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The Inequality Between the Coef¢cient of Determination and
the Sum of Squared Simple Correlation Coef¢cients

Gwowen SHIEH

The inequality between the coef¢cient of determination and the
sum of two squared simple correlation coef¢cients in a two-
variable regression model is reexamined through two relative
measures. They are the relative coef¢cient of determination and
the relative simple correlation, which are the ratio of the coef¢-
cient of determination to the sum of squares of the two simple
correlations and the ratio of two simple correlations, respec-
tively. This approach not only permits new insights into their
relationship but also allows clear and informative visual repre-
sentations of various aspects of the counterintuitive condition.
We consider the occurrenceand correspondingmagnitude,prob-
ability, and expected magnitude of the enhancement-synergism
situation. Numerical examples are presented to illustrate these
phenomena.

KEY WORDS: Coef¢cient of determination; Multiple re-
gression; Simple correlation coef¢cient.

1. INTRODUCTION

Hamilton (1987) discussed the counterintuitivenatureof mul-
tivariate relationship in standard multiple regression models—
the coef¢cient of determination can exceed the sum of the
squared correlation coef¢cients between the response variable
and each explanatoryvariable.To understandthis interestingand
surprising feature, the theoretical proof and geometrical argu-
ment that such inequalitycan occur were provided for the regres-
sion model with two explanatory variables. A slightly simpler
proof was given by Bertrand and Holder (1988). Related com-
ments and discussions can be found in Currie and Korabinski
(1984), Freund (1988), Hamilton (1988), Mitra (1988), Cuadras
(1993) and their references. As visual supplement, Currie and
Korabinski (1984) and Freund (1988) contain several diagrams
that intend to illustrate when the counterintuitiveconditionscan
occur. Since more than three measures are involved in those
plots, their uses are limited to the selected conditional values of
the chosen measure. Consequently, the interrelation is not com-
pletely shown by single or even several plots together. Hence
more concise diagrams are needed to effectively conceive and
evaluate the occurrences and magnitudes of these phenomena.
Although the existence of the inequality is well presented and
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recognized in the aforementioned articles, it is still not clear
exactly how often it can happen.

The purpose of this article is to provide more informative
plots for the existence and subsequent analyses of the inequality
and to quantify the probability and expected magnitude of the
occurrence.

2. MAIN RESULTS FOR TWO-VARIABLE
REGRESSION

Consider the standard regression model with one response
variable Y and two explanatory variables X1 and X2

Yi = ¬ +  1X1i +  2X2i + "i; i = 1; : : : ; n; (1)

where ¬ ,  1, and  2 are parameters, and "i are iid N (0; ¼ 2)
random variables. Let rY 1, rY 2, and r12 be the usual simple
(product-moment) correlation coef¢cients between Y and X1,
Y and X2, and X1 and X2, respectively.It follows from Equation
(8) of Hamilton (1987) or Equation (3-81) of Johnston (1991)
that the coef¢cient of determination R2 in terms of the simple
correlation coef¢cients is

R2 =
r2

Y 1 + r2
Y 2 2rY 1rY 2r12

1 r2
12

: (2)

We will focus on the inequality between the coef¢cient of de-
termination and the sum of two squared simple correlation co-
ef¢cients

R2 > r2
Y 1 + r2

Y 2: (3)

The inequalitymay seem surprising or counterintuitiveat ¢rst. It
will be shown later that it occurs more often than one may think.
Currie and Korabinski (1984) called such an occurrence “en-
hancement,” while Hamilton (1988) suggested “synergism” as
an alternative.Here it will be termed “enhancement-synergism.”

2.1 When Does the Enhancement-Synergism Condition
Hold?

Since it is obvious from (2) that R2 = r2
Y 1 + r2

Y 2 for r12 =
0, we will assume r12 6= 0 in the remainder of this article. It
is shown in Hamilton (1987) that the necessary and suf¢cient
condition for (3) in terms of the simple correlation coef¢cients
rY 1, rY 2, and r12 is

r12

³
r12

2rY 1rY 2

r2
Y 1 + r2

Y 2

´
> 0: (4)

Accordingly, the validity of inequality (4) depends upon the in-
terrelation of rY 1, rY 2, and r12. In this case graphical represen-
tation is extremely informative in understanding its occurrence.
To lay the basis for developing a simpli¢ed view and providing
a concise visualizationof when the inequalitycan occur, we ¢rst
de¢ne the relative simple correlation, denoted by Q, as the ratio
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Figure 1. The Regions of Enhancement-Synergism.

of rY 2 to rY 1:

Q = rY 2=rY 1: (5)

Since the designation of X1 and X2 is arbitrary, as long as only
one of rY 1 and rY 2 is zero, Q can be set as zero. The case
that both rY 1 and rY 2 are zero will be excluded because R2 is
obviously zero from (2).

Equation (5) enables us to rewrite (4) in terms of Q and r12,
and one gets r12 > g(Q) for r12 > 0 and r12 < g(Q) for
r12 < 0, where g(Q) = 2Q=(1 + Q2). Equivalently,Q < q0 or
Q > 1=q0 for r12 > 0, and Q < 1=q0 or Q > q0 for r12 < 0,
where q0 = (1

p
1 r2

12)=r12. Note that g(Q) = g(1=Q),
for Q 6= 0. Therefore, the relation between r12 and Q can be
represented by the relation between r12 and Q for jQj µ 1. Fig-
ure 1 presents the occurrence of (4) for combinationsof r12 and
Q for jQj µ 1. Those four shaded areas stand for the occurrence
regions of enhancement-synergism.We believe Figure 1 is more
effective for communicating the results than Figure 2 of Currie
and Korabinski (1984) where the occurrence of enhancement-
synergism was presented with multiple conditional plots (com-
binations of rY 2 and r12 for selected values of rY 1).

2.2 What is the Magnitude of Enhancement-Synergism?

Instead of measuring the magnitude of enhancement-
synergism with the direct difference of R2 and r2

Y 1 + r2
Y 2, for

the purpose of simpli¢cation, we suggest using the relative co-
ef¢cient of determination, denoted by H ,

H = R2=(r2
Y 1 + r2

Y 2); (6)

which is the ratio of R2 to r2
Y 1 + r2

Y 2. A useful expression for
H is

H =
1 + Q2 2r12Q

(1 r2
12)(1 + Q2)

(7)

as a functionof Q and r12. A close examinationof (7) shows that
H attains its maximum 1=(1 jr12j) and minimum1=(1+jr12j)

for Q = sign(r12) and sign(r12), respectively. The function
sign(x) returns respective value of 1, 0, or 1 if x > 0, x = 0,
or x < 0. Besides, H(Q) = H(1=Q) for Q 6= 0. As in the
previous discussion of g(Q), the relation between H and Q can
be represented by the relation between H and Q for jQj µ 1. To
visualize these facts, we plot H against Q for jQj µ 1 in Figure
2 for three different values r12 = :1, :5, and :9. (The plots for
negative values of r12 are mirror images of those for positive
values.) We believe Figure 2 provides a clearer presentation of
the relative magnitudeand range of the enhancement-synergism
condition than the plots in Freund (1988) and Figure 1 of Currie
and Korabinski (1984).

2.3 How Often Does the Enhancement-Synergism
Condition Occur and What is the Expected
Magnitude of Enhancement-Synergism?

Because we know the enhancement-synergism condition ex-
ists, it is of interest to know how often it occurs and what is
the expected magnitude in terms of relative coef¢cient of de-
termination; that is, what are P (H > 1) and E[H ]? To de-
termine these two quantities, we start with the derivation of
the pdf of Q. Assume the true coef¢cient parameters of  1

and  2 in (1) are  ¤
1 and  ¤

2 , respectively. It can be shown
from the standard assumptions that Q = Z2=Z1, where Zj =
SY j=( ¼ Sj) ¹ N ( · j ; 1); SY j =

Pn
i = 1(Yi Y )(Xji Xj); Sj

is the square root of S2
j =

Pn
i= 1(Xji Xj)2, j = 1 and 2,

· 1 = ( ¤
1S1 +  ¤

2S2r12)=¼ and · 2 = ( ¤
2 S2 +  ¤

1 S1r12)=¼ .
Note that corr(Z1; Z2) = r12. Hence the distribution of Q is
exactly the same as the distributionof the ratio of two correlated
normal random variableswith mean ( · 1; · 2), variance (1, 1) and
correlation r12. This is a special case of the ratio of two corre-
lated normal random variables discussed by Fieller (1932) and
Hinkley (1969). Its explicit pdf and cdf were given by Hinkley
(1969, eq. (1)–(3)). It appears, however, that there is no ana-
lytic form for P (H > 1) = 1 P (q0 < Z2=Z1 < 1=q0) for
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Figure 2. The Relation Between H and Q.
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Table 1. The Occurrence Probability of Enhancement-Synergismand the Expected Relative Coef�cient of Determination

P(H > 1| · 1, · 2, r12) E{H | · 1, · 2, r12}

· 1 · 2 r12 = .1 r12 = .5 r12 = .9 r12 = .1 r12 = .5 r12 = .9

2 2 .0549 .0972 .1360 .9329 .7881 .8951
2 1 .1992 .3129 .6875 .9583 .9670 2.5033
2 1 .5383 .7192 .9925 1.0100 1.3343 5.4156
2 1 .8508 .9514 1.0000 1.0607 1.6597 7.5596
2 2 .9656 .9953 1.0000 1.0854 1.8107 8.5373

1 2 .1992 .3129 .6875 .9583 .9670 2.5033
1 1 .2824 .3284 .3586 .9707 .9922 1.6872
1 0 .5137 .5864 .8683 1.0071 1.2358 4.2373
1 1 .7507 .8551 .9984 1.0453 1.5342 6.7198
1 2 .8508 .9514 1.0000 1.0607 1.6597 7.5596

0 2 .5383 .7192 .9925 1.0100 1.3343 5.4156
0 1 .5137 .5864 .8683 1.0071 1.2358 4.2373
0 0 .5000 .5000 .5000 1.0050 1.1547 2.2942
0 1 .5137 .5864 .8683 1.0071 1.2358 4.2373
0 2 .5383 .7192 .9925 1.0100 1.3343 5.4156

1 2 .8508 .9514 1.0000 1.0607 1.6597 7.5596
1 1 .7507 .8551 .9984 1.0453 1.5342 6.7198
1 0 .5137 .5864 .8683 1.0071 1.2358 4.2373
1 1 .2824 .3284 .3586 .9707 .9922 1.6872
1 2 .1992 .3129 .6875 .9583 .9670 2.5033

2 2 .9656 .9953 1.0000 1.0854 1.8107 8.5373
2 1 .8508 .9514 1.0000 1.0607 1.6597 7.5596
2 0 .5383 .7192 .9925 1.0100 1.3343 5.4156
2 1 .1992 .3129 .6875 .9583 .9670 2.5033
2 2 .0549 .0972 .1360 .9329 .7881 .8951

r12 > 0, or 1 ¡ P (1=q0 < Z2=Z1 < q0) for r12 < 0, except in
the following special case.

Assume  ¤
1 =  ¤

2 = 0, or equivalently · 1 = · 2 = 0. In this
case, Q can be viewed as the ratio of two correlated standard
normal variables and has a Cauchy distribution with location
parameter ³ = r12 and scale parameter ¶ = (1 ¡ r2

12)1=2; see
Johnson, Kotz, and Balakrishnan (1994, eq. 16.1). Since its cdf
is of the form FQ(q) = :5 + ¸ ¡ 1tan¡ 1f(q ¡ ³ )=¶ g, one has

P (H > 1) = 1 ¡ jFQ(q0) ¡ FQ(1=q0)j
= 1 ¡ jtan¡ 1( ¡ q0) ¡ tan¡ 1(1=q0)j=¸ = :5:

The last equality follows from the fact that ¡ q0 × 1=q0 = ¡ 1.
Therefore it is equally likely to have or not to have enhancement-
synergism in a two-variable regression with explanatory vari-
ables that are absolutely irrelevant for describing the response
variable. More importantly, this is true for all r12 6= 0. This out-
come may be easy to guess; however, it is not as trivial as one
may think.

The actual occurrence probabilityof enhancement-synergism
under various values of ( · 1; · 2) are calculated through numer-
ical integration and are listed in Table 1 for r12 = :1, :5, and :9.
In general, P (H > 1j· 1; · 2; r12) = P (H > 1j ¡ · 1; ¡ · 2; r12)
and P (H > 1j · 1; ¡ · 2; r12) = P (H > 1j ¡ · 1; · 2; r12) due to
symmetry. It is also true that P (H > 1j · 1; · 2; r12) = P (H >
1j· 1; ¡ · 2; ¡ r12).

Based on the pdf of Q and (7), we can evaluate the expected
relative coef� cient of determination E[H ] for any r12 6= 0.
Again it does not appear to have a simple analytic form and
numerical integration is necessary to carry out the expectation.

Table 1 also presents the expected magnitude of enhancement-
synergism in terms of H for r12 = :1; :5, and :9. In partic-
ular, when ( · 1; · 2) = (0; 0), the values are 1.0050, 1.1547,
and 2.2942 for r12 = :1; :5; and :9, respectively. This indicates
that the relative coef� cient of determination is greater than one
in “average” for all r12 6= 0 when ( · 1; · 2) = (0; 0). So far
we are unable to prove that E[H j · 1 = 0; · 2 = 0; r12] > 1
for all r12 6= 0. Moreover, Table 1 shows that the differ-
ences of E[H ] among different values of ( · 1; · 2) are more dra-
matic as jr12j gets larger. Overall E[H j· 1; · 2; r12] = E[H j ¡
· 1; ¡ · 2; r12]; E[H j· 1; ¡ · 2; r12] = E[H j ¡ · 1; · 2; r12] and
E[H j · 1; · 2; r12] = E[H j · 1; ¡ · 2; ¡ r12].

3. CONCLUSION

We provide a simpli� ed and systematic view of the coun-
terintuitive inequality or the enhancement-synergism condition
that the coef� cient of determination can exceed the sum of
two squared simple correlation coef� cients. The major differ-
ence between our approach and others is that the relative sim-
ple correlation Q and the relative coef� cient of determina-
tion H are the primary tools for analyzing such phenomenon
rather than the original measures and their difference. The fol-
lowing four major questions are studied: (1) When does the
enhancement-synergism condition occur? (2) What is the mag-
nitude of enhancement-synergism? (3) How often does the
enhancement-synergism condition occur? (4) What is the ex-
pected magnitude of enhancement-synergism? Both theoretical
arguments and graphical presentationsare given. Numerical ex-
amples are provided to illustrate the levels of the enhancement-
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synergism and its dependence on the other measures. In addi-
tion to the surprising enhancement-synergism condition itself,
we point out two interesting features when the explanatory vari-
ables are absolutely irrelevant for describing the response vari-
able. It is shown that even the two true coef¢cient parameters
are indeed zero ( ¤

1 =  ¤
2 = 0) the occurrence probability of

the enhancement-synergismcondition is .5 for all r12 6= 0. Fur-
thermore, under the same assumption, it is shown numerically
that the expected relative coef¢cient of determinationappears to
be greater than 1 for all r12 6= 0 and is increasing with jr12j.

[Received October 1999. Revised April 2000.]
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