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Abstract

In this paper, a new concept of an electronic device cooling method is proposed. In this method, extremely thin ®ns

are used for swinging back and forth in a ¯owing ¯uid. The boundary layers attaching on the ®ns are then contracted

and disturbed, and the heat transfer rate of the ®ns can be enhanced remarkably. The dynamic behavior between the

®ns and ¯uid is classi®ed into a class of the moving boundary problems. A Galerkin ®nite element formulation with an

arbitrary Lagrangian±Eulerian kinematic description method is adopted to solve this problem. The parameters of

velocities of the ¯uid and the swinging speed of the ®ns are employed to investigate the variations of the ¯ow and

thermal ®elds. The results show that the velocity and thermal boundary layers may be contracted and disturbed, which

results in a signi®cant heat transfer enhancement, being attained. Ó 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Accompanying with the progress of the semicon-

ductor technology, the miniaturization of components

becomes a trend of development of a new electronic

device that results in large heat rate being generated per

unit area and the temperature of the electronic device

being high. The performance and reliability of the elec-

tronic device are deeply a�ected by its temperature.

Therefore, how to control the thermal dissipation and

enhance the heat transfer rate from a small size elec-

tronic device e�ectively becomes a very important sub-

ject.

In general, the techniques for enhancing the heat

transfer are divided into two parts: ``passive'' and ``ac-

tive'' methods [1,2], and both these methods have been

massively used to enhancing the heat transfer of high

power electronic devices. Yeh [3] summarized and re-

viewed the results of recent developments and researches

of the heat transfer technologies in electronic equipment,

such as air cooling, liquid cooling, jet impingement, heat

pipe, micro-channel cooling and phases change. Sathe

and Sammakia [4] made a survey of recent developments

in detail for air cooling method in electronic packages.

One of the above technologies of adding a ®nned

heat sink on a hot component to enlarge the heat

transfer area for enhancing the thermal performance is

universally employed in the electronic device and heat

exchangers, and several papers [5±8] had studied in this

topic. Furthermore, vibrating a heated body surface also

is an e�ective method to enhance the heat transfer rate

and had been studied experimentally and theoretically

[9±13], and the results indicated the heat transfer rate of

the heated body to be increased remarkably.

However, at present it appears that the heat transfer

e�ciency of the ®nned heat sink may fail to catch up

with the increasing rate of the heat generation of a new

electronic device. As for the method of vibrating of the

heated body surface, it seriously reduces the reliability

and stability of the electronic device.

Thus, a new cooling concept, in which the ®ns of the

®nned heat sink swing back and forth in ¯owing ¯uid, is

proposed to enhance the heat transfer of the high power

electronic device reliably and stably. For realizing this

concept, the ®ns of the ®nned heat sink are needed to be

made of extremely thin metal, then these thin ®ns could

be easily swinging back and forth by the ¯owing ¯uid, or
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these thin ®ns are forced to be oscillated by an oscilla-

tion exciter installed at a proper place. As this apparatus

is executed, the velocity and thermal boundary layers

attached on the ®ns are contracted and disturbed dras-

tically because of the swinging of the ®ns, which natu-

rally results in the heat transfer rate being enhanced

remarkably.

Due to the interaction between the ¯owing ¯uid and

swinging ®ns, the variations of the ¯ow and thermal

®elds become time-dependent, and this behavior belongs

to a class of the moving boundary problems, which is

hardly analyzed by either the Lagrangian or Eulerian

kinematic description method solely. From the physical

point of view, for analyzing the above phenomena val-

idly, the moving interfaces between the ¯uid and ®ns

have to be taken into consideration. An arbitrary La-

grangian±Eulerian (ALE) kinematic description method

[14±19], in which the computational meshes may move

with the ¯uid, be held ®xed, or be moved in any other

prescribed way, is an appropriate kinematic description

method to analyze this new cooling concept mentioned

above.

Consequently, the ALE kinematic description

method is adopted to describe the variations of the ¯ow

Nomenclature

d dimensional thickness of the ®ns (m)

D dimensionless thickness of the ®ns �D � d=w2�
h dimensional width of the channel (m)

H dimensionless width of the channel

�H � h=w2�
h1 dimensional distance from the wall of the

channel to the ®ns (m)

H1 dimensionless distance from the wall of the

channel to the ®ns �H1 � h1=w2�
h2 dimensional pitch of the ®ns (m)

H2 dimensionless pitch of the ®ns �H2 � h2=w2�
Ni shape function

n normal vector of coordinates

ne number of elements

Nu overall average Nusselt number of the ®ns

NuX local Nusselt number on the top or bottom

surface of the ®ns

NuX average Nusselt number on the top or bottom

surface of the ®ns

p dimensional pressure �N mÿ2�
p1 referential pressure �N mÿ2�
P dimensionless pressure �P � �p ÿ p1�=qu2

0�
Pr Prandtl number �Pr � a=m�
Re Reynolds number �Re � u0w2=m�
Rei Reynolds number for the Blasius solution

�Rei � u0i=m�
sb dimensional swinging speed of the ®ns �m sÿ1�
Sb dimensionless swinging speed of the ®ns

�Sb � sb=u0�
t dimensional time (s)

T dimensional temperature (°C)

Tf dimensional temperature of the ®ns (°C)

T0 dimensional temperature of the inlet ¯uid (°C)

u; v dimensional velocities in x- and y-directions

�m sÿ1�
U ; V dimensionless velocities in X - and Y -directions

�U � u=u0; V � v=u0�
u0 dimensional velocity of the inlet

¯uid �m sÿ1�

vb dimensional swinging velocity of the ®ns

�m sÿ1�
Vb dimensionless swinging velocity of the ®ns

�Vb � vb=u0�
v̂ dimensional mesh velocity in

y-direction �m sÿ1�
V̂ dimensionless mesh velocity in Y -direction

�V̂ � v̂=u0�
w dimensional length of the channel (m)

W dimensionless length of the channel

�W � w=w2�
w1 dimensional distance from the inlet to the

front side of the ®ns (m)

W1 dimensionless distance from the inlet to the

front side of the ®ns �W1 � w1=w2�
w2 dimensional length of the ®ns (m)

W2 dimensionless length of the ®ns �W2 � w2=w2�
x; y dimensional Cartesian coordinates (m)

X ; Y dimensionless Cartesian coordinates

�X � x=w2; Y � y=w2�

Greek symbols

a thermal di�usivity �m2 sÿ1�
/ computational variables

i the length of a ¯at plate for the Blasius

solution (m)

k penalty parameter

m kinematic viscosity �m2 sÿ1�
h dimensionless temperature �h � �T ÿ T0�=

�Tf ÿ T0��
q density �kg mÿ3�
s dimensionless time �s � tu0=w2�
Superscripts

(e) element

m iteration number

T transpose matrix

Other

� � matrix

fg column vector

hi row vector
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and thermal ®elds induced by the interaction between

the swinging ®ns and ¯owing ¯uid and the enhancement

of heat transfer of the ®ns numerically. A Galerkin ®nite

element method and a backward di�erence scheme,

dealing with the time terms, are used to solve the gov-

erning equations. Several di�erent ¯ow rates and

swinging speeds of the ®ns are considered in this study.

2. Physical model

A two-dimensional horizontal channel with width

h and length w as sketched in Fig. 1 is used in this study.

Three extremely thin ®ns with thickness d and length w2

are arranged with a pitch of h2 in the channel. The ratio

of d to w2 is about 0.01. The distance from the inlet to

the front surface of the ®n is w1, and the distance from

the wall of the channel to the ®n is h1. The inlet velocity

and temperature of the ¯uid are uniform and equal to u0

and T0, respectively. These ®ns are made of high con-

ductivity material and maintain at a constant tempera-

ture Tf , which is higher than T0. Initially �t � 0�, these

thin ®ns are assumed to be stationary and the ¯uid is

¯owing steadily. As the time t > 0, these thin ®ns are

swung back and forth induced by the ¯owing ¯uid or an

oscillation exciter (the photograph of the swinging ®n is

showed in Appendix A). Then, the variations of the ¯ow

and thermal ®elds become time-dependent and catalog

to a class of the moving boundary problems. As a result,

the ALE method is properly utilized to analyze this

subject. The detail of the ALE kinematic description

method is delineated in Hughes et al. [15], Donea et al.

[16], and Ramaswamy and Kawahara [17].

In order to facilitate the analysis, the following as-

sumptions are made.

1. The ¯uid is air and the ¯ow ®eld is two-dimensional,

incompressible and laminar.

2. The ¯uid properties are constant and the e�ect of the

gravity is neglected.

3. The moving direction of the ®ns is in y-direction

only, and the ®ns oscillate with a constant swinging

speed sb.

4. The no-slip condition is held on the interfaces be-

tween the ¯uid and ®ns.

Based upon the characteristic scales of w2; u0; qu2
0 and

T0, the dimensionless variables are de®ned as follows:

X � x
w2

; Y � y
w2

; U � u
u0

; V � v
u0

; V̂ � v̂
u0

;

Vb � vb

u0

; P � p ÿ p1
qu2

0

; s � tu0

w2

; h � T ÿ T0

Tf ÿ T0

;

Re � u0w2

m
; Pr � m

a
; �1�

where v̂ is the mesh velocity and vb is the swinging

velocity of the ®ns.

According to the above assumptions and dimen-

sionless variables, the dimensionless ALE governing

equations [16±19] are expressed as the following equa-

tions:

continuity equation

oU
oX
� oV

oY
� 0 �2�

momentum equations

oU
os
� U

oU
oX
� �V ÿ V̂ � oU

oY
� ÿ oP

oX
� 1

Re
o2U
oX 2

�
� o2U

oY 2

�
�3�

oV
os
� U

oV
oX
� �V ÿ V̂ � oV

oY
� ÿ oP

oY
� 1

Re
o2V
oX 2

�
� o2V

oY 2

�
;

�4�
energy equation

oh
os
� U

oh
oX
� �V ÿ V̂ � oh

oY
� 1

Pr Re
o2h
oX 2

�
� o2h

oY 2

�
: �5�

As the time s > 0, the boundary conditions are as

follows: on the ¯uid inlet surface AB (excluding the

points A and B)

U � 1; V � 0; h � 0 �6�
on the wall surfaces of the channel BC and AD

U � V � 0; oh=on � 0; �7�
on the ¯uid outlet surface CD (excluding the point C

and D)

oU=on � oV =on � oh=on � 0; �8�
on the interfaces between the ¯uid and ®ns

U � 0; V � Vb; h � 1: �9�

3. Numerical method

A Galerkin ®nite element method and a backward

scheme, dealing with the time terms, are adopted to

solve the governing equations (2)±(5). The Newton±Fig. 1. Physical model.
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Raphson iteration algorithm and a penalty function

model [20] are utilized to simplify the nonlinear and

pressure terms in the momentum equations, respectively.

The velocity and temperature terms are approximated

by quadrilateral and nine-node quadratic isoparametric

elements. The discretization processes of the governing

equations are similar to the one used in Fu et al. [21].

Then, the momentum equation (3) and (4) can be ex-

pressed as the following matrix form:Xne

1

��A��e� � �K��e� � k�L��e��fqg�e�s�Ds �
Xne

1

ff g�e�; �10�

where

�fqg�e�s�Ds�T � hU1;U2; . . . ;U9; V1; V2; . . . ; V9im�1
s�Ds; �11�

�A��e� consists of the �m�th iteration values of U and V at

time sDs, �K��e� consists of the shape function Ni; V̂ and

time di�erential terms, �L��e� consists of the penalty

function terms, ff g�e� consists of the known values of U

and V at time s and �m�th iteration values of U and V at

time s� Ds.

The energy equation (5) can be expressed as the fol-

lowing matrix form:Xne

1

��M ��e� � �Z��e��gfcg�e�s�Ds �
Xne

1

frg�e�; �12�

where

�fcg�e�s�Ds�T � hh1; h2; . . . x; h9is�Ds; �13�
�M ��e� consists of the values of U and V at time s� Ds,

�Z��e� consists of the shape function Ni; V̂ and time dif-

ferential terms, frg�e� consists of the known values of h
at time s.

In Eqs. (10) and (12), Gaussian quadrature procedure

are conveniently used to execute the numerical integra-

tion. The terms with the penalty parameter k are inte-

grated by 2� 2 Gaussian quadrature, and the other

terms are integrated by 3� 3 Gaussian quadrature. The

value of penalty parameter k used in this study is 106.

The frontal method solver [22,23] is applied to solve Eqs.

(10) and (12).

The mesh velocity V̂ is linearly distributed and in-

versely proportional to the distance between the nodes

and ®ns. In addition, the boundary layer thickness on

the ®ns surface are extremely thin and can be approxi-

mately estimated by Reÿ1=2 [24]. To avoid the compu-

tational nodes in the vicinity of the ®ns to slip away

from the boundary layer, the mesh velocity adjacent to

the ®ns are expediently assigned equal to the velocity of

the ®ns.

A brief outline of the solution procedure is described

as follows:

1. Determine the optimal mesh distribution and number

of the elements and nodes.

2. Solve the values of the U ; V and h at the steady state

and regard them as the initial values.

3. Determine the time step Ds and the mesh velocities V̂
of the computational meshes.

4. Update the coordinates of the nodes and examine the

determinant of the Jacobian transformation matrix

to ensure the one-to-one mapping to be satis®ed dur-

ing the Gaussian quadrature numerical integration.

5. Solve Eq. (10), until the following criteria for conver-

gence are satis®ed:

/m�1 ÿ /m

/m�1

���� ����
s�Ds

< 10ÿ3; where / � U ; V : �14�

6. Substitute the U and V into Eq. (12) to obtain h.

7. Continue the next time step calculation until the as-

signed amplitude of the ®ns is reached.

4. Results and discussion

The dimensionless geometric parameters are listed in

Table 1. The working ¯uid is air with Pr � 0:71 and

Reynolds number is varied from 500 to 1500. Several

di�erent swinging speeds of the ®ns, Sb, are evaluated

and the maximum amplitude of the ®ns is assigned to be

0.05. Since the thickness of the ®ns D �� 0:01� is very

thin, the blockage e�ect and the heat transfer from the

right and left surfaces of the ®ns can be neglected. The

local Nusselt number NuX �X ; s� on the top or bottom

surface of the ®n is de®ned by the following equation:

Table 1

The dimensionless geometric parameters

H H1 H2 D W W1 W2 W3

7.0 3.085 0.4 0.01 15.0 4.0 1.0 10.0

Fig. 2. Comparison of the results of the average Nusselt

numbers on the top and bottom surfaces of the middle ®n at

steady state for di�erent Reynolds numbers of the present study

with the Blasius solution.
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NuX �X ; s� � ÿ oh
oY

: �15�

The average Nusselt number NuX �s� on the top or

bottom surface of the ®n is de®ned by

NuX �s� � 1

W2

Z W2

0

NuX dX ; �16�

where W2 is the length of the ®n. In addition, the overall

average Nusselt number Nu�s� of the ®n is de®ned as

Nu�s� � 1

2W2

Z W2

0

NuX jtop dX
�

�
Z W2

0

NuX jbottom dX
�
:

�17�

For obtaining an optimal computational meshes, a

series of numerical tests for various meshes at the steady

state are executed. The nonuniform distribution of 3872

elements corresponding to 15 942 nodes is chosen. Since

the pitch of the ®ns �H2 � 0:4� is larger than the thick-

ness of the ®ns �D � 0:01�, the ¯ow and thermal ®elds at

the steady state are similar to the ¯uid ¯owing over a ¯at

plate. The Blasius solution [25] for the average Nusselt

number with laminar ¯ow over a ¯at plate of length i is

NuX � 0:664Re1=2
i Pr1=3: �18�

In Fig. 2, the average Nusselt numbers on the top

and bottom surfaces of the middle ®n at the steady state

Fig. 3. The transient developments of the velocity vectors and isothermal lines around the middle ®n for the swinging speed of the ®ns

Sb � 0:025 and Re � 1000 case: (a) s � 0:0, (b) s � 1:0, (c) s � 4:0, (d) s � 8:0, and (e) s � 24:0.
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for di�erent Reynolds numbers are compared with those

of the Blasius solutions. Both the results are consistent

well. As for the time step Ds, the time step

Ds � 1:0� 10ÿ2 is chosen for the swinging speed of the

®ns Sb � 0:025 case, and Ds � 5:0� 10ÿ3; 2:5� 10ÿ3

and 2:0� 10ÿ3 are chosen for the swinging speed of the

®ns Sb � 0:5, 1.0 and 2.0 cases, respectively. Besides, the

residual of the continuity equation

Residual � oU
oX
� oV

oY
�19�

is checked for each element on each time to ensure the

mass conservation law to be satis®ed. In the computing

processes, the residual of the continuity equation for

each element is smaller than 1:0� 10ÿ6.

For illustrating the variations of the ¯ow and thermal

®elds more detailed, the middle ®n is focused on and the

velocity vectors and isothermal lines around the middle

®n are presented only. However, it should be noted the

computational domain included three swinging ®ns, and

a much larger region was calculated than what is

displayed in the subsequent ®gures. In addition, the

velocity vectors shown in the following ®gures are scaled

relatively to the maximum velocity in the ¯ow ®eld.

Fig. 3 present the transient developments of the

velocity vectors and isothermal lines around the middle

®n under the swinging speed of the ®ns Sb � 0:025 and

Re � 1000 case. At the time s � 0:0, the ®n is stationary

and the ¯uid is ¯owing steadily, as shown in Fig. 3(a).

As the time s > 0, the ®ns start in motion of swinging

back and forth. As shown in Fig. 3(b), the ®n is on the

way to move upward. The ¯uid close to the top surface

of the ®n is pushed by the ®n and ¯ows upward. As a

result, the heat transfer is enhanced. Conversely, the

¯uid near the bottom surface of the ®n simultaneously

replenishes the vacant space induced by the movement

of the ®n. Most of the ¯uid near the bottom surface of

the ®n are di�cult to catch up to the bottom surface of

the ®n simultaneously, this ¯ow is disadvantageous

to the heat transfer. Afterwards, the ®n moves upward

continuously until the amplitude of the ®n is equal to

0.05. The variations of the ¯ow ®elds are similar to those

of the ¯ow ®elds mentioned above.

The motion of the ®n turns downward immediately

as the ®n reaches the maximum upper amplitude. As

shown in Fig. 3(c), the ®n is on the way to move

downward and the position of the middle ®n is at the

center of the channel. The ®n pushes the ¯uid near the

bottom surface of the ®n, which is pro®table for the heat

transfer. In the meantime, the ¯uid close to the top

surface of the ®n continuously replenishes the vacant

space near the top surface of the ®n as the ®n moves

downward.

In Fig. 3(d), the ®n is on the way to move upward

and the position of the middle ®n returns to the center of

the channel. The variations of the ¯ow ®elds are similar

to those as shown in Fig. 3(b).

As the time increases, the ®n swings back and forth as

mentioned above. Since the ®ns swing with a small

speed, the variations of the ¯ow ®elds are slight.

As for the thermal ®elds, the variations of the ther-

mal ®elds usually correspond to the variations of the

¯ow ®elds. Since the swinging speed of the ®n is very

slow, the ¯ow ®elds are similar to the ¯uid ¯owing over a

¯at plate. Thus, the variations of the thermal ®elds are

very slight and the distributions of the isothermal lines

are similar to those of the ¯uid ¯owing through a sta-

tionary plate.

Fig. 4(a) shows the variations of the average Nusselt

number NuX on the top and bottom surfaces of the

middle ®n with time at the same conditions as shown in

Fig. 3. Based upon these reasons mentioned earlier, as

the ®n moves upward, the average Nusselt number

on the top surface of the ®n increases slightly, but the

Fig. 4. The variations of the Nusselt number on the middle ®n with time for the swinging speed of the ®ns Sb � 0:025 and Re � 1000

case: (a) the average Nusselt number NuX , and (b) the overall Nusselt number Nu.
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average Nusselt number on the bottom surface de-

creases. As the ®n moves downward, the results of the

variations of the average Nusselt number on the ®n are

opposite to those of the ®n moving upward. The varia-

tions of the overall average Nusselt number Nu on the

middle ®n with time are very slight compared with the

steady state, as shown in Fig. 4(b).

Fig. 5 shows the transient developments of the

velocity vectors and isothermal lines around the middle

®n under the swinging speed of the ®ns Sb � 0:5 and

Re � 1000 case. Since the swinging speed of the ®n is

greater than that of the case above, the variations of the

¯ow and thermal ®elds near the ®n are more drastic in

this case. As shown in Fig. 5(b) and (c), the ®n is on the

way to move upward. The ¯uid near the top surface on

the ®n is pushed by the ®n and ¯ows upward. In the

meantime, the ¯uid close to the left and bottom surfaces

of the ®n ®lls the vacant space near the bottom surface

of the ®n induced by the movement of the ®n. As a re-

sult, a small recirculation zone, which is disadvan-

tageous to the heat transfer, and a reattachement ¯ow,

which is advantageous to the heat transfer, are observed

around the left corner of the bottom surface of the ®n.

The distributions of the isothermal lines near the top

(a)

(b)

(c)

(d)

(e)

Fig. 5. The transient developments of the velocity vectors and isothermal lines around the middle ®n for the swinging speed of the ®ns

Sb � 0:5 and Re � 1000 case: (a) s � 0:0, (b) s � 0:05, (c) s � 0:1, (d) s � 0:2, (e) s � 0:4, (f) s � 0:6, (g) s � 0:8, (h) s � 1:0, (i) s � 1:2,

and (j) s � 5:6.
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surface of the ®n are denser than those of the bottom

surface of the ®n. Besides, the distributions of the iso-

thermal lines become denser near the reattachement

¯ow.

In Fig. 5(d), the ®n is on the way to move downward

and the position of the middle ®n is at the center of the

channel. Since the ®n moves downward, the ®n pushes

the ¯uid near the bottom surface of the ®n. Conversely,

the ¯uid near the left and top surfaces of the ®n con-

tinuously replenishes the vacant space near the top

surface of the ®n induced by the movement of the ®n. As

a result, a recirculation zone and a reattachement ¯ow

are formed around the left corner of the top surface of

the ®n. Similarly, the distributions of isothermal lines

become denser near the reattachement ¯ow and sparser

near the recirculation zone around the left corner of the

top surface of the ®n.

As shown in Fig. 5(e)±(j), since the ®n is in motion of

swinging back and forth with a high swinging speed, the

recirculation zones and reattachement ¯ows are formed

around the ®n continuously and migrate to the down-

stream gradually, which may cause the boundary layers

of the ¯ow and thermal ®elds to be contracted and

disturbed during the transient developments. Conse-

quently, the heat transfer is enhanced remarkably.

The variations of the overall average Nusselt number

Nu on the surfaces of the middle ®n with time at the

same conditions as shown in Fig. 5 are indicated in Fig.

6. According to the variations of the ¯ow and thermal

®elds mentioned above, the overall average Nusselt

Fig. 5 (continued )
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number during the transient developments is enhanced

remarkably. Furthermore, as the time increases, the ¯ow

and thermal ®elds may approach to a periodic state, and

the mean increment of the overall average Nusselt

number on the middle ®n is about 15% in the computing

range.

In addition, Fig. 7 shows the variations of the overall

average Nusselt number Nu on the middle ®n with time

for various cases. Fig. 7(a) and (b) indicate the swinging

speed of the ®ns Sb � 1:0 and 2.0 under Re � 1000 cases,

respectively. The variations of the overall average

Nusselt number with time are hardly found out to be

periodic, this is suggested as that the swinging speed of

the ®n is too fast and the ¯ow and thermal ®elds are

unable to develop regular patterns in time. In the com-

puting range, the mean increment of the overall average

Nusselt number on the middle ®n are about 50% and

120% in these two cases, respectively, which are larger

than those of the cases above. As expected, the

Fig. 6. The variations of the overall average Nusselt number

Nu on the middle ®n with time for the swinging speed of the ®ns

Sb � 0:5 and Re � 1000 case.

Fig. 7. The variations of the overall average Nusselt number Nu on the middle ®n with time for various cases: (a) Re � 1000; Sb � 1:0,

(b) Re � 1000; Sb � 2:0, (c) Re � 500; Sb � 1:0, and (d) Re � 1500; Sb � 1:0.
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enhancement of the heat transfer increases signi®cantly

with increased the swinging speed of the ®ns.

Fig. 7(c) and (d) present the swinging speed of the

®ns Sb � 1:0 under Re � 500 and Re � 1500 cases, re-

spectively. In the computing range, the mean increment

of the overall average Nusselt number on the middle ®n

for these two cases are about 18% and 80%, respectively.

As expected, the heat transfer increases with increased

Reynolds number.

5. Conclusions

A numerical simulation for the heat transfer of ex-

tremely thin ®ns of a ®nned heat sink which swing back

and forth induced by a ¯owing ¯uid or an oscillation

exciter is presented. Some conclusions are summarized

as follows:

1. As the ®ns swing with a small speed, the variations of

the ¯ow and thermal ®elds are slight and similar to

the ¯uid ¯owing over a ¯at plate.

2. As the ®ns swing with a large speed, the recirculation

zones and reattachement ¯ows are formed around the

®ns continuously and migrate to the downstream

gradually. This may cause the velocity and thermal

boundary layers to be contracted and disturbed,

which results in the enhancement of heat transfer re-

markably.

3. As the ®ns swing with a relatively low speed, the vari-

ations of the ¯ow and thermal ®elds may approach to

regular patterns with time, which result in the varia-

tions of the overall average Nusselt number being a

periodic state. However, the variations of the ¯ow

and thermal ®elds are unable to develop regular pat-

terns with time as the ®ns swing with a large speed.
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Appendix A

The photographs of the swinging of the ®n induced

by the ¯owing ¯uid are showed in Fig. 8. A ®nned

heated sink with single extremely thin ®n is set on the

test section of a small wind tunnel. The extremely thin

®n is made of Co-based amorphous ribbon and 25 lm in

thickness. As shown in Fig. 8(a), both the ¯uid and ®n

are stationary. As shown in Fig. 8(b) and (c), the ¯uid

¯ows through the tunnel. The extremely thin ®n is then

swinging induced by the ¯owing ¯uid. As a result, the

images of the ®n in the photographs are foggy.
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