
et al. 1996), we can solve for the geopotential coefficients,
as well as the parameters of other perturbing forces and
the initial state vectors. The satellite orbit dynamics are
needed in this approach; see for example Rim et al.
(1996). Another method, called the “kinematic method™,
uses GPS software to determine the precise positions of
the COSMIC satellites without using satellite dynamics.
The satellite position is a function of the perturbing
forces acting on the satellite, including the force due to
the geopotential. Using a linear orbital perturbation
theory that links the satellite position to the geopotential,
we can estimate the geopotential coefficients. In this
kinematic method, the effect of the non-geopotential
perturbing forces can be reduced by using a priori force
models and further absorbed by an empirical formula
(see below). The third method in Fig. 1 first computes the
GPS phase accelerations (Jekeli and Garcia 1996), which
are then used to compute satellite accelerations. Like
satellite position, satellite acceleration is also a function
of the geopotential, and in the rectangular coordinates
the function is simply
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where the acceleration components on the left-hand side
are computed from the GPS phases and the expressions
of the gradient components of ¥ can easily be derived
from Eq. (1) with a suitable coordinate transformation.
Equation (2) establishes the linear relationships between
the observables (i.e. the accelerations), and the param-
eters (i.e. the geopotential coefficients). However, the
GPS-derived acceleration is again a combination of all
perturbing forces, so a priori force models are needed to
obtain the “pure” acceleration due to the geopotential.

Considering the limitations of our facility, in this
study we will use the positional data of COSMIC to
recover gravity, i.e., we will use the kinematic approach.
The use of positional data from GPS-tracked satellites
for gravity recovery has been recommended by, for ex-
ample, Schrama (1991) and Balmino et al. (1998). Like
radial ranges from satellite altimetry, positional data of
COSMIC can be used for gravity recovery, but there are
two major differences: (1) COSMIC positional data are
three-dimensional, while altimeter ranges are one-
dimensional, and (2) gravity recovery with altimeter
ranges is affected by the dynamic oceanic topography,
while COSMIC data are free from this effect. In addi-
tion, altimetry yields gravity only over the oceans, but
with a much higher resolution, and it does not require
downward continuation. Furthermore, the GPS POD
data of COSMIC will be sampled at 1 Hertz (Kuo and
Lee 1999), which far exceeds the necessary sampling rate
at the 800-km altitude. Thus the positional data of
COSMIC can be re-sampled at a lower rate, for example,
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a l-minute interval, that is comparable with the shortest
wavelength of gravity signal that can be sensed by the
COSMIC satellites. In the case of 1-minute normal
points, the accuracy of the positions of COSMIC can be
far better than the 10-cm accuracy of the GPS-deter-
mined T/P orbit (Bertiger et al. 1994). For example,
Schrama (1991) and Balmino et al. (1998) assume a
3-cm standard deviation for the GPS-determined posi-
tions in their simulations for the GOCE mission. By the
year 2004 the accuracy of GPS-determined orbit will
surely be further improved.

‘oceanographic
applications:
Global
circulation

engineering

applications:
GPS leveling

3 Orbital perturbations due to the geopotential
3.1 Radial, along-track, and cross-track perturbations

In order to use the positional data of COSMIC, we will
need to know the linear relationship between COSMIC’s
position and the geopotential coefficients. Such a
relationship can be established using Kaula’s theory of
linear perturbations of the six Keplerian elements,
whose notations are as follows:

—

validation

atmospheric data

hydrological data
oceanic data

Fig. 1. Three methods of gravity recovery from
COSMIC GPS data and applications of gravity

a semi-major axis of osculating orbital ellipse

e eccentricity of osculating orbital ellipse

I inclination

o argument of perigee

Q right ascension of the ascending node

M mean anomaly

Given the three-dimensional, positional data of

COSMIC, the analytical expressions for positional
perturbations in the radial, along-track, and cross-track
directions are needed and are derived below. First, the
radial distance from the geocenter to the satellite can be
expressed as

r=a(l —ecoskE) (3)
where E is the eccentricity anomaly. The radial pertur-
bation is then

or

or or
A)Cl :aAa"F&Ae—‘ra—EAE

= (1 —ecosE)Aa — (acosE)Ae + (aesin E)AE  (4)

Furthermore, as shown in Fig. 2, the along-track and
cross-track perturbations can be expressed as
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Fig. 2. Geometry showing the effects of the perturbations in
argument of perigee (top), right ascension of the ascending node
(center) and inclination (bottom) on the radial, along-track, and cross-
track perturbations of satellite position

Axy = r(Au+ AQcosI) = r[Aw + Af + (cos)AQ]  (5)

Axz = r[(sinu)Al — (sin ] cosu)AQ) (6)

where f is true anomaly and u = w + f is argument of
latitude. The perturbations in Eqgs. (4), (5), and (6) are
already expressed in terms of the perturbations of the
Keplerian elements, except for Af and AE. Complicated
expressions for Af and AE in terms of Keplerian

perturbations using infinite series expansions can be
found in Rosborough and Tapley (1987). Because the
sole purpose of the perturbation formulas is to serve as
the linear functions for computing the design matrix in
estimating the geopotential coefficients (see below), it
will be possible to use simplified, rigorous expressions of
perturbations that are free from infinite series expan-
sions. First, the following relationships hold:

M =E —esinE (7)
cosE —e . V1 —e2sinE

COSfﬁl—ecosE’ sinf = 1 —ecosE ®)
From Eq. (7), we have

oM oM
AM = —AE+—A

OE de ¢

= (1 — ecosE)AE — (sinE)Ae 9)

Re-arranging Eq. (9), we obtain

1 sin E

AE=———
1 —ecosE

(10)

1 —ecosE

Using a similar derivation, we have from Eq. (8)

VA sin £
Af = + Ae
I —ecoskE V1—e2(1 —ecosE)
V1 —e? 2 e — E)sinE
_ e 2AM+( e* —ecos )sm2 Ae (11)
(1 —ecoskE) V1 —e(1 — ecoskE)

Let Asg, k=1,...,6, be the perturbations of the six
Keplerian elements in the order a, e, I, Q, w, and M.
Substituting Eqgs. (10) and (11) into Egs. (4), (5), and
(6), we have

6
Axi=> ciAs, i=1,23 (12)
k=1

where the coefficients are

1_1_ 1 1
c3=c;=c5=0, c;=1—ecosE,

o — _acosE+ aesin’E ol aesinE
2 l1—ecosE’ © 1—ecosE
) o , 7(2—e?—ecosE)sinE
ci=c;=0, c5= E >
V1—e*(1—ecosE)
NS
ci:rcos[, cgzr, cézrie2 (13)
(1 —ecoskE)
ci=c3=cl=c}=0,
5 r[sino(cosE—e)+V1—e?coswsinE]
Chr=
3 1 —ecosE
[cosw(cosE—e) —Vi—¢2 sinwsinE}
cj=rsin/
1 —ecosE

In Egs. (13), £ is simply computed iteratively from M
and e by Eq. (7) without using infinite series expansions,



and r» is computed from a, e, and £ by Eq. (3). The
perturbations in the Keplerian elements, As;, can be
obtained by integrating Lagrange’s equations of motion
about a reference orbit that has fixed a, e, and / and
linearly precessing Q, w, and M (Kaula 1966; Balmino
1994). For later development, the expressions of As;s are
now briefly discussed. First, considering satellite altitude
and orbital eccentricity, we can express the perturbing
potential R in Eq. (1) as a function of the Keplerian
elements in a truncated series

55 9)9) 9) gy (14)

n=2 m=0 p=0 g=—0

where K is the maximum degree of the spherical
harmonic expansion depending on the satellite altitude,
and Q is a number that depends on the orbital
eccentricity. For example, at an altitude of 800 km, K
can be 50, and for a nearly circular orbit Q can be 1; see
also the discussion in Balmino (1994). Furthermore

GMa; -

Riumpg = Foamp(I) Grpg (€)Sumpq (0, M, Q, 0) (15)

an+l
where
Sumpg (@, M,Q,0)

= <_C’_’+’f ) cos[(n —2p)w + (n —2p + q)M

nm

S\
+m(Q—0)] + (Cn_m> sin[(n — 2p)w
+(n=2p+q)M + m(Q - 0)] (16)

and 0 is Greenwich sidereal time; C,. and S are fully
normalized spherlcal harmonic coefficients [see Eq. (1)]
when (n—m) is even, and C, and S, are such
coefficients when (n—m) is odd Fomp 1s the fully
normalized inclination function and G,y (e) is the
eccentricity function; see Kaula (1966) and Heiskanen
and Moritz (1985). The normalizing factor for anp is
exactly the same as the normalizing factor for P,,. Use
of F,,, is compatible with the use of normalized
geopotential coefficients in Eq. (1). Let

Sy (@, M, 9, 0)
— (_C:;’j ) sin[(n — 2p)w + (n — 2p + )M
Lm@—0) - ( i) cos{(n — 2p)o
+(n—2p+ )M +m(Q — 0)] (17)

Then the perturbations in a, e, and [ are

AS’ ZZZ Z OCnmpq nmpq (18)

n=2 m=0 p=0 g=—0

and the perturbations in Q, w, and M are
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As; = ZZZ Z anmpq nmpq (19)

n=2 m=0 p=0 g=—0

The coefficients o/ in the order a,e, I, Q, w, and M are

as follows: e
nmpq = 2abFpGrpg(n — 2p + q)
(1 —e )1/2 B
nmpq b#an[’G’lp‘Z
x [(1—e)!(n—2p+q) —n+2)
[(n —2p)cosI — m]
nmpq bEzmpanq snl](l . 82)1/2
0(4 — anpG”Pq
e sin/(1 — e2)'/?
1/2 (20)
50 (1- 62) 5 A
Umpg = b [ e F””’Panq
cos/ _,
- nm, G
sin /(1 — e2)!/2" "
B 1_ 2 1/2
O(/(f)tmpq = bEzmp 2(" + 1)anl] - % izpq
n
= 3Gup(n—2p+q)=
lpnmpq
where
n A\ "
b=- — (21)
lpnmpq a
GM
n=4/— 22
A= (22)
Vinpg = (1 =2p)0 + (n = 2p + )M + m(Q — 6)  (23)
=/ aF_;lmp / 6anq
anp = ol anq = de (24)

In Eq. (23), 0 is the speed of the Greenwich sidereal
time, which is about the Earth’s mean rotational rate
(7. 292115 x 1075 rad s~!') and the precessing rates o, M,
and Q are computed by

. 3nCroa?
Q:nizoag os> ]
2(1 —e?)°a?
. 3771C2()ag )
o=——"-2=—(1-5cos" ] 25
4(1—62)2a2( ) (25)
. 3nCsoa’
M=q——0% (300827 1)

4(1 — 62)3/2612

where Cy is the second-degree zonal harmonic (about
—0.00108263). The perturbation in mean anomaly, AM,
has taken into account the variation in M due to the
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change in the mean motion arising from the perturba-
tion of the semi-major axis [the third term in Egs. (20)];
see also Kaula (1966, p 49). Including this second-order
effect will improve the accuracy of the along-track
perturbation model.

In the practical computations, each of the three po-
sitional perturbations can be represented as the inner
product of two vectors:

Ax; = ATB (26)

where P is a vector containing the geopotential coeffi-
cients and A; is a vector obtained by combining
Egs. (12), (18), and (19). For an orbital arc shorter
than about 1 week, the a, e, and I elements in o, can
be regarded as constants, so we can compute o, . only
once for all terms up to degree K and index Q [see
Eq. (14)]. For a nearly circular orbit, approximate
analytical expressions of Ax; can be obtained; see for
example Schrama (1991) and Rosborough and Tapley
(1987). In particular, for the radial perturbation the so-
called ‘‘order-zero” perturbation (Rosborough and
Tapley 1987) is frequently used in satellite altimetry in
connection with orbit refinement and gravity improve-
ment; see for example Wagner (1989), Engelis (1987),
and Hwang (1995). The order-zero formulas of Ax; are
derived in Appendix A, and their accuracies will be
compared with those of the rigorous formulas given in
this section.

As a final note, in all computations below the incli-
nation function is computed by a FORTRAN subrou-
tine “FINCRS” and the eccentricity function by a
subroutine “GKAULAF”, both supplied by G. Balmi-
no (private communication, 1999); a brief mention of
these programs is given by Balmino (1994). In fact, we
also use the summation formula given by Kaula (1966,
p 34) to compute the inclination function, and the result
is identical to that computed by “FINCRS” up to at
least harmonic degree 50. In addition, for the order-zero
formulas in Appendix A, there is no need to compute the
eccentricity function.

3.2 Higher-order and resonance effects

The linear theory described above cannot account for
the higher-order perturbations which arise from the
interactions between the first-order (linear) perturba-
tions and the Keplerian elements, and the linear theory
breaks down in the case of resonance. A detailed
derivation of higher-order perturbations can be found
in Kaula (1966). However, since the higher-order
perturbations are not linear functions of the geopoten-
tial coeflicients, they are of no use for the gravity
computation in this study. Resonance occurs when the
frequency ,,,,,, in Eq. (21) approaches zero. Depending
on the closeness of ,,,, to zero, there are different
degrees of resonance, i.e. shallow, deep, and perfect
resonances (Reigber 1989). For COSMIC at the 800-km
altitude, we find that if

[ <0.01 (27)
M

then the coefficients in Eq. (20) become excessively large
and the perturbations computed by Eq. (12) do not
agree with those from the direct numerical method (see
below). Thus, if the condition in Eq. (27) is met, we
simply set ocfmpq = 0. Fortunately, these two effects can
be modeled by simple empirical formulas. An empirical
formula for the radial perturbation can be found in, for
example, Colombo (1984). In this paper, we adopt the
following empirical model to account for the higher-
order and resonance effects for COSMIC:

Ax¢ = aly+a| cosu+a) sinu+al sin2u+aytcosu

+dstsinu+alt* cosu+dit sinu+ait +ah s (28)

where ¢ is the time elapsed since a reference epoch and aj,
are the coefficients for the ith perturbation component.
Note that such an empirical model can also partly
absorb the error in the initial state vector and errors in
the force models in the parameter estimation involving
satellite dynamics. The choice in Eq. (28) is based on the
results in Colombo (1984), Engelis (1987), and Hwang
(1995), and most importantly, based on the numerical
tests carried out in this study.

3.3 Errors of the perturbation formulas

In order to see how the perturbation formulas perform,
we can replace the geopotential coefficients in the
formulas by the differences between two sets of geopo-
tential coefficients to compute the predicted perturba-
tions along the trajectory of the satellite. In this way the
predicted perturbations are in theory the differences
between the two satellite trajectories resulting from the
use of two different geopotential models in the equations
of motion of the satellite. Next, the “true” perturbations
can be obtained by differencing the two trajectories
computed by strict numerical integrations of equations
of motion. For each component the relative error of the
perturbation formula is defined as

_AD
D

where D is the root-mean-square (RMS) value of the
true perturbation, and AD is the RMS value of the
difference between the true and the predicted perturba-
tions.

We choose the EMG96 and OSU91A geopotential
coefficients to form the true and predicted perturbations
(actually the trajectory differences). The numerical in-
tegrations were carried out using the DVDQ integrator
(Krogh 1974); see also Hwang and Lin (1998). Table 2
shows the relative errors and the statistics of the differ-
ences between the true and predicted perturbations for
three kinds of perturbation formulas: the order-zero
formulas in Appendix A, and the perturbation formulas
in this paper with Q = 1 and Q = 2. The arc length for

M, (29)
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Table 2. Relative errors of

perturbation formulas and Type of formula Relative Maximum Minimum RMS
statistics of the difference bet- error (%) difference (cm) difference (cm) difference (cm)
ween the true and predicted (r/aje)* (r/aje) (r/aje) (r/aje)
perturbations a To harmonic degree 10, arc length = 7 days
Order-zero 1.08/1.21/0.92 1.1/6.1/0.8 -1.5/-4.6/-1.3 0.4/1.80/0.3
This study, Q = 1 0.85/0.64/0.49 1.0/3.3/0.5 -0.8/-2.1/-0.6 0.3/0.9/0.2
This study, Q = 2 0.42/0.53/0.49 0.4/2.5/0.5 -0.4/-1.5/-0.6 0.1/0.8/0.2
b To harmonic degree 50, arc length = 7 days
Order-zero 1.52/3.43/3.38 4.6/ 34.8 /10.5 -4.6/-33.9/-7.8  1.3/10.3/2.7
This study, Q = 1 1.18/1.10/0.93 3.3/14.5/2.5 —4.1/-12.4/-2.7  1.0/3.5/0.7
This study, Q = 2 0.96/1.08/0.93 2.7/9.4/2.5 -2.7/-10.7/-2.7  0.8/3.4/0.7

4r = radial, a = along-track, ¢ = cross-track,
Q = upper limit of index in eccentricity function

all cases is 7 days. For each relative error we also
experiment with two different expansion degrees: K = 10
and K = 50. [See Eq. (14) for Q and K]. From Table 2,
we find that for all formulas, the relative error increases
as K increases. That is, the perturbation formulas are
less accurate for a high-degree expansion than for a low
one. The largest error is in the along-track component
and the smallest error is in the cross-track component.
For the along-track component, the case with O =2
improves the accuracy only marginally compared to the
case with Q = 1. For all components, changing from
O =1 to Q =2 doubles the computing time. Also, the
formulas with O =1 out-perform the order-zero for-
mulas and require less computing time.

Figure 3 shows the differences between the true per-
turbation and the predicted perturbations based on the
three models, for the radial component and for K = 50.
The centimeter-level error in the formulas with QO equal
to 1 and 2 is considerably smaller than the positional
error of COSMIC from GPS. In the differences in the
along-track direction, for all formulas there are distinct

components at 0.02 cycles per revolution (cpr) and 2-cpr
components of time-dependent amplitude; thus we use
the following 15-coefficient empirical model for the
along-track component:

Ax¢ = aly + a) cosu + db sinu + d sin 2u + ajt cosu
+ ditsinu + at® cosu + aht* sinu + akt
+ abt? + d'y cos 2u + a1 cos 2u + d’t sin 2u
+ a5 €08 0.02u + d, sin 0.02u (30)

Figure 4 shows the differences in the along-track
direction resulting from the uses of the 10-coefficient
model [see Eq. (28)] and the 15-coefficient model [see
Eq. (30)] in the formulas with Q = 2. Clearly, the 10-
coefficient model cannot account for the large difference
near the end of the arc. Use of the 15-coefficient model
reduces the RMS error from 8.3 to 3.4 cm, which is
comparable to the assumed positional error of
COSMIC. Note that, when estimating geopotential
coefficients from the positional data, we can use

0.06 . ' '
——— True - order-zero
------------ True-(Q=1)

0.04 - True - (Q = 2)

Difference (m)

-0.04

Fig. 3. Differences between the true per-
turbation, and three predicted perturbations
computed with three perturbation models

-0.06 : :
0

Day

: (order-zero, Q =1 and Q = 2). Day is the
number of days elapsed since the first data
point
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0.4 T

- 10 coefficients
—— 15 coefficients

Difference (m)

-0.3 + E Fig. 4. Difference between the true and
predicted along-track perturbations using
10 and 15 coefficients in the empirical
-0.4 ! : : ’ : model. The perturbation model uses Q = 2.
0 1 2 3 4 5 6 7 Day is the number of days elapsed since the
Day first data point
iterations to reduce the effect of formula error, because AB
: ; ) : X = (32)
the successively estimated coefficients will become stable ¢

and the perturbations will approach zero.

In summary, based on the relative errors in Table 2
and the assumed data noise, we will use the perturbation
formulas with Q = 1 in all simulations below. The max-
imum arc length that is considered valid for the reference
orbit in the perturbation formulas and the empirical
model is 7 days; a longer arc should be divided into
multiple 7-day segments with each segment having a new
reference orbit and a new set of empirical coefficients.

4 Use of orbital perturbation formulas

The linear perturbation formulas can be used to compute
the design matrix when estimating the geopotential
coeflicients. Given the positional data of COSMIC, at
each epoch we can set up observation equations in the
radial, along-track, and cross-track directions as

0Ax;

Xi =+ U = X?(ﬁo) + —=
B lp-p,

AB + Ax{ (%),
i=1,23 (31

where x; are the positional data with noise v;, f is a vector
containing the geopotential coefficients, B, is an approx-
imation of B, AP is the correction with p = B, + A, €
contains the empirical coefficients and finally x¥ is an
approximation of x;. As with gravity refinement using
satellite altimeter data, the idea here is to use the so-
called residual observations (x; — x; 9), where x; are the
positions of COSMIC determined by the kinematic
approach using GPS data, and x¥ are approximations of
x; that are computed with an a priori geopotential model
and other force models. Let

Then X can be solved by the least-squares (LS) method
X = (ATPA + Px) 'ATPL (33)

where A is the design matrix composed of (0Ax;)/(0B)
and the function values of the empirical model; vector L
contains the residual observations, i.e. x; — x?; P is the
weight matrix of L; and Py is the a priori weight matrix
of X. As in standard practice, we have
P = diag(1/e},...,1/e}), where ey,...,e; are the stan-
dard deviations of the observations (the positional data
of COSMIC determined from GPS) and k& is the number
of observations. Assuming that the variances of the
geopotential coefficients follow the modified Kaula rule
(Reigber 1989), i.e.

= C2 SZ
Gn 2}’1 4 1 nm +

~5x 107y (34)

then symbolically Px = diag(Z,,, F,,, 0) (the weights of

the empirical coefficients are zeros) is a diagonal matrix
with its elements computed by

1

P —
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Cnm

=P,

Sum (35)
Use of Px is necessary for data of non-global coverage,
especially when solving high-degree terms and/or using
sparse data. Furthermore, according to Wagner (1989,
pp 293-296), the zonal terms will result in 1-cpr radial
orbit perturbation (also the along-track and cross-track
perturbations, but not shown by Wagner). The empirical
models in Egs. (28) and (30) also explicitly contain the
1-cpr variation of orbit. Thus the 1-cpr perturbations are
doubly counted by the zonal terms and the empirical



terms. The Il-cpr term will not cause problems in
accurately modeling the orbit perturbations, as demon-
strated by the high accuracies of the perturbation and
empirical formulas in Table 2. However, the 1-cpr term
will indeed cause difficulty in estimating the zonal terms
from the positional data of COSMIC. Using the a priori
weight matrix Py can mitigate such difficulty: the weight
matrix helps to separate the zonal terms from the
empirical models when solving the geopotential coeffi-
cients from the positional data (see below). More
discussion on using weighted constraints in geopotential
estimation from satellite tracking data can be found in,
for example, Reigber (1989).

In this method it is clear that accurate modeling of the
non-geopotential perturbing forces for x? is crucial to the
success of recovering gravity. To give an example of how
well perturbing forces could be modeled in the 1990s,
consider the orbit determination result of T/P: Tapley
et al. (1994) estimate that the major perturbing forces
can be so well modeled that the total contribution of the
mismodeled forces to T/P radial orbit error is about the
assumed noise level of COSMIC data in this paper, i.e.
3 cm. Furthermore, Cheng and Tapley (1999), Chen
et al. (1999), and Nerem et al. (2000) show that the time
variations of some low-degree harmonics and the geo-
center can be determined with sufficient accuracy using
SLR data. In their works the non-geopotential perturb-
ing forces can be well modeled so that their residual
errors do not alias into the time-varying signals they wish
to recover. Given the many years of force model im-
provement before the launch of COSMIC, particularly
that made for CHAMP and GRACE (the CHAMP and
GRACE altitudes are even lower than COSMIC’s), the
effect of mismodeled perturbing forces on the COSMIC
orbit will be reduced to the T/P level or smaller. Also, the
empirical formulas will absorb the long-wavelength part
of the mismodeled perturbing forces.

5 Simulations of gravity recovery from COSMIC data
5.1 Improving current gravity models

Here we wish to see how current gravity models,
especially the EGM96 model, can be improved using
the positional data of COSMIC. The steps of simulation
are as follows.

(1) Integrate a 7-day orbit at a 1-minute interval using
the EGMO96 coefficients for each of the eight
COSMIC satellites. Random errors are added to the
orbits based on a 3-cm standard deviation in GPS
positioning. These orbits are treated as the posi-
tional data of COSMIC.

(2) Repeat (1), but with the OSU91A coefficients and
without random errors. These orbits are treated as
approximate orbits based on a priori geopotential
coefficients (in this case, OSU91A).

(3) Subtract the orbits in (2) from the orbits in (1) to
obtain the radial, along-track, and cross-track per-
turbations.
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(4) Estimate the differences between the EGM96 and
OSUI1A coefficients by LS using the linear pertur-
bation theory with data from the “observed” per-
turbations in step (3).

At the initial epoch of integrations, the right ascensions
of orbital planes and arguments of latitudes of the eight
satellites in the COSMIC constellation are as shown in
Fig. 5. The amount of data to process and the comput-
ing times in such a simulation are enormous. For
example, the eight 7-day arcs result in eight normal
matrices with a total size of 220 Megabytes, and forming
one normal matrix requires 3 CPU hours on a Pentium-
I11 600 MHZ machine. The random errors are generated
using ‘“‘gasdev” and “‘ranl” from Numerical Recipes
(Press et al. 1989) with a given standard deviation (3 cm
in the case of COSMIC). The random errors are
normally distributed. The choice of a I-minute interval
is based on the assumption that the shortest wavelength
of the gravity field that COSMIC can sense corresponds
to a degree-50 field (the actual maximum degree can be
higher). At 800 km, a COSMIC satellite will take about
6050 seconds to travel in one revolution. According to
the sampling theorem (see e.g. Mesko 1984), the along-
track sampling interval should be 6050/(2 x 50) ~ 60
seconds. In general, the along-track sampling interval is

T na’/?
At = —~—+—

2K KVGM

where T is the period of one revolution, K is the
maximum degree of the geopotential field [see Eq. (14)]
used in the orbit integration, and « is the semi-major axis
of the mean orbital ellipse. However, to be compatible
with the satellite cross-track spacing, the actual along-
track sampling interval can be larger than that given in
Eq. (36). For example, Chao etal. (2000) used a

(36)

Orbital planes

90°f 135 180° 225 270° 315° 360
equator

Right ascension of ascending node

Fig. 5. Configuration of the COSMIC constellation in the operation-
al phase at the initial epoch of orbit integration (0 hour UTC, 1 Jan
2001). The eight satellites are placed on eight orbital planes with
evenly spaced right ascensions and arguments of latitude
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S5-minute interval when deriving normal point data from
the geodetic phase of COSMIC.

The recovered coefficients were then assessed by ex-
amining the external and internal accuracies. For the
external accuracy we computed the relative error of a
coefficient by

AC_jnm - Aéwnm

ACyy,

. |AS.. —AS,,

EC = R =
nm nm ASnm

(37)

where AC,,,and AS,,, are the estimates of AC,,,and AS,,,
(the differences between EGM96 and OSU91A coeffi-
cients). Figure 6 shows the relative errors of the
recovered coefficients. For comparison, the relative
errors of the recovered coefficients without weighted
constraints are also shown in Fig. 6. Indeed, the
constraints have reduced the relative errors consider-
ably. For coefficients of degree lower than 10, the
relative errors are mostly below 0.1. The relative errors
of the sectorial coefficients are relatively small compared
to the errors of other harmonics. Figure 7 shows the
relative errors of the recovered zonal coefficients with
constraint. In general, the low-degree zonal terms are
better determined than the high-degree ones. The Cy
term has an error of 0.05, which is almost the smallest
among all coefficients. o

In particular, the odd zonal coefficients Csy, Cisp,
and Cs7o have very large errors. The result in Fig. 7
shows that, despite the fact that the zonal terms produce
orbit variations that are mixed with the 1-cpr terms of
the empirical model, they are still well recovered with the
help of the weight matrix Px.The external errors will be
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Fig. 6. Relative errors of the recovered harmonic coefficients from the
degree-50 solution for a AC,, without constraint, b AS,, without
constraint, ¢ AC,,, with constraint, and d AS,,,, with constraint
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Fig. 7. Relative errors of recovered zonal coefficients from the degree-
50 solution with constraint

further reduced if more than 1 week of COSMIC data
are used.

Next we examine the internal accuracy using geoid
error by degree computed by

&n = Re (2 +¢&2) (38)

where R. is the Earth’s mean radius; ¢, and &5 are the
standard errors of C,, and S,,, respectively. Figure 8
shows the geoid errors by degree computed from the
recovered field and those from the EGM96 model. In
Fig. 8 we also show the geoid errors from a 1-year
solution, which are extrapolated using the empirical
formula: error from 1-year solution = error from 1-
week solution/v/52. (This formula has been verified by
the result: error from eight-satellite solution = error
from one-satellite solution/\/—g, see also Wahr et al.
1998.) As shown in Fig. 8, below degree 7 the geoid
errors from the 1-week solution of COSMIC are
comparable to that from EGM96, and beyond degree
7 the former are larger than the latter. However, for
degrees below 26 the geoid error from the I1-year
solution is much smaller than that from EGM96. With
5 years of COSMIC data, improvement at degrees
higher than 26 can be foreseen. On the other hand,
improvement at higher degrees can be achieved by using
the geodetic phase data of COSMIC that spans a
relatively short time, since the gravity signal-to-noise
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Fig. 8. Geoid errors by degree computed from the coefficient errors of
the EGM96 model, and the models from the COSMIC solutions
using 7 days and 1 year of data

ratio will be significantly magnified due to the lower
altitude (Chao et al. 2000).

5.2. Recovering temporal gravity variation

5.2.1 Generating gravity variation due
1o oceanic mass variation

Next we wish to study the performance of COSMIC in
recovering temporal gravity variation. The operational
phase of COSMIC may last as long as 5 years, so its data
are ideal for determining temporal gravity variation,
which is due to factors such as changes in oceanic mass,
atmospheric mass, ground-water level, and ice-sheet
thickness; see also Chao (1993) and Wahr et al. (1998)
for useful discussions on this issue. In comparison to the
Earth’s static gravity, the temporal gravity variation is
very small and is further reduced at satellite altitude. In
this simulation, we assume that the only source of
gravity variation arises from the variation in the oceanic
mass as observed by T/P. T/P is a satellite altimeter
mission specifically designed to measure sea surface
heights (SSHs); see also Fu et al. (1994) for a complete
description of this mission. Note that, according to
Wabhr et al. (1998), for the annual component, the largest
geoid variation is due to the continental water variation,
then the atmosphere, and finally the oceans. As the
parameters to be recovered, we generate spherical
harmonic coefficients of gravity variation as follows.
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(1) Average 5.6 years of T/P altimeter data to obtain
mean SSHs.

(2) Compute the difference between the SSH of T/P
Cycle 196 and the mean SSH. The difference is called
sea level anomaly (SLA).

(3) Compute the steric anomaly in January 1994 (the
month of T/P Cycle 196) (see Appendix B).

(4) Subtract the steric anomaly from SLA, yielding
corrected SLA (CSLA).

(5) Compute the spherical harmonic coefficients of the
potential due to the mass of CSLA up to degree 180
(see Appendix C).

The steric anomaly due to thermal expansion of the
oceans will not cause mass variation, so it must be
removed from the raw SLA in order to see the temporal,
oceanic mass variation. Figure 9 shows SLA and CSLA
from T/P Cycle 196, and the steric anomaly, and Table 3
shows their statistics. Cycle 196 is selected to see the
large variation of SSH over the Pacific Ocean and the
Indian Ocean during the 1997-1998 EI Nino. By
comparing the RMS values of SLA and the steric
anomaly in Table 3, we find that globally the steric
anomaly contributes about half of the sea level varia-
tion. As seen in Fig. 9, the sea surface northeast of
Australia dropped by as much as 20 cm, while the sea
surface in the central, eastern Pacific rose by about the
same amount. The sea surface northeast of Madagascar
also rose by more than 20 cm. These lows and highs in
the sea surface are the result of the 1997-1998 El Nino,
and only partially due to the steric anomaly (we can
compare the SLA and CSLA maps to see this). That is,
during the 1997-1998 El Nino, there were actual large
mass variations northeast of Australia and in the
central, eastern Pacific. Figure 10 shows the degree
amplitudes of the geoid variation due to the mass
variation. Degree amplitude of geoid is defined as

N, =R ,/ Ui+ Ki) (39)

where J,,, and K,,, are the harmonic coefficients of the
gravity variation; and R, is defined in Eq. (38). For the
CSLA-induced geoid variation, all degree amplitudes
are smaller than 1 mm, except at degrees 2 and 3. Thus
the geoid variation is indeed very small compared to the
total geoid (about 30 m RMS from EGM96 to degree
360). Also shown in Fig. 10 is the cumulative percentage
power up to degree L, defined as

L 2

N,
PL72§2 n 100 (40)

E max N2

where Np.x 1s the highest degree of expansion, which is
180 in this case. Based on Fig. 10, the power of the geoid
variation is concentrated at the low-degree terms. For
example, up to degrees 5, 10, 15, 36, and 50, the
cumulative percentage powers are 84.5, 96.8, 98.8, 99.8,
and 99.9%, respectively. Figure 11 shows the geoid
variations expanded to degrees 5, 15, and 50. At as low
as degree 5, the signatures of geoid variation over the
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Table 3. Statistics of sea level anomaly, steric anomaly and cor-
rected sea level anomaly (in cm) over oceans with depth greater
than 500 m

Maximum Minimum  Mean RMS
Sea level anomaly 29.9 -54.4 022 54
Steric anomaly 21.41 —-11.61 032 2.5
Corrected sea 38.4 -47.9 -0.1 53

level anomaly

Pacific Ocean and the Indian Ocean are still apparent
and are consistent with those of CSLA in Fig. 9.
Specifically, in the western Pacific a negative CSLA
results in a mass deficiency, which then causes a negative
geoid variation there; in the eastern Pacific, the sign of
CSLA is reversed, leading to a positive geoid variation
there. During the 1997-1998 El Nino the largest geoid
change occurred around the Galapagos Islands and
exceeded 1 cm. Furthermore, by LS fitting an expression
an~P to the averaged degree variances of the gravity
variation, we find

sea level anomaly (top), temperature-derived
steric anomaly (center), and corrected sea
level anomaly (by steric anomaly) (bottom)
at Cycle 196

K2)~7x 1074 41
7 2n+12::,1+ 7% 107 (41)
Figure 12 compares the modeled and true degree
variances of the gravity variation. Comparing the
expressions in Egs. (34) and (41), we find

G, ~ 10*1 42
f " (42)

Thus at any degree the static gravity signals (e.g. geoid
undulation, gravity anomaly, deflection of the vertical,
etc.) are about 10 000 times larger than the temporal
gravity signals due to oceanic mass variation.

5.2.2 Recovery

Now we attempt to recover the geoid variation in
Fig. 11 from the COSMIC data. In this simulation, we
assume that EGM96 is the true, static gravity field
determined from dedicated gravity missions such as
GRACE, CHAMP, and GOCE (Balmino et al. 1998).
The time-dependent gravity field is then the sum of
EGMO96 implied static gravity and the change of gravity.
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Fig. 10. Degree amplitude and cumulative percentage power of geoid
variation computed from the corrected sea level anomaly in Fig. 9

Let C5 and S be the geopotential coefficients of

EGMO96. The steps of simulation are as follows.

(1) Compute C!' = CE +J,, and S! =85 + K.

2) Integrate 7- day orbits at a l-minute interval using

C,, and S » Up to degree 50 for each of the eight
COSMIC satellites. Random errors are added to the
orbits based on a 3-cm standard deviation. These
orbits are treated as positional data of COSMIC.

(3) Repeat (2), but with C2 and S%  and without ran-
dom errors.

(4) Subtract the orbits in (3) from the orbits in (2) to
obtain the radial, along-track, and cross-track per-
turbations due to mass variation.

(5) Compute J,,, and K,,, which are the estimates of
Jum and K,,, by LS using the linear perturbation
theory with data from the “observed’ perturbations
in (4).

Figure 13 shows the perturbations of a COSMIC
satellite orbit due to the mass variation (note: no noises
are added to these perturbations). If the higher-order
and resonance effects are removed, the RMS values of
the radial, along-track, and cross-track perturbations
are only 0.4, 4.5, and 1.2 cm, respectively, which are very
small and can easily be obscured by GPS noises. In the
LS estimation we have tried three different solutions:
the first solution does not use any weighted constraints,
the second solution uses constraints based on the static
degree variances in Eq. (34), and the third solution uses
constraints based on the temporal degree variances in
Eq. (41).
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The first and second solutions result in recovered co-
efficients that are too large to produce any meaningful
structures of geoid variation. The third solution, how-
ever, yields a convincing result. Figure 14 shows the
relative errors of the recovered coefficients from the third
solution. Up to degree 18 the sectorial harmonics are best
recovered and the low-degree terms have relatively small
errors. For most of the coefficients, the relative errors are
below 1, indicating that the COSMIC satellites can sense
harmonic coefficients up to as high as degree 50 (as-
suming that the static gravity is accurate up to degree 50).
Figure 15 shows the recovered geoid variations up to
degrees 5, 15, and 50. Due to the GPS noises and the
polar gaps in the data coverage, the true geoid variations
in Fig. 11 cannot be fully recovered. In addition, a sur-
face signal such as geoid variation will be attenuated at
satellite altitude, making a full recovery of the signal even
more difficult. In fact, beyond degree 15 the resolution of
the recovered geoid variation does not improve at all. We
also tried a solution using 1 month of COSMIC data, but
the result is not improved and is almost identical to that
from 1 week of data. However, important signatures of
the temporal gravity variation are retained in the re-
covered fields. For example, the geoid lows northeast of
Australia and in the Atlantic Ocean, and the geoid highs
near the Galapagos Islands and east of Madagascar are
clearly seen in Fig. 15. Based on this experiment, we
conclude that, given data noise of 3 cm at a 1-minute
interval, COSMIC is able to see temporal gravity varia-
tion on a time scale of at least 1 week and on a spatial
scale of about 2600 km (the equivalent scale of degree
15), under the conditions that the static gravity is very
accurate and the orbital perturbations arising from other
time-varying forces are properly modeled.

5.2.3 The effects of data noise and mismodeled
perturbing forces on recovering temporal gravity

The result in the above experiment has shown that we
cannot fully recover the temporal gravity variation with a
3-cm noise in the COSMIC data. To understand more
about how the noise of COSMIC data will affect the
result, we generated 7 days of orbit for each of the eight
COSMIC satellites using degree-50 fields in the orbit
integrations, as in the previous section. However, here we
used three different noises in the “observed” perturba-
tions: 3, 1, and 0.1 cm. The “observed” perturbations
were then used to compute the temporal gravity varia-
tions up to degree 15. The reasons for using the degree-15
solutions are: (1) to avoid aliasing into low-degree terms
from the high-degree terms due to the polar gaps; (2) to
avoid using a priori weighted constraints of any kind;
and (3) to avoid singularity in the normal matrix in the
case of no constraints. Figure 16 shows the relative errors
from using the three noises. Clearly the relative error
decreases as the noise decreases. The result from the case
with noise equal to 3 cm is almost identical to the result
from the degree-50 solution (up to degree 15) described
in the previous section. The best result is with noise equal
to 0.1 cm, and the recovered geoid variations up to
degrees 5, 10, and 15 are shown in Fig. 17. The degree-10
geoid in Fig. 17 closely resembles the degree-15 geoid in
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Fig. 11. Contour maps of geoid variation
up to degrees 5 (top), 15 (center), and 50
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Fig. 11. In the case of 0.1-cm noise, the degree-15 geoid
improves the resolution over the degree-10 geoid, but the
former contains some artifacts, for example the distorted
geoid variations in the eastern Pacific and in the central
Atlantic. We also find that the degree-5 geoid from the
case with noise equal to 1 cm (not plotted here) agrees
very well with the degree-5 geoid in Fig. 11. This
experiment suggests that the noise of COSMIC data
has a substantial impact on the achievable resolution in
the recovered gravity variation. Furthermore, it appears
that the polar gaps in the COSMIC orbits will not do too
much damage to the low-degree solutions performed
here, but it is expected that the accuracy of recovery will
be improved if the COSMIC satellites are in polar orbits.

In previous sections we have pointed out the impor-
tance of modeling perturbing forces in recovering tem-
poral gravity variation from tracking data such as
COSMICs. In theory, in order to evaluate the impact of
mismodeled perturbing forces on recovered temporal
gravity variation, we can add systematic and random
errors to each of the given force models and see what
kind of damage the errors will do to the recovered sig-
nals. Such an experiment can be done using software like
NASA’s GEODYN (Pavlis et al. 1996). Here we present
just a simplified discussion using STARLETTE’s orbit.
For STARLETTE, whose altitude is about 966 km, the
magnitudes of accelerations due to selected perturbing

(bottom) from the corrected sea level
anomaly in Fig. 9. Unit is mm

320° 0’
forces are as given in Table 4 (Reigber 1989). Compared
to the geopotential, the accelerations due to other forces
are relatively small. We now calculate average accelera-
tion by degree (Hwang and Lin 1998) due to the oceanic
mass movement (derived from T/P as in this paper) by

ay = (Gr—il)z(“—;)z"m PN DY R+ R

m=0
(43)

where r is the average geocentric distance to COSMIC
(about 7171 km), and the J,.,K,. coefficients are
defined in Eq. (39). Figure 18 shows the average
accelerations by degree up to degree 50 due to the
oceanic mass variation. In Fig. 18, the errors of
accelerations due to mismodeled perturbing forces based
on a 1% relative error are also plotted. These errors are
assumed to be “flat”’; that is, the errors are the same at
any harmonic degree. As we can see from Fig. 18, for
N-body, Earth tides, and ocean tides, the 1% error is
too large for us to see temporal gravity variation up to
degree 50 from COSMIC. In order to achieve a degree-
50 resolution in temporal gravity variation (due to the
oceanic mass variation), the relative errors of N-body,
Earth tides, and ocean tides must be smaller than
1073,10*, and 1073, respectively.
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Fig. 12. True and modeled degree variances of gravity variation due
to oceanic mass variation

6 Conclusions

In this paper we proposed improved formulas of orbital
perturbations, which were then verified by numerical
analysis. The perturbation formulas were used to
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recover gravity fields using the simulated, GPS-derived
positional data from the COSMIC mission in the
operational phase. Our results show that the COSMIC
data can improve the long-wavelength part of the
EGM96 model. Most important is that the COSMIC
data can be used to recover temporal gravity variations,
especially the gravity signatures due to the oceanic mass
movement in an El Nino. With a 3-cm noise at a 1-min
interval, COSMIC can recovery temporal gravity vari-
ation on a time scale of at least 1 week and on a spatial
scale of about 2600 km, provided that the static gravity
is very accurate and time-varying perturbing forces are
properly modeled. However, in order to see more clearly
the structure of temporal gravity variation, the noise of
COSMIC positional data should be reduced to 1 cm or
less at a 1-min interval. Thus, it is necessary to develop a
good data processing method for noise reduction. The
technique developed here can be applied to gravity
recoveries from the data of the CHAMP and GRACE
missions, which have onboard accelerometers to mea-
sure surface forces. However, like COSMIC, CHAMP
and GRACE will face the same problem of modeling
such gravitational forces as those from the N-body,
ocean tides, and solid-Earth tides. Most of these
gravitational forces are time-varying and, if not properly
modeled, they will alias into the temporal gravity signals
that we wish to recover from the COSMIC, CHAMP,
and GRACE data.

Appendix A
Order-zero perturbations
For a satellite orbit with a small eccentricity, we may

assume r=a,f = E=M in Egs. (4), (5), and (6) to
obtain the approximations

Fig. 13. Perturbations of COSMIC orbit
due to the mass variation of corrected sea
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level anomaly up to degree 50. Day is the
number of days elapsed since the first data
point
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Fig. 14. Relative errors of the recovered harmonic coefficients of
gravity variation for a AJ,,, and b AK,,, using 1 week of COSMIC
data and degree-50 solution

Ax) = (1—ecosM)Aa— (acosM)Ae+(aesinM)AM (A1)
AY = a[Aw + AM + (cos I)AQ) (A2)

Ax§ = a[(sin(w + M)AI — (sin cos(w +M))AQ)]

(A3)

Furthermore, in Eq. (14) we set Q = 1. This truncated
series of R will then require only the G, and G+ terms,
which can be approximated as (Balmino 1994, p 270)

anO = 17
(Bn—4p+1)e
anl = f; (A4)
—n+4p+1
anfl = ( P )ev
2
G:,po =0,
3n—4p+1
r_
anl 2 ’ (AS)
,  _ —n+4p+1
anfl 2 ’

Substituting Eqs. (A4) and (AS) into Egs. (20) and (19),
and finally into Egs. (Al), (A2), and (A3), with some
trigonometric identities we obtain the order-zero per-
turbations

K n n
A =D D D ConySmpo

n=2 m=0 p=0

(A6)

Fig. 15. Contour maps of recovered geoid
variation up to degrees 5 (top), 15 (center),

and 50 (bottom) using 1 week of COSMIC
data and degree-50 solution. Unit is mm
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(A12)

This result can also be found in Rosborough and Tapley
(1987).

Appendix B

Computation of steric anomaly due
to thermal expansion

The steric anomaly is sea level variation due to the
expansion or contraction of sea water as a result of
temperature variations over the entire column of the
oceans. However, the upper layers of the oceans
contribute most to the steric anomaly. In practice we
take into account the contributions from the upper 14
oceanic layers when computing the steric anomaly.

14
AHs = " o,AT:H, (BI)
i=1

where ¢ is the coefficient of thermal expansion from Gill
(1982, Table A3.1); AT; is the temperature anomaly
relative to the mean of layer i and H; is the thickness of
layer i; see also Chen et al. (2000, Table 1) for a list of
depths and thicknesses of the 14 layers. We obtained via
the Internet the monthly, 1° x 1° gridded temperature
data at different depths from the Integrated Global
Ocean Services System (IGOSS) at Columbia University
(see the web site: http://lola.ldgo.columbia.edu/
SOURCES/.LEVITUS94). Then, for each of the 14
layers, the mean temperature was determined and
subtracted from the raw temperature to obtain the
temperature anomaly AT7;. It turns out that the quality of
temperature data varies over space and time, so we use a
medium filter with a 300-km wavelength to filter the
computed steric anomaly. Ideally, in this study we
should compute the steric anomaly at the mean time of
T/P Cycle 196, but the current maximum resolution of
reliable global temperature data at different depths is
probably only 1 month.

Appendix C

Harmonic coefficients and geoid variation

from corrected sea level anomaly

Steric anomaly-corrected sea level anomaly (CSLA)
from satellite altimetry includes the deviation of the
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Fig. 17. Contour maps of recovered geoid
variation up to degrees 5 (top), 10 (center),
and 15 (bottom) using 1 week of COSMIC

Table 4. Magnitudes of accelerations for STARLETTE orbit

(from Reigber 1989)

Source of acceleration

Magnitude of
acceleration (m s72)

Central term (GM/r)

Cyo

Other harmonics of geopotential
N-body

Earth tides

Ocean tides

Atmospheric drag

Albedo pressure

Solar radiation pressure

7.4
8§ x 1073
1x107*
1x107°
2% 1077
3x 1078
1-2x 1071
5% 107°
5% 10710

instantaneous sea surface (after removing ocean tide and
other geophysical effects) from a mean sea surface, and
the vertical loading deformation due to the mass of such
a deviation. CSLA in this case may be expanded into a
series of spherical harmonics as

K n
=) (14+k)

n=0 m=0

[anman(ea j‘) + Bnmgnm(ev }')] (Cl)

data and degree-15 solution with
noise = 0.1 cm. Unit is mm

where k, is the elastic Love number of degree n (for
their numerical values, see e. g Wahr et al. 1998);
Ry = Py, cosmi and S, = P,, sinm/. are fully normal-
ized spherical harmonics [Heiskanen and Moritz 1985;
see also Eq. (1)]. The coefficients a,, and b,,, are
harmonic coefficients of CSLA without loading effect,
and can be obtained by the integrations

(1+kn){Z::}
{l;m}_%// { }smeded; (C2)

At any point exterior to the Earth, the potential due to
the mass of Ak is

T

2n

A

AV (r,0,7) = RGp, / / A g der d i (C3)

S
0=0 1=0

where p,, ~ 1.03gcm™ is the density of sea water,

R. =~ 6371 km is the Earth’s mean radius, G is the
gravitational constant, and s is the distance between the
point at (r, 0 , 1) and a mass element. The inverse of s
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can be expanded into products of spherical harmonics as

(Heiskanen and Moritz 1985)
1 1 1 R\ " - _

—== = Rum (0, ') Ry (0, 2
1) Dm0 R0

+Sum (6, ) Sum (0, 7)) (C4)
Substituting Eqs. (C4) and (C1) into Eq. (C3), and using

the orthogonal relationship of spherical harmonics, we
obtain

AV(r,0,7) = GTMZ <R7>

n=0

X umRum (0, 2) + KumSum(0,2)]  (C5)
m=0

where M is the Earth’s mass and

{ Tum } B 4np R2(1 + k) {ﬁ_lnm }
Knm B M(zn + 1) Bnm
_ 47-5pr§ a;1m
C MQ2n+1) b,
Thus the elastic Love numbers are canceled out. The

harmonic coefficients of AV differ from those of CSLA
by only a scale factor. Let C,, = (@, + b, ), where

(Co)
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i =+ —1. Given Ah on a regular A0 x A grid, Eq. (C2)
can be approximated as

LSS
Cnm = Ah(ekv/hl)
g =5 1=

t+1 Al4-1

/ e " di

-1 -1

_ Ym X pk X A i2nml /N

=1 IPES " Ah(Ok, 2a)e (C7)
n =0 =0

where #; = cos(kA0), 2; = IAL, IP* is the integration of
the associated Legendre function (Paul 1978), ¢, is a
smoothing factor defined by Rapp (1989 p 266), and

(A =0 o
In =1 sin(mAL) —i(cos(mAi)— 1) /m, itmz0 (3
— 1
Ah(@k, ;u[) = Z [Ah(@k, )»1) + Ah(9k+1 s /11)
+Ah(6k,)u[+1) + Ah(9k+],/’{]+])] (C9)

Thus Ak is the simple mean of four neighboring point
values. The expression

N-1

Z A}_l(ek, ;L[)eiZHmI/N
1=0

in Eq. (C7) can be computed efficiently by fast Fourier
transform. With C,,, computed, @, and &, are simply
taken from its real and imaginary parts, respectively.
The geoid variation due to A# is simply computed by
Brun’s formula AN = AV /y, where y is normal gravity.
At sea level, we can set » = R, and y = GM /Rg to obtain

the geoid variation by

(C10)

The error in such a spherical approximation is very
small because the geoid variation is already very small.
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